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Abstract: In the case of simultaneous localization and mapping, route planning and navigation are
based on data captured by multiple sensors, including built-in cameras. Nowadays, mobile devices
frequently have more than one camera with overlapping fields of view, leading to solutions where
depth information can also be gathered along with ordinary RGB color data. Using these RGB-D
sensors, two- and three-dimensional point clouds can be recorded from the mobile devices, which
provide additional information for localization and mapping. The method of matching point clouds
during the movement of the device is essential: reducing noise while having an acceptable processing
time is crucial for a real-life application. In this paper, we present a novel ISVD-based method for
displacement estimation, using key points detected by SURF and ORB feature detectors. The ISVD
algorithm is a fitting procedure based on SVD resolution, which removes outliers from the point
clouds to be fitted in several steps. The developed method removes these outlying points in several
steps, in each iteration examining the relative error of the point pairs and then progressively reducing
the maximum error for the next matching step. An advantage over relevant methods is that this
method always gives the same result, as no random steps are included.

Keywords: mobile robot; robot navigation; simultaneous localization and mapping; ISVD; SVD

1. Introduction

Controlling autonomous mobile robots is based on various sensors and the fusion
of sensors [1]. Different types of cameras and computer vision are widely applied for
recognition of the environment. The choice of sensors depends on the use case; however, it
is generally useful for the robot to understand the environment to perform the specified task.
For navigational tasks, knowledge of the position of the robot is essential, and additionally,
information of obstacles and the desired target is crucial.

During navigation to the destined location, previously unknown, pop-up obstacles
have to be detected by sensors, and avoidance is performed by the robot. In case a map is
not available before operation, it has to be created by the vehicle during movement. These
navigation methods are referred to as simultaneous localization and mapping, or SLAM,
systems [2].

Movement of the vehicle can happen indoors or outdoors. In the case of outdoor
navigation, we can rely on the global positioning system (GPS), which can give the absolute
position of the vehicle relatively precisely [3,4]. Unfortunately, the application of GPS for
indoor navigation is not recommended, due to lack of precision. For indoor localization,
computer vision based solutions are applied: the detection of object feature points can help.
Feature points [5] are detected by the camera and based on distances and other objects,
the position of the vehicle can be determined. A possible solution is to put QR codes to
predetermined places [6].

In some cases, it is not necessary to know the exact map of the environment, for ex-
ample, in the case of warehousing cargo-bots [7–9]. For the warehouse automation, the
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line follower machines can detect and follow a line drawn on the floor. One significant
disadvantage of this solution is that a pre-established infrastructure is necessary.

Movement estimation can happen using an accelerometer and a gyroscope. An au-
tonomous system is able to estimate its own displacement based on these sensors; however,
the estimation accuracy is imperfect. By using more sensors, localization can be further
improved. In the paper by Csaba et al. [10], a localization and map building method was
described based only on displacement sensory data from the wheels. As faults were accumu-
lated continuously, self-positioning became more and more inaccurate as the robot moved.

In this paper, we present a solution for displacement estimation: a three-dimensional
point cloud matching method referred to as ISVD. Displacement estimation is based on
reduced point sets obtained from feature detectors with low computational power needs,
using the proposed ISVD algorithm. The ISVD algorithm is a point cloud matching
method based on singular value decomposition that gradually eliminates false pairs from
point clouds. Outliers are deleted successively such that point pairs with a Euclidean
distance greater than a threshold value are omitted in a certain step. This way, the error
diminishes constantly, thus ensuring improving fitting accuracy. The advantage of this
method is determinism, i.e., always providing the same output, in contrast to the RANSAC
method, for instance, which gives different results for different executions due to its intrinsic
randomness. The resulting visual odometry (VO) can be further refined by sensor fusion.

The structure of the paper is the following: in Section 2, a literature overview is given,
concentrating on related work; in Section 3, the device used during the experiments is
introduced; Section 4 contains the detailed description of the methods used for localization
and mapping; in Section 5, the results are presented and evaluated; and finally, Section 6
summarizes the findings.

