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Abstract: The tire is the only part that connects the vehicle and the road surface. Many important
properties of vehicles are related to the mechanical properties of tires, such as handling stability,
braking safety, vertical vibration characteristics, and so on. Although a great deal of research on tire
dynamics has been completed, mainly focusing on steady-state tire force and moment characteristics,
as well as linear unsteady force characteristics, less research has been conducted on nonlinear
unsteady characteristics, especially when the vertical load changes dynamically. Therefore, the main
purpose of this paper is to improve the tire unsteady-state model and verify it by experiment. To
achieve this goal, we first study the nonlinear unsteady tire cornering theoretical model and obtain
clear force and torque frequency response functions. Then, based on the results of the theoretical
model, a high-precision and high-efficiency semi-physical model is developed. Finally, model
identification and accuracy verification are carried out based on the bench test data. The model
developed in this paper has high accuracy, and it significantly improves the expression of the aligning
torque, which helps to improve the virtual simulation of transient conditions, such as vehicle handling
and dynamic load conditions.

Keywords: tire model; unsteady-state; relaxation length; vehicle dynamics; transient tire model

1. Introduction

In recent years, the rapid development of modern technologies, such as computers
and controls, has enabled a large number of advanced electronic control technologies to be
applied to automobile systems, and various advanced chassis control systems have been
continuously developed and applied. The realization of all these chassis control systems is
based on the tire force and moment between the tire and the road surface. Therefore, the
accurate description of tire mechanical properties is not only the key to the development of
advanced chassis control systems but also an important basis for the design, simulation,
and evaluation of these control systems [1–7].

At the same time, with the rapid development of computer technology, advanced vehi-
cle design, simulation, and evaluation technologies, such as virtual prototyping, computer-
aided engineering (CAE in short), virtual proving ground (VPG in short), and driving
simulator (drive-in-loop), are emerging as the times require, all of which require an in-depth
understanding of vehicle dynamics. Therefore, the research on tire mechanical properties
also puts forward higher requirements. Numerous studies have shown that tire dynamics
have a significant impact on vehicle dynamics [8–12]. How to describe the mechanical
properties of tires more accurately and establish a tire mechanical model more in line with
engineering needs is an urgent problem to be solved in the research field of automobile
dynamics and tire mechanics.
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Since the 1930s, research on the mechanical properties of tires has had a history of
nearly a hundred years, and a large number of outstanding scholars and experts have
emerged to conduct meticulous and in-depth research on the topic [13–21]. With the de-
velopment of electronic computer technology, test equipment, and test technology, tire
mechanics has made great progress in theoretical mechanism, virtual simulation, test verifi-
cation, etc. It basically realizes multi-dimensional tire digital analysis capabilities, including
pure mechanical characteristics research in steady-state, transient [22], dynamic [23], and
modal aspects, and also covers complex usage scenarios, such as temperature [24–27], wear,
speed, and road conditions, etc. Beregi and Takács have extensively analyzed unsteady
dynamics of tires, mainly for the shimmy (turn slip) condition, but research on cornering
unsteady force and moment has not been carried out [28–30]. Romano et al. have investi-
gated transient effects due to large camber angles and introduced the two-regime transient
models that account for nonlinear dynamics connected to combined slip conditions and
load variations [31–36]. However, the research mainly focuses on the expression of lateral
force and longitudinal force, and there are few studies on unsteady aligning torque. These
analytical models in the time domain are used for analysis, and the key to guiding practical
modeling has not been obtained. Furthermore, the experimental verification is insufficient
and needs to be further enhanced.

However, the existing tire unsteady mechanical models are mainly aimed at the sim-
ulation of longitudinal force and lateral force under constant load conditions, and there
are few studies on high-precision aligning moment characteristics, so the study of tire un-
steady force and moment characteristics under dynamic load conditions is still insufficient.
Automobiles inevitably drive on various uneven roads. Even on fairly flat roads, vertical
vibrations of the wheels are inevitably generated when driving at a high speed, and the
vertical load between the tires and the road surface changes sharply. Preliminary tests have
been carried out. It is shown that the fluctuation in the vertical load on the tire caused by
the fluctuation in the road surface and the change in the motion state of the vehicle has a
significant impact on the mechanical properties of the tire, resulting in a large difference in
the performance and load analysis of the whole vehicle.

This paper will systematically study the nonlinear dynamic load and unsteady force
and moment characteristics of tire sideslip and develop a practical and efficient semi-
physical simulation model based on the theoretical model, focus on improving the dynamic
load condition model and the non-steady-state aligning moment model, and, finally, con-
duct a comprehensive indoor bench test verification.

2. Unsteady Cornering Theoretical Model Considering Complex Deformation
of Carcass

In the previous studies by scholars, a relatively complete unsteady model mechanism
in the linear region was basically explored. However, considering that there is still no clear
conclusion for the full range of nonlinear theoretical models, in order to better develop semi-
physical models of nonlinear non-steady-state (especially the return-to-positive moment
model) in the future, we will focus on the non-steady-state nonlinear side deflection theory.
As the model is derived, the derivation will be made for the unsteady nonlinear side
deflection theoretical model. On the basis of the basic cornering brush model, a complete
transient transfer function expression for unsteady nonlinear cornering considering the
complex deformation of the carcass is deduced. Specifically, as shown in Figure 1:
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Figure 1. Tire unsteady motion coordinate system and deformation expression considering carcass
deformation (nonlinear).

The XOY coordinate system establishes the absolute coordinate system of the earth,
which is used to describe the overall relative position change of the tire on the road surface;
the xoy coordinate system is a relative coordinate system rigidly fixed on the contact patch
center (also the contact patch update coordinate system).

