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Abstract: In the production and manufacturing industry, factors such as rolling equipment and pro-
cesses may cause various defects on the surface of the steel plate, which greatly affect the performance
and subsequent machining accuracy. Therefore, it is essential to identify defects in time and improve
the quality of production. An intelligent detection system was constructed, and some improved
algorithms such as dataset enhancement, annotation and lightweight convolution neural network
are proposed in this paper. (1) Compared with the original YOLOV5 (You Only Look Once), the
precision is 0.924, and the inference time is 29.8 ms, which is 13.8 ms faster than the original model.
Additionally, the parameters and calculations are also far less than YOLOV5. (2) Ablation experi-
ments were designed to verify the effectiveness of the proposed algorithms. The overall accuracy
was improved by 0.062; meanwhile, the inference time was reduced by 21.7 ms. (3) Compared with
other detection models, although RetinaNet has the highest accuracy, it takes the longest time. The
overall performance of the proposed method is better than other methods. This research can better
meet the requirements of the industry for precision and real-time performance. It can also provide
ideas for industrial detection and lay the foundation for industrial automation.

Keywords: steel plate defect; dataset enhancement; adaptive bounding box annotation; lightweight
MobilenetV2; YOLOV5

1. Introduction

In the complicated process of industrial production, any abnormality leads to product
defects. For instance, the rolling equipment and processes may cause scratches, inclusions,
patches and so on. Those defects not only affect the corrosion resistance, wear-resistance
and fatigue strength of the steel plate but also have a profound impact on the accuracy of
subsequent processing [1]. Identifying the defect patterns of abnormal products in time is
an effective way to improve the production quality and efficiency, so defect detection has
very important research significance [2,3].

Early product defect recognition is mainly carried out through machine learning, such
as support vector machine [4,5] and back-propagation network [6,7]. Gao [8] extracted
key feature information from GS-PCA and input it to SVM (Support Vector Machine) for
classification. Xu [9] established multiple SVM models through Ada Boost to classify sonar
images with low resolution and noise. However, these above-mentioned methods greatly
lie on the quality of manually extracting features, which directly affects the recognition
accuracy. Deep learning based on convolutional neural networks has very powerful feature
extraction capabilities and sufficient flexibility in the field of industrial inspection [10–13].
Hao [14] used the deformable convolution enhanced network to extract complex features
from steel surface defects, based on NEU-DET (Detection dataset of Northeastern Uni-
versity), with 0.805 of precision and 23 ms of inference speed. The accuracy is low and
needs to be improved. Guan [15] pretrained the steel surface defect classification task with
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VGG19, then evaluated the characteristic image quality with SSIM (Structual Similarity)
and decision tree; the accuracy was 91.66. The open dataset was directly used, and the
technology of image acquisition, preprocessing and dataset annotation was not studied in
this research. Feng [16] added FcaNet (Frequency Channel Attention Networks) and CBAM
(Convolutional Block Attention Module) on the basis of ResNet, the dataset contained 1360
images, and the parameter quantity was 26.038 M. The dataset was small, and the model
was large. Yang [17] used YOLOV5X (You Only Look Once) to detect steel pipe welding
defects. The accuracy was 98.7, but the inference speed was 120 ms, which did not meet the
real-time industrial requirements. Konovalenko [18] detected three kinds of defects based
on ResNet50 and ResNet152. The average accuracies were 0.880 and 0.876, respectively.
There were few defect types and low accuracy.