2. Related Work

In recent years, a number of small-sized relatively cheap sensors became available in
computer vision applications, such as the Xtion [11], PrimeSense and Kinect sensors [12–14].
These devices are mostly used in prototyping; however, their implementation in production
is also possible, as the depth sensing accuracy is feasible for small-sized mobile robots.

By using RGB-D cameras or stereo cameras, a detailed three-dimensional map can
be created from the environment [13]. There are multiple works describing stereo-camera-
based SLAM methods [15,16]. Similar results can be achieved using the LIDAR sensor,
or even single cameras [17–19]. There are applications of LIDAR sensors in multi-robot
environments [20], and recently a learning-based method was applied using a loop-closing
algorithm to further improve the covered trajectory [21].

The method of position estimation using the RGB-D sensor starts with selecting feature
points using the cameras [22]. This is followed by estimating the relative displacement
between them, based on the knowledge of the spatial position of feature points [23,24].
Recent papers recommended using feature-based three-dimensional alignment [25–28].

For any method, the main difference is in the selected feature detector: robust feature
detectors are computationally complex and, therefore, slow; simpler detectors may run in
real-time, but the selected feature points might not be as reliable and stable as in the case of
more sophisticated methods.

The SIFT feature detector [29] was applied in a paper describing 3D mapping of indoor
environment [30]. The presented system used the PrimeSense sensor. A transformation
between the resulting point clouds can be defined; the authors defined an RGBD-ICP
algorithm to solve this. A loop closure detection [31] specifies the position of the vehicle on
map building, continuously.

Images taken by unmanned aerial vehicles (UAVs) are often used in precision agricul-
ture [32]. A solution to control a UAV based on an RGB-D camera was presented in [33].
FAST feature point detector [34] was applied, which is known for being less computation-
ally expensive compared to the SIFT method. On the other hand, while the processing time
is shorter, it is more sensitive for transformations.
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An improved solution was presented in [35], similarly using FAST feature points.
The performance can be further increased by using robust feature detectors [36].

3. Experimental Setup

A mobile robot was made for testing the algorithm and collecting measurement data
(Figure 1). The robot includes drive electronics, onboard computer, and sensors.

Figure 1. The mobile robot built and used for experiments. The experimental setup contains ultrasonic
sensors and a commercially available Kinect sensor.

Main features of the robot:

• Two layer architecture leaves enough space for the electronics and controlling laptop;
• Driving wheels with 2 DC motor encoder;
• 4 inflated tire with air;
• Two 12V accumulator;
• 5 distance sensor;
• Integrated control electronics;

Custom motor controller electronics was developed, which is connected to the control
computer. Ultrasonic sensors and a Kinect sensor are placed on the robot. Originally, the
robot was built for data collection, which was processed offline on a PC, along other sources
to comparatively evaluate different methods. Finally, the navigational algorithm of the
robot is capable of running on the built-in computer in real time.

The system only uses colorful and pixel-level depth picture of a camera for move-
ment following. Estimation of displacement is based on joined point clouds. To simplify
navigation and route planning, the three-dimensional point cloud was reduced to a two-
dimensional binary map. On the 2D map, obstacles with the minimum height similar as
the robots were taken into account [10].

The robot is capable of navigating without storing 3D point clouds, and navigates
simply based on calculated displacement. The elemental displacement is estimated during
movement, and spatial place of the vehicle is therefore given from the starting position.
This type of usage results in an RGBD sensor based IMU (RGBD-IMU) [37,38].