The bristles of the tire tread enter from the front end point a of the footprint and leave
at -a of the footprint coordinate system after rolling rotation, where a is the half length
of the touchdown footprint. Since this section only considers the unsteady motion of the
sideslip, the motion input of the model is Y(X), which can also be converted into the input
of the sideslip angle α through its relationship with the longitudinal motion speed.

Modeling assumptions:

(1) The complex deformation (lateral) of the carcass is expressed by the superposition of
three deformations of translation, torsion, and bending;

(2) It is used for side deviation analysis without considering the influence of tire width;
(3) For cornering analysis, only the lateral deformation of the tread is considered;
(4) Inertia factors, such as tire mass and gyroscopic effect, are not considered, and it is

assumed to be a steady system;
(5) In the initial state (X = 0), each state parameter and variable starts from 0 (displace-

ment, deformation, etc.);
(6) For small movements near any slip angle, the slip between the tread end point and

the road surface is considered, but the input conditions for small movements of local
linearization are still satisfied;

(7) The stiffness and deformation of the tire carcass and tread are not considered;
(8) The pressure distribution of the grounding trace is assumed not to consider the width;
(9) Only pure cornering conditions are considered, and the imprint update speed is

consistent with the longitudinal translation speed of the tire;

Figure 1 depicts the tire deformation in two spatial states (or temporal states), express-
ing the carcass deformation and the tread deformation, respectively. The lower endpoint
of the tread unit is Pt when there is no slip in the footprint, and consider that Pt does
not move relative to the geodetic fixation. The upper end point of the tread unit is the
lower end point Pc of the deformation of the carcass. The deformation of the carcass is
expressed as an overall expression of the deformation at different positions in the footprint
through the overall deformation distribution function after receiving the lateral force and
the aligning moment. First of all, it is pointed out that the lateral position Yt of the tread
and the lateral position Yc of the carcass are both bivariate functions of the spatial position
X in the space domain and the coordinate position x in the footprint, and then, according
to the assumptions:

Yt(X, 0) = Yc(X, 0) (1)

The key expressions and principles of the transient model will be introduced below.
Since there is no slippage at the ground contact point of the tread, then the tread unit
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position of the x-print position at the X-space position (time) can be obtained. In fact, it is
also the position where the X− (a− x) space position (moment) has just entered the tread
bristles, which is:

Yt(X, x) = Yt[X− (a− x), 0] (2)

The lateral coordinate of the carcass is the center position of the rim plus the lateral
deformation of the carcass:

Yc(X, x) = Y(X) + yc0(X) + ycb(X, x) + yθ(X, x) (3)

The three-direction deformations are:

yc0(X) =
Fy(X)

Ky
(4)

ycb(X, x) =
Fy(X)

Kcb
ζ
( x

a

)
(5)

yθ(X, x) =
Mz(X)

Nθ
x (6)

Define the lateral deformation feature ratio:

ε0 =
2akty

Ky
(7)

εθ =
(2/3)a3kty

Nθ
(8)

εb =
2akty

Kcb
(9)

The deformation of the carcass is expressed as v0:

v0 = Yc(X, x)−Y(X) (10)

The tread deformation is expressed as v:

∆y(X, x) = Y[X− (a− x)] + yc0[X− (a− x)] +
Mz[X− (a− x)]

Nθ
a−Y(X)− yc0(X)− Mz(X)

Nθ
x− ycb(X, x) (11)

v = ∆y(X, x) (12)

The road slip velocity is Vsy:

Vsy =
dY(X)

dt
=

dY(X)

dX
dX
dt

=
dY(X)

dX
·VX = α(X)·VX (13)

It can be seen that the movement direction of Vsy is opposite to the deformation
direction of the carcass and tread. When the deflection motion input is not considered, the
deformation differential equation can be expressed as:

Vgy = Vsy +
.
v +

.
v0 (14)

When there is no slip between the tread and the road, Vgy = 0, can obtain:

.
v = −

( .
v0 + Vsy

)
(15)

Solution one:
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Considering that the deformation of the carcass v is a bivariate function of the local
coordinate position x and the global coordinate position X, Equation (15) is deduced:

∂v
∂x
·dx

dt
+

∂v
∂X

dX
dt

= −
(

∂v0

∂x
dx
dt

+
∂v0

∂X
dX
dt

)
−Vsy (16)

Further simplification of Equation (16), where dx
dt is the footprint update speed, dX

dt is
the tire longitudinal movement speed, by defining Vr =

dx
dt and VX = dX

dt , we can obtain:

∂v
∂x
·Vr +

∂v
∂X
·VX = −

(
∂v0

∂x
·Vr +

∂v0

∂X
·VX

)
−Vsy (17)

Considering the pure sideslip condition, there is VX = −Vr:

∂v
∂x
− ∂v

∂X
= −

(
∂v0

∂x
− ∂v0

∂X
− α

)
(18)

Laplace transform the function with respect to the spatial position X:

dv(s)
dx
− s·v(s) = −

(
dv0(s)

dx
− s·v0(s)− α(s)

)
(19)

Quoting the general solution of the inhomogeneous first-order differential equation
dy
dx + P(x)y = Q(x):

y =

[∫
Q(x)e

∫
P(x)dxdx + C

]
·e−

∫
P(x)dx (20)

Herein, define y = v and C = Cv: P(x) = −s (21)

Q(x) = −
(

dv0(s)
dx

− s·v0(s)− α(s)
)

(22)

∫ [
−
(

dv0(s)
dx

− s·v0(s)− α(s)
)

e−sx
]

dx = −e−sxv0(s)−
1
s

α(s)·e−sx (23)

v(s) =
[
−e−sxv0(s)−

1
s

α(s)·e−sx + Cv

]
esx = −v0(s)−

1
s

α(s) + Cv·esx (24)