In summary, the above methods have inadequacies such as small datasets, few defect
types, low accuracy and long time consumption. (1) In order to improve the model
performance, the lightweight MobilenetV2 was used to improve the YOLOV5, and the
CBAM attention module was added to optimize the accuracy of target detection. The
upgraded YOLOV5 reduces the parameters and calculations and improves the inference
speed. (2) In the highly automated production scenarios, the yield of products is particularly
high, so images with defects are not easy to obtain. In order to increase samples, the
collected images were firstly expanded, and then a defect dataset was created by combining
the NEU-DET and the dataset collected in this paper. Moreover, due to the complex
environment of the field, the quality of the acquired image was unstable, so it was difficult
to annotate the dataset and classify the defects. Image enhancement before detection can
effectively improve recognition accuracy. However, there is no image preprocessing in these
methods. An improved MSR (Multi-Scale Retinex) algorithm was proposed to improve
the quality of images. (3) Creating datasets by manually labeling the bounding box is slow
and laborious. Therefore, an adaptive bounding box extraction algorithm is proposed in
this paper to obtain the target regions automatically, which can greatly assist the dataset
annotation. A steel plate defect detection system was established in this paper to collect
and analyze the images and record and store the detection results. The above-proposed
algorithms were embedded in the monitoring center of the system.

2. Overall Framework and Algorithm Structure of Steel Plate Defect Detection

The overall framework of the system is shown in Figure 1; it mainly includes a visual
monitoring device, communication networks and a back-end monitoring center. The visual
monitoring device mainly consists of CCD cameras, light sources and power supplies. After
the steel plate is rolled, the surface images are collected by the visual monitoring device
and transmitted to the back-end monitoring center through the communication network.
The received images are processed by intelligent analysis software and various embedded
intelligent algorithms. The detection results can be recorded and stored to evaluate the
quality of the whole steel plate.
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Figure 1. Overall framework of steel plate defect detection system. Figure 1. Overall framework of steel plate defect detection system.

The algorithm structure is shown in Figure 2. Firstly, the collected defect images were
expanded, and an improved MSR algorithm based on adaptive weight calculation was
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proposed to enhance the images. Then an adaptive bounding box extraction algorithm
for the defect dataset was proposed. The position of the target can be automatically
obtained based on image block and pixel difference algorithms, which can assist the dataset
annotation. Finally, a deep learning detection model was designed. The baseline network
adopts YOLOV5 (You Only Look Once), the backbone part was replaced by the lightweight
network MobilenetV2, and the attention module CBAM (Convolutional Block Attention
Module) was added for adaptive feature optimization. NEU-DET (Detection dataset of
Northeastern University) and self-processed images together constitute the defect dataset
to train and test the lightweight YOLOV5 model.
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3. Dataset Preparation
3.1. Image Expansion

In some highly automated industrial production scenarios, the product yield is high,
and it is difficult to collect defect samples. In addition, defects are caused by uncontrolled
factors in the production process; collecting them in various forms is a challenging task.
Therefore, it is necessary to expand the defect samples. Five kinds of defects were mainly
detected in this paper: inclusion, scratch, scab, pitted surface and patch. Images were
processed by rotation, mirror and Gaussian convolution, as shown in Table 1. One thousand
five hundred defect images can be obtained after expansion.
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Table 1. Image expansion.

Extension Method Inclusion Scratch Scab Pitted Surface Patch

Original image
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binary (i, j), where i represents the gray value of the pixel (0 ≤ I ≤ 255), j represents the 
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nary (i, j): 
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Then the two-dimensional entropy is:

H = −
255

∑
i=0

255

∑
j=0

Pij log Pij (2)

Therefore, the calculation formula of scale weight is as follows:

Wk =
Hk

K
∑

l=1
Hl

(3)

where Hk represents the two-dimensional information entropy of scale k, and K represents
the total number of scales. The defect images are processed by the improved MSR, and the
traditional MSR algorithm is used for comparison. The enhancement results are shown
in Table 2; the improved MSR algorithm has less background interference and a clear
target edge.

Table 2. MSR and improved MSR image enhancement.

Data Enhancement Scratch Inclusion Patch Scab Pitted Surface
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In order to quantify the enhancement effect, the gray standard deviation and infor-
mation entropy of original images and improved MSR enhanced images were calculated. 
As shown in Table 3, the features of enhanced images are both larger than that of original 
images, which indicates that the proposed enhancement algorithm improves the overall 
contrast and the amount of the image information. 

Table 3. Gray feature calculation of original defect images and improved MSR enhanced images. 

