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Abstract: Online monitors of the running gears systems of high-speed trains play critical roles in
ensuring operational safety and reliability. Status signals collected from high-speed train running
gears are very complex regarding working environments, random noises and many other real-world
constraints. This paper proposed fault detection (FD) models using canonical correlation analysis
(CCA) and just-in-time learning (JITL) to process scalar signals of high-speed train gears, named
as CCA-JITL. After data preprocessing and normalization, CCA transforms covariance matrices of
high-dimension historical data into low-dimension subspaces and maximizes correlations between
the most important latent dimensions. Then, JITL components formulate local FD models which
utilize subsets of testing samples with larger Euclidean distances to training data. A case study
introduced a novel system design of an online FD architecture and demonstrated that CCA-JITL
FD models significantly outperformed traditional CCA models. The approach is applicable to other
dimension reduction FD models such as PCA and PLS.

Keywords: canonical correlation analysis; just-in-time learning; fault detection; high-speed trains

1. Introduction

In the past twenty years, high-speed railway systems are gradually becoming one of
the most popular transportation services because of their significant advantages in speed
and energy efficiency [1–3]. The running gears are critical parts to ensure the safety of
high-speed train operations. To precisely detect the real-time health status of running
gears is very challengeable. In reality, sensor signals of running gears in high-speed trains
have a very high degree of complexity, for instance, messy signals from bogie, bearing
temperature, gear temperature, working environments and random noises. Moreover, there
are only small-scale historical failure data available among large volumes of monitoring
data streams. Incomplete training resources might easily raise detection errors.

With the rapid development of train sensor technology, data-driven FD methods have
been well studied in the last century. Many multivariate statistical methods have been
widely applied in the fault detection fields [4–6], for example, principal component analysis
(PCA), partial least squares (PLS) and CCA. PCA was one of the earliest dimensionality re-
duction methods to process high-dimension signal data for FD purposes [7,8]. PCA projects
high-dimension input data into low-rank subspaces while retaining the main information
of the original data within a few top latent dimensions. Moreover, PCA FD models are
derived from a large scale of normal status signals and generate fault alarm thresholds
for incoming error signals. PLS and CCA are widely utilized to develop advanced FD
models [6,9,10]. PLS decomposes the covariance matrices of two sets of variables into
relational subspaces and residual subspaces. Then, the regression analysis to covariance
structure estimates the multi-direction of one set of variables that explains the maximum
multidimensional variance direction of another set of variables. CCA identifies linear
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combinations between two groups of variables to maximize the overall group correlation.
Multi-set CCA resolved feature fusion of multiple groups of variables [11].

Chen and Ding [12] designed a general CCA-based FD infrastructure for non-Gaussian
processes which aimed to boost the fault detection rate (FDR) under an acceptable false
alarm rate (FAR). Peng and Ding [13] have proposed CCA-based distributed monitoring
processes within partly-connected networks, which reduced communication costs and risks
and avoided a significant drop in system performance. Chen and Chen [6] introduced a
single-side CCA (SsCCA) model with promising FD performance using single-side neural
networks. Chen and Li [14] had proposed a stacked approach, so called neural network-
aided canonical variate analysis (SNNCVA), which showed satisfactory FD performance for
nonlinear datasets. Garramiola and Poza [15] introduced a data-driven approach of fault
diagnosis to build hybrid fusion models to detect, isolate and classify sensor faults. Kou
and Qin [16] extended fault diagnosis methodology into tensor space to deal with multi-
sensor data with high precision and convergence speed. Zhao and Yan [17] provided a
comprehensive review which summarized state-of-the-art deep learning (DL) technologies
applied on machine health monitoring (MHM). Niu and Xiong [18] proposed a novel fault
Petri net fault detection and diagnosis (FDD) model to analyze signals of speed sensors of
high-speed trains. Fu and Huang [19] proposed a fault diagnosis method based on the long-
short-term memory (LSTM) recursive neural network (RNN) to reduce the steps of signal
preprocessing and optimize prediction accuracy. Cheng and Guo [20] designed a real-time
prediction framework for running state of running station based on multi-layer BRB and
priority scheduling strategy. Guan and Huang [21] created a particle swarm optimization
algorithm based on wavelet variation and a least squares support vector machine to avoid
falling into local extremum problems. Sayyad and Kumar [22] introduced a survey to
review service life prediction technologies of real-time health monitors of cutting tools
from perspectives of modeling, systems, data sets and research trends. Capriglione and
Carratu [23] proposed an FD method using a nonlinear autoregressive with Exogenous
Inputs (NARX) neural network as a residual generator for online FD of travel sensors.
Shabanian and Montazeri [24] proposed an online FD and diagnosis algorithm based on
the neural fuzzy, and adaptive analytic method and neural network to track faults online.