Bring in the boundary conditions (the initial deformation is 0), when x = a, v = 0,
there are:

− v0(s)−
1
s

α(s) + Cv·esa = 0 (25)

Cv =

[
v0(a) +

1
s

α(s)
]

e−sa (26)

v(s) = −
[

Y(s) + yc0(s) +
Mz(s)

Nθ
a
]
·
[
1− e−s(a−x)

]
+

Mz(s)
Nθ

(a− x)− ycb(s, x) (27)

Solution two:
This method is based on the principle of accumulated deformation of a certain bristle

over a certain period of time. First, the rolling experience time τ of different imprint
positions is determined, and the distance of imprint update in this time is a− x:

a− x =
∫ t

t−τ
−Vr dt′ (28)
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Then, for any bristles in the imprint, it is obtained by just entering the imprint (zero
deformation) and undergoing time τ deformation, so the tread deformation should be
obtained by integrating the tread deformation speed in time τ:

v(t, τ) =
∫ t

t−τ

(
−Vsy −

.
v0
)

dt′ (29)

Considering the pure cornering condition VX = −Vr and Vr does not change within
time τ, there are:

v(X, x) =
∫ X

X−(a−x)

(
−

Vsy

VX
− .

v0(X, x)
)

dX =
∫ X

X−(a−x)

(
−α(X)− .

v0(X, x)
)

dX (30)

Laplace transform the function with respect to the spatial position X

v(s, x) = −1
s

α(s)
[
1− e−s(a−x)

]
−
{

v0(s, x)− yc0(s)e−s(a−x) − Mz[s− (a− x)]
Nθ

a− ycb(s, 0)
}

(31)

v(s, x) = −
[

Y(s) + yc0(s) +
Mz(s)

Nθ
a
]
·
[
1− e−s(a−x)

]
+

Mz(s)
Nθ

(a− x)− ycb(s, x) (32)

When considering the motion input in the nonlinear region, the slip between the tread
and the road surface should be considered, that is, the slip occurs when the lateral stress
exceeds the adhesion limit of the road surface (Vgy 6= 0). At this point, the coordinate
is x = xc in the start-slip point footprint. In the process of solving the lateral force and
moment, it should be considered that it is divided into two sections for integration, the
attachment area and the slip area, and xc is used as the dividing boundary.

Sideslip lateral force solution:

Fy(s) =
∫ xc

−a
µqzdx + kty

∫ a

xc
∆y(s, x)dx (33)

To further simplify the solution, assume a small movement around an effective slip
angle. That is, xc can be assumed to be a constant value after a given effective slip angle. The
analysis of the frequency characteristics of the transfer function based on local linearization
is a response that expresses the input change process and the output change and examines
the relationship between the output and the input change gradient.

F̃y(s) = kty

∫ a

xc
∆y(s, x)dx (34)

In the same way, the transformation result of the change amount of the aligning
torque is:

M̃z(s) = kty

∫ a

xc
x·∆y(s, x)dx (35)

Compared with the integration process in the previous section, the nonlinear region
analysis mainly changes the lower limit of the integration, so it only affects the expression
and solution of the characteristic function. First define the parameter ξ = a−xc

2a of the
parameter start-slip point in the footprint, and then there is:

xc = a− 2aξ (36)

The solution process of the characteristic functions E(s) and Et(s) is as follows:

E(s) =
1
2a

∫ a

xc

[
1− e−s(a−x)

]
dx =

1
2a

[
2aξ − 1

s

(
1− e−s2aξ

)]
(37)
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Et(s) = − 3
2a2

∫ a
xc

x·
[
1− e−s(a−x)

]
dx

= 3
2a2s2

[
(1 + 2aξs− as)·e−2aξs − 1 + as

]
+ 3ξ(ξ − 1)

(38)

The expressions of the transfer functions of the lateral force and the aligning torque are
still consistent with the derivation results in the previous section, and only the characteristic
functions are replaced:

Mz(s)
α(s)

=
1
as

2
3 a3kty(1 + εb)Et(s)

[1 + ε0E(s) + εb] + εθ{[1 + ε0E(s) + εb][1− Et(s)]− ε0Et(s)(1− E(s))} (39)

Fy(s)
α(s)

=
1
as

−2a2kty[(1 + εθ)E(s)− εθEt(s)]
[1 + ε0E(s) + εb] + εθ{[1 + ε0E(s) + εb][1− Et(s)]− ε0Et(s)(1− E(s))} (40)

Through the above derivation, a comprehensive nonlinear sideslip frequency charac-
teristic analysis can be carried out, and it can be seen that the key parameter of the above
frequency characteristic is the characteristic parameter ξ of the starting-slip point. In order
to more intuitively show the difference in frequency characteristics at different slip-angle
positions, the relationship expression between ξ and α is introduced. When the carcass is
rigid (the same relationship is used for simplification when the carcass is flexible), there is:

ξ = 1− |tan α|θy (41)

Set ωs to be the path frequency (and define dimensionless path frequency ωsa for
simplified analysis), make s = jωs, and substituting into the above expression can obtain
the frequency characteristics of lateral force and aligning moment corresponding to different
sideslip angle positions under tire cornering motion input conditions. The following figures
(Figures 2 and 3) show the unsteady frequency characteristic curves without considering
the elasticity of the carcass and considering the complex deformation of the carcass:
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carcass): (a) amplitude–frequency; (b) phase–frequency.