Feature 
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This Pa-
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Image 

This Pa-
per 

Original 
Image 
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Image 

This 
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age 

This Pa-
per 

Standard deviation 21.62 31.87 10.60 21.40 23.52 31.16 15.05 21.13 13.63 28.60 
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In order to quantify the enhancement effect, the gray standard deviation and infor-
mation entropy of original images and improved MSR enhanced images were calculated.
As shown in Table 3, the features of enhanced images are both larger than that of original
images, which indicates that the proposed enhancement algorithm improves the overall
contrast and the amount of the image information.

Table 3. Gray feature calculation of original defect images and improved MSR enhanced images.

Feature
Scratch Inclusion Patch Scab Pitted Surface

Original
Image

This
Paper

Original
Image

This
Paper

Original
Image

This
Paper

Original
Image

This
Paper

Original
Image

This
Paper

Standard deviation 21.62 31.87 10.60 21.40 23.52 31.16 15.05 21.13 13.63 28.60
Information entropy 6.39 6.51 5.39 6.21 6.13 6.47 5.64 5.94 5.76 6.78

3.3. Adaptive Target Bounding Box Extraction

In order to overcome the subjectivity of manual annotation, an adaptive bounding box
extraction method based on image block and pixel difference was proposed. As shown in
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Figure 3, the position information of the rectangular box can be automatically obtained,
and the annotation of the dataset can be assisted.

(1) Image block [23,24]: the image is divided into three parts by row: I1, I2 and I3, and
three parts by column: I4, I5 and I6, as shown in Figure 4;

(2) Calculation of second-order difference matrix: the difference between this row (col-
umn) and the next row (column) minus the difference between this row (column) and
the previous row (column), which are arranged in order at the corresponding position
of the previous row (column) [25,26].

The row difference is:

MD2 = [M(3, :) + M(1, :)− 2M(2, :); . . . ; M(m, :) + M(m− 2, :)− 2M(m− 1, :)] (4)

where MD2 is a matrix of (m − 2) ∗ n.
The column difference is:

ND2 = [N(:, 3) + N(:, 1)− 2N(:, 2); . . . ; N(:, n) + N(:, n− 2)− 2N(:, n− 1)] (5)

where ND2 is a matrix of m ∗ (n − 2).
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Figure 3. Adaptive bounding box annotation algorithm for steel plate defect dataset. 
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The mean value of I1, I2 and I3 are calculated by column, and then the column second-
order difference can be calculated from the horizontal direction. As shown in Figure 5a, the
column second-order difference of the three blocks is represented by different colors, which
constitute a difference matrix ND2. Similarly, the mean value of I4, I5 and I6 are calculated
by row, and the row second-order difference can be calculated from the vertical direction.
As shown in Figure 5b, the row second-order difference of the three blocks consists of a
difference matrix MD2.
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(3) Boundary calculation: A boundary calculation method is proposed in this paper,
which considers the distribution difference of the targets in each sub-block.

(1) Calculate the left and right boundaries: Divide the matrix ND2 into the first third
of the columns, the middle third of the columns and the last third of the columns: A. If
there are image targets in all three blocks I4, I5 and I6, the first third of the columns of
ND2 are taken to calculate the left boundary, and the last third of the columns are taken
to calculate the right boundary. B. If there are image targets in I4 and I5, the first third of
the columns of ND2 are taken to calculate the left boundary, and the middle third of the
columns are taken to calculate the right boundary. C. If there are image targets in I5 and I6,
the middle third of the columns of ND2 are taken to calculate the left boundary, and the
last third of the columns are taken to calculate the right boundary. D. If only the I4 part has
the image target, the first third of the columns of ND2 are taken to calculate the left and
right boundaries, respectively. E. If only the I5 part has the image target, the middle third
of the columns of ND2 are taken to calculate the left and right boundaries, respectively. F.
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If only the I6 part has the image target, the last third of the columns of ND2 are taken to
calculate the left and right boundaries, respectively.