The Kinect sensor is a popular, low-budget RGB-D camera, with accuracy enough for
controlling a vehicle indoors, and outdoor use is limited. Originally, it was developed for
game control: the camera gives a colorful camera picture and pixel-level depth information
from the area in front of it. Regarding accuracy, in the case of objects of at least 1 m
distance, the standard deviation of sensors accuracy is maximum 5 mm. In case of further
measurements, it is maximum 20 mm. A modified average filter can reduce this fault to
3 mm [39]. The few meters’ detection proximity of the sensor makes it able to be used on
smaller sized robots indoors.
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4. Methodology

During the movement of the robot, colorful and depth pictures are made continuously
with the help of the Kinect sensor. Every colorful camera picture and pixel level depth infor-
mation of the actual environment of the robot can be transformed into a three-dimensional
point cloud (Xn). Three dimensional piles (Xn, Xn+1. . . Xn+i) can be attached to each other.
New point clouds can be attached to earlier sets if the sensor was displaced a little bit. Dis-
placement is defined between earlier point cloud and the newest measurement. The latest
measurement is given to the global map in every case, and this is the base of displacement
estimation from an earlier place. If the latest sensor data are not able to attach to an earlier
point cloud reliably, the data are trashed. During the movement, the measurement faults
are accumulated to each other; in this way, the location of the vehicle will be more and
more inaccurate. Knowing an earlier place from the traveled area, we have the chance to
specify the position and reduction of faults accumulated earlier (loop-closure algorithm).
The processing system is shown on Figure 2.

Figure 2. Processing pipeline of the movement estimation and map building system.

The algorithm uses three-dimensional feature points to define displacement between
point clouds made at different times. The searching of feature points happens on the
colorful camera picture. These have determinative spatial location using depth data of the
RGB-D camera. Using feature points, a displacement can be defined between measurements
made at different places. The estimation of displacement between point clouds is based on
SVD resolution.

Most research works deal with the feature-based 3D join topic. One significant differ-
ence is the feature detector used because these react for picture transformations in different
ways. The running time of easier feature detectors (FAST) is much smaller than more com-
plicated ones (SIFT, PCA-SIFT and SURF), but it reacts worse to each picture transformation.
The best performance is achieved when applying the SIFT detector [40], as it gives the best
results in the case of transformations or blurring. The main disadvantage of SIFT is the
high processing time [30]. The most important conditions for real-time map building is
choosing the fast feature point searching algorithm.

The FAST algorithm is a less robust detector with better runtime; however, it is less
invariant for transformations [33]. For these experiments, we chose the SURF detector
because of its robust work and speed. We recently presented a comparative analysis of
available detectors, including ORB [41], SIFT [29], SURF [42] and FAST [34].

For the fast definition of the feature points spatial position, each depth point is indexed
by its pixel pair on a colorful camera picture. In this way, if we search the depth information
to a feature point on the colorful camera picture, it can be found in a short time due to
indexing. Feature points are in the Fn set. In this set, the position on a colorful camera
picture and spatial position in the depth camera coordinate system are stored.

As the RGB-D sensor produces more noisy measurements for larger distances, feature
points more than 5.5 meters away were discarded during the matching procedure based on
our previous results [39]. Therefore, set Fn only contains these pre-filtered feature points.
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The system calculates displacement based on the newest feature points of point cloud
and earlier (1, 4, 8, . . . pieces feature points made in earlier points). Feature points of the
latest measurement are paired to earlier measurements, then transformation between the
point clouds is calculated based on feature point pairs which know their spatial location.
In this way, we obtain the relative displacement compared to the earlier known point.

The transformation between them is defined by a multi-level join method based on
feature point pairs (T) (Algorithm 1). During the processing of the algorithm, the goal is to
find the minimal join fault between the two sets of Equation (1).

arg min
T

∑
i
‖D− T ∗ S‖ (1)

Algorithm 1 The proposed multistage three dimensional point cloud matcher (ISVD)

procedure ISVD(D, S, T0, estart, maxIterations)
T = T0
en = estart
for j = 0→ maxIterations do

T = SVD(D, S, T);
for i = 1→ |D| do

S′ = T ∗ S
if 2

√
(dix − s′ix

)2 + (diy − s′iy)
2 + (diz − s′iz)

2 > en then

REMOVE(di, si)
end if

end for
if emax > en then

RETURN
else

en = en/2
end if

end for
end procedure

In the two feature point sets, where the spatial location of points are known and
all points have a pair, the ISVD (D, S) algorithm gives transformation between them
(Algorithm 1). It starts from T0 initial transformation, which is an estimated value. Dur-
ing each iteration, the wrong point pairs are examined by the join method. It deletes
those point pairs whose Euclidean distance is more than en. The en is the biggest allowed
difference between the join points. The initial value is estart, and emax gives the value of
the join fault.