JITL technologies involve collecting the most relevant samples as training data for
online query and making predictions of local modeling running time [25–27]. Compared
with similar samples in historical databases, the signal status of online query could be
possibly acquired in real time. Robust JITL strategies to leverage the weights of high
leakage points of signals such as outliers had been successfully applied to the FD tasks [28].
A simulation study showed that the combined JITL-PCA models outperformed PCA in
the analyzing of nonlinear signals [26]. In addition, neural network methods and the
stochastic hidden Markov model (HMM) were studied to improve FD performance of
dynamic systems [29,30].

Motivated by the previous studies, we designed a novel CCA-JITL model to analyze
real-time signals from running gears of high-speed trains. The model was built and
testified using real-world datasets. The algorithm split the data input into two groups and
verified the system performance by group comparison The evaluation demonstrated that
the accuracy of FD detection was significantly improved. The algorithm detects the data in
groups and verifies the two groups of results, and the proposed system infrastructure was
also applicable to enhance PCA and PLS FD models.

The rest of this article is content as follows. Section 2 gives introduction the structure
of running gears system, experiment design and datasets. Section 3 presents theoretical
foundations of the proposed method. Section 4 presents evaluation results of a FD use case
and discussion of the results. Finally, Section 5 summarizes this paper study.
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2. Preliminaries

This section introduces the mechanical structure of a running gear system in a high-
speed train. In this study, signal faults mainly caused by parts were selected as FD targets.
Then, the research goals and problem statements of system design were discussed.

2.1. Introduction of a Running Gears System of a High-Speed Train

The running gear system is an important system that affects the smooth running of
high-speed trains. It improves the traction performance of high-speed trains and has the
functions of generating power, buffering and supporting. The running gears system of
high-speed trains include many complicated parts such as the axle box, traction drive,
detection sensor, and spring device. Any malfunction from these parts may cause the
carriage to shake during running and result in unpredictable consequences.

This paper aimed to analyze the running gears model and establish a data-driven FD
model. The running gears system has such a multi-level complex structure. Therefore, it
is difficult to build an FD model. As shown in Figure 1, many temperature sensors are
arranged inside the gears. The test points of temperature sensors, for example, A1–A4 for
axle box bearing temperature measuring point, B1–B3 for motor temperature measuring
point, and C1–C4 for gear box temperature are shown in Figure 1 [31].

Figure 1. Structure of a running gears system.

2.2. Fault Description

The running gears system is equipped with many sensors to keep track of the actual
status. The real data used in this study is based on data collected by a railway department
in a specific year and then classified and processed to obtain the fault signals of gears. This
paper uses the matrix to describe the data set for research purposes. This paper uses the
matrix Zw to describe the data set as followings

Zw = [qw(1), qw(2), · · · , qw(8)] (1)

where Zw ∈ RN×m with N samplings collected from m sensors. In this application m = 8,
N = 2000. Furthermore, Zw can be rewritten as

Zw =
[

Xx Yy
]

Xx(k) = [qw(1), qw(2), qw(3), qw(4)]

Yy(k) = [qw(5), qw(6), qw(7), qw(8)]

(2)

where qw(i) represents the data collected for the ith sensor. The data subset Xx is the input
matrix, and Y is the output matrix. In the paper, we use types of faults as follows: (1)
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Bogie 1 failure; (2) Bogie 2 failure; (3) Motor drive side bearing failure; (4) Non-drive side
bearing failure; (5) Motor side big gear failure; (6) Wheel side pinion failure; (7) Wheel
side motor big gear failure; (8) Motor side pinion failure. Moreover, in the process of data
collection, the data collected from the same carriage in a train is selected. Without loss of
generality, after splitting data into the two groups, we added fault data with labels to form
experimental training data. Therefore, the fault data can be represented as

qw(η) =
[

x fwt
]T , η = 1, 2 · · · , m (3)

Remark 1. Divide the data into the two groups: (1) qw(1) to qw(4) in one group as input; (2)
qw(5) to qw(8) in another group as output. We added fault data with labels to form experimental
data.