As can be seen from the above figure, when at different slip angle levels, the lateral
force response basically satisfies the conditions of first-order behavior. Its steady-state gain
is the derivative of the lateral force to the sideslip angle at this point during steady-state
sideslip, and it decreases with the increase in the sideslip angle (without considering the
dynamic friction), and the cut-off frequency increases with the increase in the sideslip angle.
However, the response of the aligning moment shows a more complex phenomenon. In
order to analyze the nonlinear frequency characteristics of the lateral force and the aligning
moment more clearly, adjust the form of the coordinate axis and set the deflection input
α = 0.01◦ near the zero-deflection level. Amplitude–frequency characteristics of lateral
force and realigning moment are shown in Figure 4:
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Figure 4 shows that the high-frequency asymptotes of the amplitude of the lateral force
are reduced by 20 dB (decreased by ten times) for each additional decade of frequency band
under each lateral deviation level, which is a typical first-order behavior. However, the
magnitude response of the aligning moment is near zero slip angle, and the high-frequency
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asymptote is −40 dB per decade, indicating that it is a typical second-order behavior,
gradually becoming a first-order behavior. Its steady-state gain is the derivative of the
aligning torque to the sideslip angle at this point during steady-state sideslip. Therefore,
the sign changes when the slip angle is at the maximum of the aligning torque. This
will result in a 180◦ shift in the initial phase of the aligning torque and an “overshoot”
phenomenon (two cutoff frequencies) in the magnitude response around the peak slip
angle of the aligning torque. The behavior near the peak is shown in the following figure
(Figure 5):
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Figure 5. The frequency characteristic curve of the aligning torque at different sideslip angle positions
(near the peak value of the aligning torque): (a) amplitude–frequency; (b) phase–frequency.

Summary: The frequency characteristics near the peak of the aligning torque show
obvious overshoot, and the amplitude response has a typical double cutoff frequency.
Although the high-frequency asymptote satisfies the first-order behavior, it is not a simple
and typical first-order system. Further in-depth analysis and research need to be carried out
in combination with the response of the pneumatic trail. The following figures (Figures 6–8)
will briefly introduce the frequency response characteristics of lateral force and aligning
torque after considering the complex deformation of the carcass:
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Conclusion: After considering the complex deformation of the carcass, the frequency
response characteristics of the lateral force are still relatively clear, but the response of the
aligning torque becomes more complex, and the law described above remains unchanged.
Only the degree of characterization and details of the characteristics have changed, so the
analysis results described above can be used.

In actual use and research, the aligning torque is usually expressed as the product of the
lateral force and the pneumatic trail, where the pneumatic trail represents the distribution
of the lateral force in the footprint. Therefore, in order to better study the characteristics of
the aligning torque, it is necessary to further analyze and study the frequency characteristics
of the pneumatic trail. {

t = t0 + t̃
Fy = Fy0 + F̃y

(42)

Mz = −t·Fy = −t0Fy0 − t̃Fy0 − t0 F̃y − t̃ F̃y (43)
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Ignore the second-order term and divide Mz into steady-state value and variable fluctuation:{
Mz0 = −t0Fy0
M̃z = −t̃Fy0 − t0 F̃y

(44)

Arranging Equation (44), the expression for the aligning torque can obtain:

t̃ = − 1
Fy0

M̃z −
t0

Fy0
F̃y (45)

t(s)
α(s)

= − 1
Fy0

Mz(s)
α(s)

− t0

Fy0

Fy(s)
α(s)

(46)

Bringing in the transfer function expressions of lateral force and aligning torque,
respectively, the frequency response of the nonlinear pneumatic trail can be obtained. The
amplitude–frequency and phase–frequency characteristics are as in the following figure
(Figure 9):
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Figure 9. The frequency characteristic curve of the pneumatic trail at different slip angle positions
(rigid carcass): (a) amplitude–frequency; (b) phase–frequency.

This expression is invalid when the slip angle is zero; the steady-state lateral force
is zero, so there will be a discontinuity at zero. Stationary gain is now equal to the local
derivative of the stationary trajectory with the slip characteristic, which has a discontinuity
at zero slip. In Figure 10, the amplitude response exhibits an “overshoot” and two distinct
cutoff frequencies at smaller average slip levels. As the slip level increases, the overshoot
decreases, while only one cutoff frequency remains. In this case, the response function
behaves as a first-order system over the entire frequency range.

After considering the complex deformation of the carcass, the transient response of
the pneumatic trail still retains its basic characteristics. Because the elasticity of the carcass
affects the cut-off frequency of the original first-order relaxation, the pneumatic trail is
further back, and it has a certain inhibitory effect on overshoot. However, at the same time,
due to the influence of the torsion and bending deformation of the carcass, the response
of the pneumatic trail after considering the deformation of the carcass becomes extremely
complicated, and further analysis is required in the subsequent semi-empirical model
development process.
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3. Nonlinear Unsteady Dynamic Load Sideslip Semi-Physical Model

The theoretical tire model has many assumptions, and its computational efficiency is
low due to the complexity of the model. Therefore, considering the current usage scenario,
developing a tire semi-physical model has wider practical value, and the semi-physical
model usually has high computational efficiency, which is especially suitable for vehicle
electronic control system development and performance simulation analysis.

3.1. Nonlinear Unsteady Semi-Physical Model of Tire Lateral Force

According to the unsteady sideslip theoretical model developed above, the frequency
response functions of the lateral force and the aligning torque can be obtained. However,
because the functions are too complex, further simplification is required to obtain a practical
semi-physical model framework. The simplification process mainly includes two aspects;
one is only considering the translation deformation of the carcass, and the other is the
first-order Taylor expansion of the characteristic function.