As shown in Figure 4b, after the image is divided by column, there are image targets
only in I4 and I5, so the first third and the middle third of the columns of matrix ND2 are
extracted. For the first third of the columns, as shown in Figure 6, the column numbers of
the first maximum value from the left of each row are calculated, and the minimum value
of 37 is taken as the left boundary minL. Similarly, for the middle third of the columns, the
column numbers of the first maximum value from the right of each row are calculated, and
the maximum value 74 is taken as the right boundary maxR.

Machines 2022, 10, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 6. First maximum values and column numbers from the left of each row in the first third of 
the columns of ND2. 

(2) Calculate the upper and lower boundaries: Divide the matrix MD2 into the first 
third of the rows, the middle third of the rows and the last third of the rows. The calcula-
tion principle is the same as above, and the upper and lower boundaries are calculated 
according to the target distribution of three blocks. As shown in Figure 4a, there are image 
targets in I1, I2 and I3, so the first third and the last third of the rows of matrix MD2 are 
extracted. As shown in Figure 7, the row numbers of the first maximum value from top to 
bottom of each column in the first third of the rows are calculated, and the minimum value 
1 is taken as the upper boundary minU. Similarly, the row numbers of the first maximum 
value from bottom to top of each column in the last third of the rows are calculated, and 
the maximum value 191 is taken as the lower boundary maxD. 

 
Figure 7. First maximum values and row numbers from top to bottom of each column in the first 
third of the rows of MD2. 

The minL, maxR, minU and maxD were taken as the four boundaries of the bounding 
box. The annotation results of different defect images are shown in Figure 8. One thousand 
five hundred enhanced defect images were annotated by the above method, with an av-
erage annotation time of 285 ms and an average IOU of 0.93. 
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the columns of ND2.

(2) Calculate the upper and lower boundaries: Divide the matrix MD2 into the first
third of the rows, the middle third of the rows and the last third of the rows. The calculation
principle is the same as above, and the upper and lower boundaries are calculated according
to the target distribution of three blocks. As shown in Figure 4a, there are image targets in
I1, I2 and I3, so the first third and the last third of the rows of matrix MD2 are extracted. As
shown in Figure 7, the row numbers of the first maximum value from top to bottom of each
column in the first third of the rows are calculated, and the minimum value 1 is taken as
the upper boundary minU. Similarly, the row numbers of the first maximum value from
bottom to top of each column in the last third of the rows are calculated, and the maximum
value 191 is taken as the lower boundary maxD.
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The minL, maxR, minU and maxD were taken as the four boundaries of the bounding
box. The annotation results of different defect images are shown in Figure 8. One thousand
five hundred enhanced defect images were annotated by the above method, with an average
annotation time of 285 ms and an average IOU of 0.93.
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4. Classification Network Design
4.1. Model Structure

As shown in Figure 2, an improved CBAM-MobilenetV2-YOLOv5 model is proposed
in this paper. The backbone network of YOLOV5 was replaced by the lightweight network
MobilenetV2, and the attention module CBAM was added to the feature extraction part for
adaptive feature optimization.

(1) YOLOV5

YOLOV5 [17,27,28] mainly consists of Backbone, Neck and Head. Mosaic data en-
hancement, adaptive anchor box calculation and adaptive image scaling were added to
the data input part to process the data and increase the detection accuracy. In Backbone,
the Focus and CSP1_X structures were mainly used. The Focus structure was carried
out for slicing operations, and the size of the feature map was reduced by increasing the
dimension without losing any information, which can obtain the double downsampling
feature map. A residual structure was added to CSP1_X to enhance the gradient value
during the back-propagation process between layers, effectively preventing the gradient
from disappearing when the network is deepened. The CSP2_X structure was adopted in
the Neck to reduce the amount of calculation and strengthen the fusion ability of network
features. A feature pyramid was designed in the Neck layer to transmit information from
top to bottom, and a path aggregation structure was used to transmit localization infor-
mation. The loss function of the bounding anchor box in the Head is GIOU_Loss, and the
weighted NMS (Non-maximum Suppression) operation was used to screen multiple target
anchor boxes and improve the recognition accuracy.