First, the algorithm removes those feature pairs that have high error values. The value
of en decreases successively in every step, as better quality feature pairs become available for
SVD-based joining. This way, transformation T become more and more accurate between
the two sets. Successively discarding outlier points step by step makes the procedure more
and more accurate, as the matching has to consider fewer and fewer misleading points.
The SVD-based matching [43] finds the transformation with minimal error during the
iteration. The optimal transformation between two point sets is defined by the algorithm
using the aforementioned singular value decomposition. Then, the translation vector is
created using the center of gravity of the sets. This process is repeated multiple times until
termination, i.e., when it reaches the maximum number of steps (maxIterations), or the
fitting has the desired accuracy (emax).

The pairs of points that are associated incorrectly by feature detector are removed
from the system. Figure 3 shows an example of points associated correctly, also considering
their spatial information on top of the feature vector. This procedure is also appropriate to
filter feature points of homogeneous surfaces or those with recurring patterns.
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Figure 3. Visualized results for the 3D feature matching, and the reconstructed environment.

Figure 4 shows the reduction in coherent point pairs during the joining of two point
sets, and it gives the quality of joining as well (µ). An estimated displacement is defined by
the joining of feature point from actual measurement and its earlier (ISVD(Xn, Xn−1)) and
previous (ISVD(Xn, Xn−2)) feature points. Almost 200 feature pairs were reduced to less
than 50 by the algorithm during four iterations. There is enough overlap on some picture
made before the actual measurement to run the algorithm.

Figure 4. Processing time for the ISVD algorithm. The upper diagram shows the feature point
pair number in each iteration. Below, the diagram shows quality of the transformation first and
last iteration.

Quality of two point sets is shown by the µ. The overlap of the two point sets is given
in Equation (2) for an estimated T transformation. The join is unsuccessful if its value is
zero. The quality of the join is much better if its value is much bigger.

µ =
∑
|D|
i=0(

2
√
(dix − s′ix

)2 + (diy − s′iy)
2 + (diz − s′iz)

2)

|D| , (2)

where S′ = T ∗ S.
In the case of final the measurement, the estimation of the position is given by the

ISVD algorithm for previously known estimation and some earlier (4 or 8) cases. Each
estimation contains the accuracy of the join to earlier cases. The new estimation of the
position is given by the earlier measurements quality.

5. Evaluation and Results

The advantage of the algorithm is that the transformation between the point pairs is de-
fined defined; in this way, the running time of the algorithm is reduced significantly.The sys-
tem calculates with just a few predetermined points. The ISVD algorithm takes into consid-
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eration that every point pair in the point sets has its own pairs. Accumulated fault after
sixty 3D joins in the case of the ICP is 2.86◦ and 343 mm and in case of the ISVD is 1.48◦

and 248 mm. During measurement, the sensor is rotated 360 degrees around. In the case of
the same feature detectors and parameters, the rotational and translational faults at ISVD
algorithm are smaller than in the case of using an ICP algorithm [30,44].

Algorithm testing happened on some sets from two different sources. Data sets were
made with our own robot system in university buildings, laboratories and corridors. As a
second source, data sets made at Poznan University were used. They were made for mobile
robot developments [45].