HFy ,α(s) =
Fy(s)
α(s)

=
−2a2ktyE(s)

as[1 + ε0E(s)]
(47)

Herein:  lim
s→0

E(s) = 0

lim
s→0

E′(s) = aξ2 (48)

Therefore, the first-order Taylor expansion of E(s) can be obtained:

E(s) ≈ aξ2s (49)

When s tends to zero, HFy ,α(s) is the local reciprocal of the steady-state lateral force
to the slip angle near the position of the effective slip angle αξ , which is defined as the
effective cornering stiffness:

Cα = lim
s→0

HFy ,α(s) = −2a2ξ2kty =
∂Fy

∂α

∣∣∣∣∣∣α = αξ

(50)
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HFy ,α(s) ≈
Cα·as

as[1 + ε0·aξ2s]
=

Cα[
1 + |Cα |

Ky
s
] =

Cα[
1 + σys

] (51)

Through the previous theoretical analysis, the lateral force shows good first-order
behavior at different slip angle levels, so the relaxation length parameter σy = |Cα(α,Fz)|

Ky
is

defined to express the unsteady-state relaxation properties. Among them, Cα is mainly
affected by the load and the slip angle levels, and it expresses the effective stiffness of
the actual working position, so it is necessary to further introduce the concept of effective
sideslip angle α′.

F̃y + σy
1

Vx

dF̃y

dt
= Cα·α̃ (52)

α′ + σy
1

Vx

dα′

dt
= α (53)

The unsteady sideslip and dynamic load input are jointly introduced into the sim-
plified single-point model for analysis. The schematic diagram of the model is shown
below (Figure 11). Note that the analysis of the single-point model is based on the geodetic
coordinate system, so the lateral movement speeds of both ends of the carcass are relative
to the absolute speed, and the deformation of the carcass is opposite to the sliding direction.
Here, the effective lateral slip velocity (the lateral velocity of the lower end of the carcass to

the ground) V
′
sy and the transient effective slip angle α′ =

V
′
sy
|Vx | are introduced:
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Figure 11. Schematic diagram of sideslip single-point tire model.

Define the lateral deformation v0 of the tire carcass, and, according to the node velocity
and the carcass deformation, the differential equation of motion is obtained as follows:

dv0

dt
= −

(
Vsy −V

′
sy

)
= |Vx|

(
α′ − α

)
(54)

Among them, the relationship between the lateral deformation of the carcass and the
lateral force is:

v0 =
Fy(Fz, α′)

Ky
(55)

In the process of deriving the semi-physical model from the single-point model, two
kinds of transient expressions often appear in different papers, and there are often cases of
misuse. The key is the application of the two parameters of tire tangential stiffness Cα and
secant stiffness Cα−se, and the two methods are applicable to different working conditions.
The following two types of methods will be systematically analyzed.

Cα =
∂Fy(Fz, α′)

∂α′
(56)
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Cα−se =
Fy(Fz, α′)

α′
(57)

Taking the cornering lateral force characteristics of a 205/55R16 tire as an example
(the lateral force is taken as an absolute value for the convenience of observation), it can be
seen that the characteristics of the two local cornering stiffness parameters are shown in the
figure below (Figure 12). At zero degrees, the secant cornering stiffness and the tangential
cornering stiffness tend to be consistent. As the angle increases, the tangential cornering
stiffness decreases at a significantly higher rate than the secant stiffness. At the same time,
when the lateral force is saturated, the tangent stiffness decreases to almost zero, and the
stiffness decreases to negative values when there is a peak in the lateral force:
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Method 1.  

𝑑𝑣0

𝑑𝑡
=

𝑑
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∙
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Method 1.

dv0

dt
=

d Fy(Fz ,α′)
Ky

dt
=

1
Ky

[
∂Fy(Fz, α′)

∂Fz
·dFz

dt
+

∂Fy(Fz, α′)

∂α′
·dα′

dt

]
(58)

Considering a constant vertical load, and defining σy = |Cα |
Ky

= −Cα
Ky

, substituting into
the above formula, we have:

σy
(
α′
)
·dα′

dt
= |Vx|

(
α− α′

)
(59)

Method 2.

dv0

dt
=

d Fy(Fz ,α′)
Ky

dt
=

d
(

Cα−se
Ky

α′
)

dt
(60)

Define σy−se =
|Cα−se |

Ky
= −Cα−se

Ky
, substituting into the above formula, we have:

d
[
σy−se(Fz, α′)·α′

]
dt

= |Vx|
(
α− α′

)
(61)

It can be seen from the differential equation that, under the dynamic load condition,
the high-frequency fluctuation of the lateral force caused by the load change leads to the
deformation speed of the carcass. Therefore, the essence of the dynamic load condition is
to show the coupling characteristics of the dynamic load and dynamic sideslip at the same
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time. Comparing the two methods of expressing the first-order relaxation characteristics,
the second method can be relatively simple to be used in the working conditions that
take into account both dynamic load and dynamic sideslip. This method is an implicit
differential iterative method; its simulation calculation block diagram is as in following
figure (Figure 13). The UniTire Model and MF-Tyre are semi-empirical steady-state tire
model, which is based on a set of mathematical expressions to represent experimental tire
data and have high expression precision.
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3.2. Nonlinear Unsteady Semi-Physical Model of Tire Aligning Torque

According to the analysis results of the previous theoretical model, it can be seen that
the HMz ,α(s) response is relatively complex (second-order behavior near zero sideslip and
gradually becomes first-order behavior after the level of slip angle increases, accompanied
by an “overshoot” phenomenon), which is not a simple first-order system and needs to
be further decomposed. First, the original steady-state sideslip model system is used to
express the aligning torque as the product of the lateral force and the pneumatic trail
(negative), so it is necessary to analyze the response of the pneumatic trail. Therefore, the
expression of the pneumatic trail is further simplified, and the dimensionless first-order
characteristic expression of the lateral force is extracted.