(2) MobilenetV2

Different from the original residual structure, an inverse residual structure was
adopted in MobilenetV2 [29,30]. It first increases the dimension, then performs depth-
wise convolution calculations and finally reduces the dimension. The last ReLU6 layer
was replaced by the Linear, which reduces the loss of features and obtains better detection
results. The depthwise convolution module is shown in Figure 9. There are three filters,
and each filter is a 3 × 3 convolution kernel.
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(3) CBAM

The CBAM attention [31,32] was used in the model to optimize the target detection
accuracy and strengthen the focus on the detected targets. It consists of two independent
sub-modules: the channel attention module CAM and the spatial attention module SAM,
which perform attention in the channel and space dimensions, respectively. When given a
feature map, the attention map can be sequentially inferred by the CBAM module along
two independent dimensions, and then the attention map is multiplied with the input
feature map for adaptive feature optimization.

4.2. Evaluation Indicator

The IOU between the predicted bounding box and the ground truth bounding box
can be calculated as follows [33,34]:

IOU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(6)

where Bp is the predicted bounding box, Bgt is the ground truth bounding box. IOU is the
area of intersection of Bp and Bgt divided by the area of union. The larger the IOU, the more
consistent the predicted box and the truth box.

(1) Accuracy P and recall R

The calculation formulas are as follows [17]:

P =
TP

TP + FP
=

TP
all detections

(7)

R =
TP

TP + FN
=

TP
all ground truths

(8)

where TP indicates a correct detection, IOU ≥ threshold. FP indicates an error detection,
IOU < threshold. FN means the true value has not been detected, that is, “missed detection”.
TN indicates there is no true value, and it was not detected.

(2) AP (average precision) and mAP (mean average precision)

Suppose there are M positive samples in the total N samples. After ranking according
to the confidence, there are M Recall values from Top-1 to Top-M, which are (1/M, 2/M, . . . ,
M/M), respectively. For each Recall value, the maximum P can be calculated from r≥ Recall.
The AP is the average value of these P, which indicates the quality of the trained model in
the current category. The AP for each category and the mean value mAP for all categories
can be calculated.

5. Experiment Analysis
5.1. Monitoring Platform and Configuration Parameters

The visual monitoring platform is shown in Figure 10. It includes CCD cameras, light
sources, power supplies and so on.
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The parameters of the high-speed industrial camera are shown in Table 4. It can
be connected with MATLAB, Halcon and other third-party software. The weight and
volume are small, which is suitable for industrial automation equipment with limited
installation space. The light source is coaxial light source WP-CO250260, the luminous
surface is 264 × 263 mm and the power is 33 W. It is applicable to the detection of scratches,
cracks and other defects on the reflective metal surface. In the experimental environment,
a camera and a light source were used to collect images. In the actual production field,
three to five groups of cameras and light sources were set according to the monitoring
range. The position and angle of the camera and the light source can be adjusted with
the corresponding brackets. The camera was installed on the top of the steel plate and
perpendicular to the steel plate plane. The light source was directly installed above the
steel plate, and the brightness can be adjusted according to the actual demand to make the
illumination on the image surface as uniform as possible.

Table 4. Camera parameters.

Camera Size Pixel Resolution Frame rate Interface

WP-UT030 29 × 29 × 29 mm 300 thousand 640 × 480 pixels 815FPS USB 3.0

The hardware and software configuration information of the algorithm are shown
in Table 5; the experiment was carried out in the Ubuntu system, the GPU was NVIDIA
GeForce GTX 1080 Ti and the Pytorch deep learning framework was used. The initial
learning rate was set to 0.01, the momentum coefficient was 0.937, the batch size was 32,
the number of training categories was set to 5, and the epoch was set to 200.

Table 5. Hardware and software configuration information.