Remark 2. In this study, all the FD models were constructed and compiled within the software
environment of MATLAB, and all the experiments were executed and evaluated in a PC in CPU
mode.

2.3. Objective and Design Issues

The FD models for moving gear parts were often error-prone due to the scalability and
complexity issues of signals. Our CCA-JITL FD model solved many challenges as below:

• Investigate effective data processing techniques, and maintain the original trend of
the data.

• Design a series of statistical tests for model evaluation.
• Design a use case and apply the proposed method.

2.4. System Design

In order to solve the above problems, this paper proposed an FD method based on
CCA and JITL. We mainly used the CCA component to preprocess and normalize data,
transform high-dimensional data into low-dimensional variable covariance subspaces and
maximize the correlation between the most important top latent dimensions. SVD was
applied to decompose the covariance matrix of input and output into two separate singular
subspaces and keep the original distribution trends of variable correlations. Subspace
mapping procedures projects input and output matrices back to the singular subspaces
only with the most important relations and generates two groups of variables, Px and Py,
after dimension reduction which eliminates the noise, that is, the residual subspaces. Then,
JITL was used to calculate the Euclidean similarity of the query sample and the training
data, respectively, and selected a sample subset for online testing regarding distances
between them. During the experiments, the data sets of Px and Py were equally divided
as a training data set and a testing data set. Finally, the FD model formulated statistics
to define thresholds of fault signals and performed to detect signal faults in the testing
samples. The workflows of the model are shown in Figure 2.
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Figure 2. Flowchart of the proposed CCA-JITL FD model.

3. Methodology

In this section, combined with the characteristics of signals of the running gears,
CCA-JITL FD model is introduced in details.

3.1. Canonical Correlation Analysis and Just-in-Time Learning Methods

CCA transforms covariance matrices of input and output datasets into two subspaces
with the greatest correlation by computing the linear combination of the latent dimensions.
The algorithm is adopted by using singular value decomposition (SVD), and it can preserve
the original trend of the data [4,32]. The algorithm maximizes Pearson coherence between
Xx and Yy. Pearson correlation of data sets Xx and Yy can be expressed as [4]

R
(
Xx, Yy

)
= max

uTSXYv√
uTSXXu

√
vTSYYv

(4)

where SXY = XT
x Yy, SXX = XT

x Xx and SYY = YT
y Yy. According to the data set Xx and Yy

given above, standardization is carried out, respectively. Calculation of matrix is [6]

W = S−
1
2

XXSXYS−
1
2

YY =
XT

x Yy√
XT

x Xx

√
YT

y Yy

(5)

The matrix W is decomposed by singular value decomposition (SVD), and the W is
decomposed as [4]

W = ΓDVT (6)
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where Γ = (u1, · · · , ut), D =

[
Dh 0
0 0

]
, V = (v1, · · · , vn), and where h represents the

number of top-ranking singular values and ∑h = diag(ρ1, · · · , ρh). Through the formula
ω = Γ(:, 1 : h), ψ = V(:, 1 : h), the related subspaces Hx and Hy are generated as [6]

Hx = S−
1
2

XXω =
1√

XT
x Xx

ω

Hy = S−
1
2

YY ψ =
1√

YT
y Yy

ψ
(7)

The latent space of Xx is divided into two subspaces, namely the related subspaces
with Yy and the unrelated subspaces with Yy. Similarly, the latent space of Yy is divided
into two parts, namely the related subspaces with Xx and the unrelated subspaces with
Xx. According to the above parameters, the original data inputs are mapped to the related
latent spaces, Hx and Hy, and obtain two associated matrices, Px and Py. The correlation
coefficient is ρ1 between Hx and Hy if only considering the first canonical variate pair of
CCA. The data matrix can be formulated as

Px = u = Hx

(
Xx

(
HT

x Hx

)−1
HT

x

)T

PY = v = Hy

(
Yy

(
HT

y Hy

)−1
HT

y

)T
(8)

The following JITL algorithm is carried out on Px and Py, respectively, for data fitting.
Different from the traditional global model approach, this JITL-based approach uses an
online local model structure which could effectively track the current status of the algorithm.