Ht,α(s) =
t(s)
α(s)

= − 1
Fy0

HMz ,α(s)−
t0

Fy0
HFy ,α(s) (62)

Ht,α(s) =
HFy ,α(s)

Cα
·−Cα

Fy0

{
HMz ,α(s)
HFy ,α(s)

+ t0

}
=

1
1 + σys

·−Cα

Fy0

{
HMz ,α(s)
HFy ,α(s)

+ t0

}
(63)

The empirical expression for the response of the pneumatic trail can be defined as a
typical second-order system with zeros H(s) = G· 1+Ais

1+Bis+Cis2

Ht,α(s) =
Gt
(
1 + ly1s

)(
1 + σys

)(
1 + ly2s

) (64)

Define the system parameter return to pneumatic trail gain as Gt, zero-point parameter
ly1, second pole parameter ly2, related to the effective sideslip angle position. Compare the
empirical expression with the theoretical model and analyze the functional expression of
each empirical parameter (introduce the parameter n to be identified):

Gt = lim
s→0

Ht,α(s) =
−Cα

Fy0

{
2
3 ktya3ξ2(4ξ − 3)
−2ktya2ξ2 + t0

}
=
−Cα

Fy0

{ a
3
(3− 4ξ) + t0

}
=

∂t
∂α

∣∣∣∣∣∣α = αξ

(65)



Machines 2022, 10, 527 16 of 30

lim
s→∞

(
1 + ly1s

)(
1 + ly2s

) =
ly1

ly2
=

lim
s→∞

−Cα
Fy0

{
HMz ,α(s)
HFy ,α(s)

+ t0

}
−Cα
Fy0

{ a
3 (3− 4ξ) + t0

} =
a(1− ξ) + t0

a
3 (3− 4ξ) + t0

≈ 1
(1 + ξ)(1− ξ)n (66)

According to the above formula, its system gain is the local partial derivative of the
sideslip angle of the pneumatic trail, so it can be considered as a standard second-order
system with zero-point input to the opposite sideslip angle. At the same time, its system
gain is the local partial derivative of the pneumatic trail of the steady-state model. Therefore,
when developing a semi-physical model, analogous to the modeling process of the lateral
force, the response of the pneumatic trail can be inversely transformed into a standard
differential equation, and the effective sideslip angle of the pneumatic trail can be expressed
by series and coupling superposition and then transmitted to the steady-state model.

In the semi-physical model, the slip point parameter ξ can be empirically expressed as
a function of the peak lateral force at the working state position Fymax and the cornering
stiffness at zero slip angle Cα0.

ξ ≈ 1− α· 1
3Fymax/Cα0

(67)

An empirical relationship is established between the second pole parameter ly2−se
(corresponding to the secant stiffness) and the lateral relaxation length, and the parameter
m to be identified is introduced:

ly2−se ≈
1
m

σy−se (68)

According to the frequency response function of the pneumatic trail Ht,α(s) =
Gt(1+ly1s)

(1+σys)(1+ly2s)
, it is divided into a series of two first-order systems, and the zero-point

and the second pole are decomposed at the same time, and the following two first-order
differential equations are obtained after further sorting.

d
(
σy−se·α′

)
dt

= |Vx|
(
α− α′

)
(69)

d
(
ly2−se·αt

)
dt

= |Vx|
(
α′ − αt

)
(70)

Through the series connection of differential equations, signal feedback, and coupling
superposition correction, the effective sideslip angles of the lateral force and the pneumatic
trail are obtained, and, based on the steady-state lateral force and aligning torque model,
the unsteady lateral force and aligning torque under the input conditions of dynamic load
and unsteady sideslip coupling change can be calculated. Its simulation calculation block
diagram is shown in the figure (Figure 14).
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Figure 14. Block diagram of the unsteady-state tire model responses of the lateral force and
aligning torque.

4. Results and Discussion

In order to verify the tire model under the condition of unsteady cornering dynamic
load input, this section will conduct a large number of unsteady and dynamic cornering
mechanical characteristics tests on an indoor tire testing machine. The testing machine
used is MTS flat-trac CT III (Figure 15), which can provide high-quality modeling test data
for tire models required for high-precision virtual simulation of vehicles. The MTS flat-trac
series testing machine is the most advanced and widely used tire six-component force
characteristic test system in the world.
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This cornering characteristic test mainly includes three categories, quasi-steady cor-
nering characteristic test, slip angle step test, and dynamic load cornering test. There is one
item that has a great influence on the expression of transient characteristics: road speed,
through the previous theoretical model research, it can be known that the equivalent path
frequency is positively correlated with the loading frequency and negatively correlated
with the road speed, so reducing the road speed can greatly improve the path frequency
input. Therefore, considering the actual control level of the testing machine, the road
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speed is selected as 5 km/h, which is analogous to 12 times the path frequency under the
condition of loading frequency of 60 km/h common vehicle speed at the same time. Refer
to the following tables (Tables 1–3) for detailed test conditions:

Table 1. Quasi-steady-state cornering test condition setting.

Inflation Pressure Road Speed Load Method Slip Angle Load Cycle Vertical Load

230 kPa 5 km/h Sideslip sweep −12~12◦ 100 s 4000 N
230 kPa 5 km/h Vertical load sweep −1◦ 10 s 1000~7000 N
230 kPa 5 km/h Vertical load sweep −6◦ 10 s 1000~7000 N

Table 2. Nonlinear slip angle step test condition setting.

Inflation Pressure Road Speed Load Method Slip Angle Vertical Load

230 kPa 0→5 km/h slip angle step −1◦ 3000\4000\5000\7000 N
230 kPa 0→5 km/h slip angle step −2◦ 3000\4000\5000\7000 N
230 kPa 0→5 km/h slip angle step −4◦ 3000\4000\5000\7000 N
230 kPa 0→5 km/h slip angle step −6◦ 3000\4000\5000\7000 N
230 kPa 0→5 km/h slip angle step −8◦ 3000\4000\5000\7000 N

Table 3. Dynamic load cornering test condition setting.