Name Configuration Information

Operation system Ubuntu 18.04, 64 bit
CPU Intel(R) Core(TM) i5-10210Y
GPU NVIDIA GeForce GTX 1080 Ti, 11 G

Language Python 3.7.9
Deep learning framework Pytorch 1.7.1

5.2. Dataset

Six kinds of defects were included in the open dataset NEU-DET: rolled in scale,
patches, cracks, pitted surface, inclusion and scratches. Defects common to this paper are
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patches, pitted surface, inclusions and scratches. Therefore, a defect dataset is formed by
combining 1200 samples of these four defects in NEU-DET and 1500 samples collected
in this paper, with a total of 2700 samples, including 600 patches, 600 pitted surfaces,
600 inclusions, 600 scratches and 300 scabs. Each image had three channels, and the pixel
size was 200 × 200. All samples were randomly divided into train and test in a ratio of 7:3,
which contains 1890 training images and 810 testing images.

5.3. Experimental Results and Analysis

After each epoch, the test was performed on the model. The precision, recall and loss
curves of the test dataset are shown in Figure 11. After 150 epochs, each curve gradually
tends to converge. The parameters of the best epoch were used as the model parameters.
The classification precision P, recall R and average precision AP of each defect are shown
in Table 6. The AP of patches and inclusions are higher, both above 0.96, because they are
labeled more accurately, and the contrast between the target and the background is clearer.
The AP and R of scabs are poor because, on the one hand, the scab is a convex defect, the
convex part has reflection, and the color of the whole target is close to the background. On
the other hand, the number of samples collected is less than other defects, which affects the
accuracy of feature learning. Overall, the average precision of five defects was 0.924, and
the detection effect was good.
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Table 6. Classification evaluation indicators of each defect category.

Defect Category P R AP

Patches 0.986 0.957 0.977
Pitted surface 0.949 0.891 0.955

Inclusion 0.936 0.918 0.962
Scratches 0.98 0.844 0.949

Scabs 0.784 0.615 0.777
All 0.927 0.845 0.924

In the detection results, the confidence distribution of each target is shown in Figure 12.
The range of 0.2–0.4 means 0.2 ≤ confidence < 0.4, 0.4–0.6 means 0.4 ≤ confidence < 0.6,
0.6–0.8 means 0.6 ≤ confidence < 0.8, 0.8–1.0 means 0.8 ≤ confidence ≤ 1.0. The confidence
of most defect targets are between 0.8 and 1.0, and a few are between 0.2–0.4 and 0.4–0.6.
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5.3.1. Compared with Original YOLOV5

The dataset in Section 5.2 was input into the original YOLOV5 and the improved
YOLOV5, respectively. Figure 13 shows the mAP@.5 and mAP@.5:.95 in the epoch process
of two models, both models tend to be stable after 100 epochs, and the accuracy of this
paper is slightly lower than the original model. The backbone part was replaced by the
lightweight net MobilenetV2, which reduces the number of model parameters at the cost
of losing some accuracy. Table 7 shows the average precision mAP@.5 and mAP@.5:.95,
amount of parameters, amount of calculations and inference speed of two models. The
precision of this paper was 0.924, which is 0.008 lower than the original model. However,
the Params, Flops and Inference time are far less than the YOLOV5. The comprehensive
performance was improved.
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Table 7. Performance comparison before and after improvement.

Model mAP@.5 mAP@.5:.95 Params (M) Flops (G) Inference Time (ms)

YOLOV5 0.932 0.608 26.80 15.82 43.6
This paper 0.924 0.600 13.91 8.95 29.8

5.3.2. Ablation Experiments of the Proposed Algorithm

Three improved algorithms are mainly proposed in this paper: improved MSR image
enhancement, automatic target bounding box annotation and lightweight YOLOV5. In
order to verify the value of the proposed module, ablation experiments were designed to
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test the model by gradually adding modules. As shown in Table 8, by using the lightweight
YOLOV5 module, the accuracy decreased by 0.015, but the inference time was reduced
by 14.3 ms. By adding the improved MSR image enhancement and automatic target box
annotation modules, the accuracy was improved by 0.077, and the inference time was
reduced by 7.4 ms. The overall accuracy of the three modules was improved by 0.062, and
the inference time was reduced by 21.7 ms. The image enhancement algorithm proposed in
this paper can effectively improve the image quality and is conducive to target annotation,
feature extraction and learning. The overall performance of the algorithms proposed in
this paper is superior.