JITL is to improve the prediction of the local FD model using similarity measures.
After the most relevant normal data selected from the database, the distance measure,
e.g., Euclidean distance d(t′s, tc) = ‖t′s, tc‖2, is employed to evaluate the similarity between
t′s and tc. Here, t′s is the data point of the training set, tc is the data point of the test set; that
is, a smaller value of distance implies a greater similarity between these two vectors [26].
The inverse of Euclidean distance is used to find the correlation between two vectors.

Si,k =
1√

e(‖t′s ,tc‖2)
2

, i = 1, 2, 3, · · · , N (9)

where Si,k represents the magnitude of correlation.

Remark 3. The JITL algorithm arranges Si,k values in descending order. The number of data to be
selected is determined by calculating the accumulated contribution value of Si,k to the variance of

the overall data, and the formula for the average value of Si,k is θi =
(

∑N
i=1 Si,k

)
/N. The variance

formula is G = (Si,k − θi)
2. The contribution parameter G is used to determine how many data

points to be included in the testing sample data. For example, the algorithm picks 900 data points
until the sum of G value reach 90%.

Remark 4. JITL selects testing data points which have lower correlations with training dataset.
In the experiment, the system only takes the last 900 data points from the sorted testing dataset.

3.2. Monitoring Statistics of FD Models

This section describes the test statistics used for FD. This article uses T2 and SPE for FD.
Firstly, a data matrix to be detected is given. Let the input and output matrices obtained after
the JITL processing be µx = [αr(1), · · · , αr(N)] ∈ Rl×N , µy = [αc(1), · · · , αc(N)] ∈ Rm×N .
According to the Formulas (5)–(7), the residual vector is obtained [6]
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s = HT
y µx −MTµy (10)

where MT = Dh HT
x .

In the FD algorithm, statistics and their corresponding thresholds define the bound-
aries of system prediction. T2 and SPE are the two most commonly used statistics in
FD [33–36]. Taking the two data matrices Px and Py perform separately FD. The detection
of the subspaces is the same as the routine detection process. Then, judging whether the
input signals normally or not requires the following methods [4]

SPE = sTs

SPEx ≤ Jx,th and SPEy ≤ Jy,th ⇒ fault − free

SPEx > Jx, th or SPEy > Jy,th ⇒ faulty

(11)

where Jx,th and Jy,th are the thresholds for SPEx and SPEy, respectively. Then, judging
whether the input signals normally or not need methods as following [4]

T2 = sTΛ−1s

T2
x ≤ Tx,th and T2

y ≤ Ty,th ⇒ fault − free

T2
x > Tx,th or T2

y > Ty,th ⇒ faulty

(12)

where s is residual matrix, Tx,th and Ty,th are the thresholds for T2
x and T2

y , respectively.

3.3. Offline Training and Online Detection Algorithms

The procedures in Algorithm 1 are used for offline training. The steps in Algorithm 2
are used for online detection.

Algorithm 1 Offline training
1: Normalize the measurement data.
2: The data is divided into two data matrices via CCA model.
3: The JITL model is used to improve accuracy of data fitting.
4: Find the thresholds Jx,th and Tx,th associated with the data matrix Px, and the thresholds

Jy,th and Ty,th associated with the data matrix Py.

Algorithm 2 Online detection
1: The collected fault data is normalized.
2: Find the two data matrices.
3: The JITL model is used to improve accuracy of data fitting.
4: Calculate SPE and T2 via (11) and (12) .
5: Determine whether a fault occurs comparing the test statistic with the thresholds.

3.4. System Evaluation Methodology

To measure the performance of the FD models, the most commonly used evaluation
metrics are the false alarm rate (FAR) and fault detection rate (FDR). FAR uses the probabil-
ity to quantify the occurrence of alarm when there is no fault. FDR uses the probability to
quantify the occurrence of the alarm method in the case of actual failure.