Inflation Pressure Road Speed Load Method Slip Angle Load Frequency Vertical Load

230 kPa 5 km/h Vertical load sweep −1◦, −6◦ 0.10 Hz 1000~7000 N
230 kPa 5 km/h Vertical load sweep −1◦, −6◦ 0.25 Hz 1000~7000 N
230 kPa 5 km/h Vertical load sweep −1◦, −6◦ 0.50 Hz 1000~7000 N
230 kPa 5 km/h Vertical load sweep −1◦, −6◦ 0.10 Hz 1000~7000 N
230 kPa 5 km/h Vertical load sweep −1◦, −6◦ 0.25 Hz 1000~7000 N

4.1. Characteristic Identification of Tire Steady-State Cornering Lateral Force and Realigning
Moment for Dynamic Load Research

In order to verify the response of the model under the unsteady dynamic load corner-
ing condition, the steady-state cornering lateral force and the aligning torque model should
be obtained first. Since the expression of the empirical model needs to rely on sufficient
experimental data, the quasi-steady-state cornering method (Table 1) can make the model
more accurate in the expression of dynamic load conditions.

It can be seen that using the semi-physical steady-state model to fit the lateral force
and the aligning torque can obtain higher identification accuracy (Figures 16 and 17). Based
on this steady-state model, unsteady model identification and experimental verification
will be carried out.
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Figure 17. Tire steady-state aligning torque identification results: (a) alpha-Fz-Mz characters;
(b) alpha-Mz characters; (c) Fz-Mz characters of−1◦ slip angle; (d) Fz-Mz characters of−6◦ slip angle.

4.2. Characteristic Identification of Nonlinear Unsteady Sideslip Lateral Force and Aligning Torque

In order to verify the unsteady response of the tire slip angle step in the space domain
under different loads and different final slip angles, a combined test of four loads and five
final slip angles was carried out. Firstly, the basic identification of the unsteady response
characteristics of the lateral force is carried out, considering that the lateral force is a typical
approximate first-order response. The state process is faster, so the general solution of the
differential equation under the step input condition is still used to identify the relaxation
length under each condition, as shown in the following figure (Figure 18) (two loads as
an example).

Machines 2022, 10, x FOR PEER REVIEW 20 of 30 
 

 

  

(c) (d) 

Figure 17. Tire steady-state aligning torque identification results: (a) alpha-Fz-Mz characters; (b) 

alpha-Mz characters; (c) Fz-Mz characters of −1° slip angle; (d) Fz-Mz characters of −6° slip angle. 

4.2. Characteristic Identification of Nonlinear Unsteady Sideslip Lateral Force and  

Aligning torque  

In order to verify the unsteady response of the tire slip angle step in the space domain 

under different loads and different final slip angles, a combined test of four loads and five 

final slip angles was carried out. Firstly, the basic identification of the unsteady response 

characteristics of the lateral force is carried out, considering that the lateral force is a typ-

ical approximate first-order response. The state process is faster, so the general solution 

of the differential equation under the step input condition is still used to identify the re-

laxation length under each condition, as shown in the following figure (Figure 18) (two 

loads as an example). 

  

(a) (b) 

Figure 18. Lateral relaxation length identification results under different final slip angles: (a) slip 

angle step change @ Fz = 4000 N; (b) slip angle step change @ Fz = 7000 N. 

According to the previous theoretical research, the lateral relaxation length obtained 

by this method is compared with the secant stiffness and the tangent stiffness in a dimen-

sionless manner, as shown in the figure below (Figure 19). By sorting out the identification 

Figure 18. Lateral relaxation length identification results under different final slip angles: (a) slip
angle step change @ Fz = 4000 N; (b) slip angle step change @ Fz = 7000 N.

According to the previous theoretical research, the lateral relaxation length obtained
by this method is compared with the secant stiffness and the tangent stiffness in a dimen-
sionless manner, as shown in the figure below (Figure 19). By sorting out the identification
results of the relaxation length of the slip angle step, the parameter Ky to be identified can
be obtained. In the unsteady expression of the lateral force, only this parameter needs
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to be identified, and practical numerical simulation can be carried out relying on the
steady-state model.
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Based on the test data, two key correction parameters, m and n are identified for
the pneumatic trail; it can be seen that the new model has a good improvement in the
expression of the aligning torque and can accurately express the changing process of the
aligning torque in the space domain from the below figures (Figures 20–22).
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Figure 22. Identification results of lateral force and aligning torque under the condition of −6◦ final
slip angle (Fz = 4000 N): (a) lateral force; (b) aligning torque.

The key to the improvement in the aligning torque is to have a more accurate expres-
sion for the pneumatic trail (Figure 23). When the step lateral force is gradually established,
the distribution of the lateral force is gradually transformed from a relatively uniform
rectangle to a trapezoid, and it finally reaches a triangle (assuming all the tire treads are
attached), so, during this process, the pneumatic trail should gradually increase from
zero to the peak. When the slip is considered, since the effective sideslip angle gradually
increases to the saturation region, the pneumatic trail will decrease, showing a trend of first
increasing and then decreasing. The improved model can accurately express the pneumatic
trail transformation.
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Figure 23. Identification results of pneumatic trail under the condition of slip angle step change
(Fz = 4000 N): (a) −4◦ final slip angle; (b) −6◦ final slip angle.

4.3. Characteristic Identification of Dynamic Load Sideslip Conditions Lateral Force and Aligning
Torque (Linear Region and Nonlinear Region)

In the vehicle dynamics simulation, the working load of the tire also changes dynam-
ically, and the load has an important influence on the steady and unsteady mechanical
properties of the tire. In the process of dynamic loading, its most essential feature is that
the change in the load causes a large change in the lateral force, which, in turn, causes a
rapid change in the deformation of the carcass, thus making the effective slip angle change
drastically. The dynamic load cornering mechanical properties of the linear region and the
nonlinear region will be verified in the following.