Table 8. Ablation experiments of the proposed algorithm.

Improved MSR Image
Enhancement

Automatic Bounding
Box Annotation Lightweight YOLOV5 mAP@.5 Inference Time (ms)

× × × 0.862 51.5
× ×

√
0.847 37.2√ √ √
0.924 29.8

5.3.3. Compared with Other Models

In order to verify the algorithms proposed in this paper, SSD [35], Faster R-CNN [10]
and RetinaNet [36] were used for comparative experiments. As shown in Figure 14,
RetinaNet has the highest accuracy of 0.941, but its inference time is 84.5 ms, which is the
most time-consuming. The precision of this paper is 0.924, but the time is 29.8 ms, and the
overall performance is better than other models. It not only has high precision, but also
meets the real-time requirements of industrial detection better.
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5.4. Field Running Tests

The intelligent detection system was tested in the equipment operation field of the
China Heavy Machinery Research Institute. The monitoring field is shown in Figure 15.
Image acquisition and operation status monitoring were carried out for the steel plate in
the production process.
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Figure 15. Steel plate monitoring field.

As shown in Figure 16, the expert software for intelligent analysis of steel plate defects
installed in the monitoring center was developed by combining VC++, MATLAB and
Python, in which various intelligent algorithms designed in this paper were embedded.
Its functions consisted of load image, image expansion, image enhancement, dataset
annotation, model training and defect detection. The processing results of images are
displayed on the right side of the interface, and the detection results are displayed below
the interface. The visual results and detection data results can be displayed by clicking the
corresponding functions. Figure 16a shows the enhancement effect of a scratch image, and
Figure 16b shows the detection results of a patch image.
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6. Conclusions

This paper proposes a lightweight improved YOLOV5 model and some improved
dataset enhancement and adaptive bounding box annotation algorithms for steel surface
defect detection. Firstly, an improved MSR algorithm based on adaptive weight calculation
was proposed, which can automatically obtain the scale weight by calculating the propor-
tion of information entropy. Compared with the original image and traditional MSR, the
image contrast and quality were improved. Secondly, an adaptive bounding box extraction
algorithm for steel plate defect datasets was proposed. It obtains the bounding box of
the target based on the image block and pixel difference algorithm, which can assist the
dataset annotation. The average annotation time was 285 ms, and the average IOU was
0.93. Finally, an improved lightweight YOLOV5 model was designed, and the NEU-DET
dataset and the processed images by the proposed algorithm together formed the dataset.
(1) Compared with the original YOLOV5, although the accuracy was reduced by 0.008,
the inference speed was 29.8 ms, which is faster than the traditional model. Additionally,
the parameters and calculations were also far less than YOLOV5. (2) In order to verify the
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value of the proposed module, ablation experiments were designed by gradually adding
modules. The overall accuracy was improved by 0.062, and the inference time was reduced
by 21.7 ms. The image enhancement algorithm proposed in this paper can effectively
improve the image quality and is conducive to target annotation, feature extraction and
learning. (3) Compared with other detection models, the precision of SSD, Faster R-CNN
and RetinaNet are 0.686, 0.871 and 0.941, respectively. Although RetinaNet has the highest
accuracy, 0.941, its inference time is 84.5 ms, which is the most time-consuming. The
precision of this paper is 0.924, but the time is 29.8 ms, which more meets the accuracy and
real-time requirements of the industry, and the overall performance is better than other
methods. This research can provide ideas for the real-time detection of steel plate defects in
industrial environments and lay a foundation for industrial automation.

Although advanced deep learning algorithms and convolutional neural networks
were used in this paper to achieve defect detection in the industrial production field, other
categories of defects that do not exist in the dataset cannot be correctly identified in the
case of limited datasets. The next step is to collect more images of different defects and
study more detection algorithms and technologies.
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