According to the threshold calculated above, FARs and FDRs can be expressed as
follows

FAR =
Mj

Mth
× 100% (13)

where Mj is the number of test statistics higher than the threshold in fault-free conditions,
Mth is the total number of test statistics.

FDR =
Bj

Bth
× 100% (14)
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where Bj is the number of test statistics higher than the threshold after injection of fault,
and Bth is the total number of test statistics after fault injection.

Receiver Operating Characteristic (ROC) curves represent the performance of the
model at different thresholds. The X axis of the curve is the false positive rate, and the Y
axis is the true positive rate. The ideal is an inverted L-shaped curve [37]. The calculation
formulas of the true positive rate (TPR) and false positive rate (FPR) are [38]

TPR =
TP

TP + FN

FPR =
FP

TN + FP

(15)

where TN is actually the number of samples classified into negative samples, FP is actually
the number of samples classified into positive samples, FN is actually the number of
samples classified into negative samples, TP is actually the number of samples classified
into positive samples.

The Area Under a ROC Curve (AUC) is a comprehensive measure of sensitivity
and specificity across all possible threshold ranges. It represents the probability that a
classifier will rank randomly selected positive instances higher than randomly selected
negative instances. The AUC ranges from 0 to 1. The closer AUC is to 1, the better FD
performance [38]. The calculation formula is

AUC =
N

∑
i=1

(TPR(i) + TPR(i + 1))(FPR(i + 1)− FPR(i))
2

(16)

4. Experimental Results and Discussion

High-speed train running gears systems are considered to verify the reliability of
the proposed algorithms. When the data of the running gears is chosen, and in order to
guarantee the consistency of the experiment input, signal data of the running parts was
adopted from the same train and the same carriage. In order to guarantee the validity of
the data, the monitoring data at the speed of 1000 r/min or above were utilized in the
model. The paper uses real data of a running gears system with fault signals to simulate
the settings of the experiments very close to the real situations.

4.1. Experimental Verification

Figure 3 shows two correlated subspaces of the input dataset. Figure 3a shows each
input variable in the data set Px. The charts of variables from top to bottom belong to bogie
1, bogie 2, motor-driven side bearing, and non-driven side bearing, respectively. Figure 3b
shows each variable in the data set Py. From top to bottom, the charts represent motor side
big gear, wheel side pinion, wheel side motor big gear, and motor side pinion, respectively.

1. Fault Injection: Under the given speed 1000 r/min of high-speed trains, 1000 × 8
samples under health and fault conditions are collected from eight sensors as data
sets. Fault data was injected from the 500th data points of the sample test dataset.

2. Fault Detection: Fault detection results of CCA-JITL are shown in Figure 4 where red
dashed lines are thresholds and blue sold lines are test statistics.
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Figure 3. The input dataset. (a) Data matrix Px; (b) Data matrix Py.
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Figure 4. Experiment results of CCA-JITL FD model. (a) Data matrix Px detection; (b) Data matrix
Py detection.

4.2. Discussions

In order to prove the reliability of the method in this paper, several points will be
discussed: (1) the problem solved by this method; (2) the comparison analysis based on the
FAR and FDR; (3) the feasibility of the proposed algorithms is testified.

CCA-JITL FD model was applied to detect fault signals of the running gears in two
groups in which the results were compared to each other to improve detection accuracy.
The method uses CCA to group data and a JITL algorithm to optimize selection of sample
data points, so as to achieve better FD performance based on the data shown in Figure 4.
Figure 4a depicts the CCA-JITL FD output based on data set Px, and Figure 4b is the
result of CCA-JITL FD based on data set Py. The number of singular vectors, h values,
decide the proximity of dimension reduction and affect FAR and FDR very much. We
tuned parameters and concluded that when h = 2, CCA-JITL models achieved the best
performance.

Figure 5 shows FD experiment results using only CCA. The system infrastructure
of CCA-JITL was generalized to be utilized to other FD models using PCA and PLS. FD
experiment results using SVD-based PLS and JITL are shown in Figure 6. FD experiment
results using PCA and JITL are shown in Figure 7. FD experiment results using only PCA
are shown in Figure 7.