In case of our own measurements, the real spatial position of the robot is unknown.
The starting and target positions are always the same. The robot takes a whole circle in
every case, so its first and last positions are the same. In this way, the absolute translation
and rotation fault accumulated can be examined. The sensor goes back to the starting
point in every case. Its accurate route is unknown. The reconstruction is made by our own
application and then shown in the application (Figure 5). The vehicle completes a whole
circle in the laboratory in this measurement. All of the accumulated absolute translation
faults on each axis are x = −250 mm , y = 2.5 mm, z = 15 mm. The absolute rotational fault
is Φ = 0.9◦, Θ = −1◦, Ψ = 9◦.

Figure 5. The 2D and 3D visualizations of the results on custom, self-collected data. The data set
contains 300 images.

In the case of data sets [45] made at Poznan University, the actual spatial position of
the robot is also available in addition to the regular and depth-image pairs produced by the
Kinect sensor. Four such image sequences were recorded by the sensor applied to a WifiBot.
The location of the vehicle was registered by five cameras from the ceiling. The produced
data set contains all color and depth images as well as camera parameters and information
about vehicle movement. Images were captured every 100 ms.

In most similar research, there are two measurement numbers for displacement esti-
mation on data series containing real spatial position [46]. The absolute trajectory error
(ATE) shows how far the robot is from the real position in a given position. The relative
pose error (RPE) examines only the relative displacement between two pictures made one
after another. In the case of displacement estimation, small faults generated at each join
are added up; in this way, if there is a fault in one join, they exist at the other ones as well.
RPE based in an actual join fault can be calculated from the difference between the actual
and previous real and estimated displacement. There is an average fault in the case of ATE
and RPE, which is the average of faults made at every measurement. It is called the RMSE.
On Figure 6, the left image showing the result of the three-dimensional reconstruction
generated by joins run on data series can be seen. Figure 6, the right image, shows the
two-dimensional version.



Machines 2022, 10, 519 8 of 12

Figure 6. The 3D reconstruction of the Poznan University trajectory1 data set [45]. The blue line
represents the ground truth movement, the red line shown the estimated movement. For these results
700 images were used from the data set; SURF was applied for feature detection.

We made comparison measurements from 300 pictures joining on trajectory1 [45] data
set. During testing, there were parameters next to SURF and ORB feature detectors to show
how many earlier pictures the actual measurement is joined to. The average result of the
joins is shown in Figure 7. Figures 8 and 9 show the relative displacement faults detailed
in the point pairs.

Figure 7. RMSE value on trajectory1 [45] data sets. The blue bar shows the translation error in
millimeters, and the orange chart shows the rotation error in degrees.

Figure 8. Relative pose error (RPE) on a trajectory1 [45] datasets. The blue line shows the error when
ORB feature detector is used and the red line shows the error when SURF detector is used. Used orb2
and surf2 joining (trajectory error in mm and rotation error in degree).

Figure 9. Relative pose error (RPE) on a trajectory1 [45] datasets. The blue line shows the error when
ORB feature detector is used, and the red line shows the error when SURF detector is used. Used
orb4 and surf4 joining (trajectory error in mm and rotation error in degree).

In the case of the orb2 data set, two previous measurements were used with the ORB
feature detection. For surf1, surf2, surf4 and surf8, one, two, four and eight measurements
were taken into account, respectively, using the SURF feature detector. When multiple
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measurements were evaluated, custom weights for the transformations were calculated by
Equation (2). For surf4-avg and surf8-avg data sets, the SURF feature detector was applied
with four and eight measurements, respectively, but the transformation was determined
based on the average values. It can be seen that SURF provides better results compared
to the ORB feature detection. Additionally, taking more previous measurements into
account, the accuracy can be further improved. Using the SURF feature detection with 4
and 8 measurements at least, the best results were obtained when their weighted averages
were taken.

On a mid-level computer, the average run time of the algorithm was 180 ms (Intel
Core 2 Quad Q9400 @2.66 GHz). The process consists of three major parts: finding feature
points on new images (which is more time consuming in the case of SURF); constructing a
three-dimensional point cloud (which consumes negligible time and is independent of the
feature detector used); and determining the transformation between the two sets of points
(which is also time consuming). The run time of the latter part is mainly governed by the
number of previous measurements, which is considered during the alignment.