0 100 200 300 400 500 600 700 800 900 1000

100

101

102

T2

0 100 200 300 400 500 600 700 800 900 1000

Samples

10-3

10-2

SP
E

Figure 5. Experiment results of the FD model using CCA.
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Figure 6. Experiment results of the FD model using PLS. (a) Online testing of the FD model using
PLS; (b) Online testing of the FD model using PLS and JITL.
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Figure 7. Experiment results of the FD model using PCA. (a) Online testing of the FD model using
PCA; (b) Online testing of the FD model using PCA and JITL.

Based on the detection results shown in Figure 4, the detection of data set Px after
injection fault data is normal, and the detection results of data set Py show short-term and
transient fluctuations after fault injection. Then, the statistics fall back above the threshold.
The detection results of the datasets Px and Py are compared with each other to verify
the performance after injecting fault data, Figure 4a detects a fault, and Figure 4b shows
short-term fluctuations. Then, the statistics fall back above the threshold. According to
the comparison and verification of the FD results, it was proved that the fault detection at
the 500th sample was accurate. Based on the detection results shown in Figure 5, it was
observed that statistics were above the threshold before the injection failure time, so false
positives have occurred. Moreover, after the injection fault, there is a fluctuation of the
statistical value lower than the threshold value, and there is a situation of false negatives.
Based on the detection results shown in Figure 6, in Figure 6a it was observed that statistics
were above the threshold before the injection failure time, so false positives have occurred.
Additionally, after the injection fault, there is a fluctuation of the statistical value lower
than the threshold value, and there is a situation of false negatives. Based on the detection
results shown in Figure 6b, detection after fault injection is normal, but the fluctuation
of statistical value before injecting fault data was partly above the threshold, so a false
positive situation had occurred.

Based on the detection results shown in Figure 7. Based on the detection results shown
in Figure 7a. T2 statistics showed a few statistical fluctuations higher than the threshold
before the fault injection, so false positive situations have occurred. SPE statistics fluctuated
a few times above the threshold before the injection of failure signals and kept below
the threshold many times after the fault injection. There are serious false positives and
omissions. In Figure 7b it was observed that the short-term or instantaneous fluctuations
of T2 scores were above the threshold before the fault injection time, so false positive
situations had occurred. In the detection results of this method, SPE statistics fluctuation
indicates that the SPE scores fluctuate higher than the thresholds before a fault signal is
added and then if the SPE scores remain below the threshold, thus, false negative situations
have occurred.
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As shown in Figure 8, the receiver operating characteristic (ROC) curves of CCA-JITL,
CCA, PLS-JITL, PLS, PCA-JITL and PCA are compared. The ROC curves of each method
from top to bottom represent the ROC curves of the model when T2 statistics and SPE
statistics are used, respectively. Combined with the area under the curve (AUC) the score of
each method shown in Table 1. It proved that the performance of CCA-JITL is better than
other methods. The AUC values of CCA-JITL, PLS-JITL and PCA-JITL were mostly higher
compared with those of PCA, CCA and PLS. The AUC scores of the models increases after
adding JITL.
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(f) A ROC curve of PLS and JITL
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Figure 8. The ROC curves of FD models. (a) A ROC curve of CCA and JITL (Px); (b) A ROC curve of
CCA and JITL (Py); (c) A ROC curve of CCA; (d) A ROC curve of PCA and JITL; (e) A ROC curve of
PCA; (f) A ROC curve of PLS and JITL; (g) A ROC curve of PLS.

Comparisons of FAR and FDR measures on FD models using CCA-JITL, CCA, PLS-
JITL, PLS, PCA-JITL and PCA are shown in Table 1. By comparing FAR and FDR among all
algorithms, CCA-JITL worked best for online testing. FAR and FDR scores were calculated
regarding T2 and SPE statistics, respectively. The average scores of FAR and FDR were
considered to be used in the result comparison. Compared with the CCA method, the av-
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erage FAR score of CCA-JITL was reduced by 54.44% across both T2 and SPE measures,
and the average FDR score was increased by 34.05%. Compared with algorithms based on
PCA-JITL or PLS-JITL, the FAR score of CCA-JITL is lower. The JITL component improved
all the FDR scores of all the FD models. PLS, PCA, and CCA showed that the FDR score
increased by 32.20%, 29.2%, and 34.05%, respectively, after using JITL. Since the variables of
the real data used in this paper are not independent, CCA-JITL method are more favorable
for FD of the data in the running gears. The feasibility of the proposed algorithms were
testified by the above comparative experiments. JITL is also useful to shape the visual
representation of data fitting so that the fault signals were displayed more distinguished.