The matching procedure is extended with a loop-closure (LC) algorithm, which contin-
uously monitors the matches between the current image and the keyframes. It determines
the match by comparing the feature descriptors of the current image with the feature
descriptors of the previous keyframes. The feature vectors of the key images are stored
continuously, the keyframes are selected linearly, and every 20th frame is selected for
this purpose. If a match is found with a previous image, the ISVD algorithm attempts to
provide a relative displacement estimate between the frame and the current image, then
the resulting offset is used to refine the odometry. The execution time of the algorithm
increases significantly for larger data sets.

The performance of the proposed system is compared with four similar solutions.
The comparison was made using the fr1/desk [46] dataset. The ATE (RMSE [m]) values
of the results are shown in Table 1. In our previous work, where the LC procedure was
not applied (surf8 pre. work) [47], we managed to slightly improve the results using the
SURF detector for the surf4 parameter. By extending the system with the LC procedure,
we achieved a further increase in accuracy (surf4+LC). The table also shows that we were
able to match the results of the four similar systems and achieve higher accuracy for one
of them.

Table 1. The achieved results in comparison with other relevant techniques using the fr1/desk [46]
dataset. In the table, ATE values are expressed in RMSE [m]. Columns 2 to 4 show the results of our
own methods, while the remaining columns show the values of relevant geometric approximations.

Surf8 [47] Surf4 Surf4+LC Whelan et al. [48] Qiang et al. [49] RGBD SLAM [50] MRSMap [51]

ATE 0.0907 0.082 0.0628 0.037 0.064 0.026 0.043

6. Conclusions

Two- and the three-dimensional maps are made by our own join algorithm introduced
in the article from the data of a RGB-D camera put on a mobile robot. The information
needed for the navigation of the robot is provided by these maps. The method gives a
spatial displacement of the sensor and robot in an unknown area, and global maps made
from the traveled area. A robust feature detector and point cloud join method based in
SVD resolution are used for displacement estimation.

During tests, mainly the SURF and ORB detectors are chosen. The selected feature
detectors are well known, and many implementations exist; an important argument for
our system is the relatively low computational cost. Further investigation with additional
feature detectors can be done in the future, which should lead to further improvements.
The proposed algorithm searches feature points on every measurement point in real time.
In the next step, the three-dimensional point cloud is made, and feature points found
earlier are indicated in this point cloud. Tests are run on their own and on other data sets
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which were made for mobile robots.This developed algorithm (ISVD) gives the estimated
displacement compared to the final measurement during more steps. During this time,
not related points, which are detected as wrong by the feature detector, are deleted by the
method. During measurements, using the SURF detector, a 9.9 mm average displacement
and 0.38◦ rotational fault are generated by examination of the trajectory1 data set.

Future plans include the application of deep learning for data-driven feature de-
tection [52]: for indoor environments, a wide dataset can be prepared and used to find
general features of objects, which could optimize feature selection and, therefore, reduce
the computational costs.
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Abbreviations
The following abbreviations are used in this manuscript:

ATE Absolute Trajectory Error
FAST FAST Feature Detector
GPS Ground Positioning System
ICP Iterative Closest Point
IMU Inertial Movement Unit
ISVD Iterative SVD
LC Loop Closure
LIDAR Light Detection and Ranging
ORB Oriented FAST and Rotated BRIEF
PC Personal Computer
PCA Principal Component Analysis
QR Quick Response Code
RGB Red Green Blue Color Representation
RGBD RGB+Depth Sensor
RMSE Root Mean Square Error
RPE Relative Pose Error
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SURF Sped-Up Robust Features
SVD Singular Value Decomposition
UAV Unmanned Aerial Vehicle
VO Visual Odometry
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