Table 1. Online Testing Results of FD models.

Methods FAR FDR AUC
T2 SPE T2 SPE T2 SPE

PLS 8.81% 45.69% 100% 17.61% 0.9802 0.7729
PLS and JITL 44.75% 0% 100% 82% 0.8430 0.9261

PCA 14.75% 83.5% 41.6% 100% 0.5612 0.7708
PCA and JITL 28.26% 7.41% 100% 100% 0.9887 0.9798

CCA 69.8% 62.2% 38% 90% 0.3601 0.6775
CCA and JITL (Px) 2.5% 6.5% 100% 100% 0.9961 0.9943
CCA and JITL (Py) 7.75% 29.5% 100% 92.2% 0.9847 0.8778

CCA and JITL
(average value) 5.125% 18% 100% 96.1% 0.9904 0.9361

The model was tested using a new 1000×8 data set as the independent testing set.
According to Table 2, compared with the CCA model, the results of independent testing of
the CCA-JITL FD model showed that the AUC score increased, FAR decreased by 33.2%,
and FDR increased by 60.65%. It proved that this approach is generalizable and still had
good performance when random new data was applied.

Table 2. Independent testing of FD models.

Methods FAR FDR AUC
T2 SPE T2 SPE T2 SPE

PLS 4.6% 0.6% 80% 78% 0.7851 0.7861
PLS and JITL 44.5% 0.5% 100% 66.8% 0.9384 0.8506

PCA 13% 66.8% 76.4% 79.6% 0.7370 0.3738
PCA and JITL 0% 2.75% 98.6% 98.2% 0.9975 0.9868

CCA 83.2% 54.2% 16.2% 62% 0.2158 0.7730
CCA and JITL (Px) 13.25% 19% 100% 100% 0.9587 0.9874
CCA and JITL (Py) 34.25% 67.5% 99% 100% 0.8081 0.8291

CCA and JITL
(average value) 23.75% 43.25% 99.5% 100% 0.8834 0.9083

5. Conclusions and Future Studies

In this study, the proposed algorithms have demonstrated significant advantages on
the fault detectability in the running gear systems. This paper presents an FD algorithm
based on CCA and JITL. After data preprocessing and normalization, CCA transforms high-
dimension historical input data matrices from the database into low-dimension subspaces
to maximize correlations between the most important latent dimensions. Then, online
input sample data is mapped to these subspaces with coordinates. Finally, JITL components
measure Euclidean similarity between query samples and historical samples in subspaces
and search subsets of query sample data points with largest distance to training data to
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build local fault detection models. The evaluation results of the case study showed CCA-
JITL outperformed traditional CCA very much in terms of FAR and FDR. This approach
was also applied to the FD models based on PCA and PLS and achieved better outcomes,
which suggested our system infrastructure was transferable to PCA and PLS FD models.

In future, there are still many research directions that are worth further study. The eval-
uation results in Tables 1 and 2 suggested that PCA, PLS and CCA FD models have their
unique strengths using different evaluation methods, and thus, the study of model fusion
strategies will be promising. Moreover, only FD was investigated in this paper, without clas-
sifying and diagnosing positions and categories of faults. Different types of FDD machine
learning models will be meaningful to detect specific failure points. Another possible direc-
tion for optimization is to change the fitting methods of JITL, such as clustering, and the
derivation method of CCA, such as Kernel-based CCA, to enhance the performance of the
systems. The third possibility is to improve the scope of the model, that is, how to apply
the models to dynamic systems. Furthermore, the research investigation on how to support
multi-sensor data acquisition will be very useful, for instance, the data acquisition system
using FUSED deposition modeling [39]. Moreover, the method of using prior prediction
to detect the remaining useful life is also an important research direction. These research
topics will be considered in order to successfully implement and deliver real-world FDD
applications for high-speed train running gear systems of high-speed trains.
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