4.3.1. Verification of Dynamic Load Cornering Lateral Force and Aligning Torque in
Linear Region

Comparison of unsteady cornering test data and improved semi-physical model
simulation results under the condition of constant −1◦ slip angle and sinusoidal load input
occurred (Figures 24–26).
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Figure 25. Comparison of the relationship between load and lateral force under dynamic load
cornering conditions: (a) f = 0.25 Hz; (b) f = 0.50 Hz; (c) f = 1.00 Hz; (d) f = 2.00 Hz.
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4.3.2. Verification of Dynamic Load Cornering Lateral Force and Aligning Torque in
Nonlinear Region

Comparison of unsteady cornering test data and improved semi-physical model
simulation results under the condition of constant −6◦ slip angle and sinusoidal load input
occurred (Figures 27–29). There are two important differences between the nonlinear region
and the linear region. The first is that the operating conditions are generally in a high
slip state, so the relaxation length is low and the load and lateral force hysteresis loop is
small. The second is that, due to the larger absolute value of the lateral force change, a
higher lateral deformation speed of the carcass will be introduced, resulting in a change
in the effective slip angle, and the carcass damping effect also needs to be considered at
higher frequencies.
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It can be seen that lateral force has a very high expression accuracy, and the improved
aligning torque model also has a good expression accuracy under the dynamic load input
condition. It can be seen that, with the increase in the dynamic load frequency, the aligning
torque will increase from −70 Nm~0 to −160 Nm~0, which is mainly due to the effective
slip angle change slightly at −6◦ at low frequency, and it gradually increases to a larger
range change so as to greatly increase the pneumatic trail change.

5. Conclusions

This paper systematically analyzed the unsteady tire sideslip characteristics. The paper
mainly included three parts. The first part mainly deduced and analyzed the theoretical
models of lateral force and aligning torque of tire unsteady characteristics. The second part
developed a practical semi-physical tire model. The third part carried out the tire steady
and unsteady cornering test and then use the new method model to carry out parameter
identification and accuracy verification.

The first part focused on the theoretical analysis of the unsteady mechanical prop-
erties of the tire. The theoretical model was extended from the original linear region to
the nonlinear region, and the influence of the complex deformation of the carcass was
considered. The frequency response function at different sideslip angle levels and its
amplitude–frequency and phase–frequency characteristics were analyzed. On this basis,
the frequency response of the pneumatic trail was further analyzed and its amplitude–
frequency and phase–frequency characteristics were obtained, which provides a reliable
theoretical basis for the second part of the unsteady semi-physical model.

The second part first analyzed the nonlinear unsteady model of the lateral force,
systematically expounded the theoretical principles and application differences of the
two methods (tangential stiffness and secant stiffness), and a unified method was finally
determined for the lateral force simulation of dynamic load and sideslip angle. Then, the
development of the unsteady semi-physical model of the pneumatic trail was focused
on. By decomposing the analytical expression of the theoretical model and analyzing the
boundary characteristics, the unsteady semi-physical model was obtained. As an extension
module of the steady-state model, the non-steady-state module can be applied to various
typical steady-state tire models (UniTire, MF-Tyre, etc.).

In the third part, experiments were carried out to verify the steady-state and unsteady
dynamic load characteristics of the sideslip conditions. Then, the key parameters of lateral
force (carcass stiffness) and the key parameters (m, n) of the pneumatic trail were obtained
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based on the identification of the step change in the slip angle. The comparison of the
experimental data proves that the new method semi-physical model demonstrates great
improvement in the expression of the space domain response of the pneumatic trail and
the aligning torque. Finally, experiments and simulations were carried out to verify the
dynamic load input conditions of different frequencies. Through comparative analysis,
the new model can accurately simulate the nonlinear non-steady dynamic load cornering
lateral force and aligning torque characteristics of the tire.

In the future, the mechanical characteristics of the combined slip unsteady model will
be studied and verified by tests, and a comprehensive tire unsteady dynamic model will be
established, which can be fully applied to the simulation of a chassis control system and
performance simulation of handling stability and braking, etc.
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Abbreviations

Symbol Description
Yt lateral coordinate position of the lower end point of the tread
Yc lateral coordinate position of the lower end point of the carcass
Fy tire lateral force
Mz tire aligning torque
t pneumatic trail, time
a half contact length
kty tread element lateral stiffness per unit of length
yc0 lateral translational deformation of the carcass
ycb lateral bending deformation of the carcass
yθ lateral torsional deformation of the carcass
Ky lateral translational stiffness of the carcass
Kcb lateral bending stiffness of the carcass
Nθ lateral torsional stiffness of the carcass
ε0 translation deformation feature ratio
εb bending deformation feature ratio
εθ torsional deformation feature ratio
v0 tire carcass lateral deformation
v tire tread lateral deformation (∆y)
Vsy lateral slip velocity
VX longitudinal velocity
Vr rolling velocity
α sideslip angle
Vgy lateral slip velocity on the ground
t′ integration time in forward τ period relative to current time t
τ accumulated time of tread unit movement within contact
xc longitudinal coordinate of transition from adhesion to sliding
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ξ fraction of contact length 2a where adhesion occurs
θy tire parameter of the brush model
ωs path frequency
αξ sideslip angle at ξ adhesion parameter
σy lateral relaxation length
α̃ varying part (very small) of sideslip angle
α′ transient tire slip angle
Cα cornering stiffness (tangent)
Cα−se cornering stiffness (secant)
σy−se lateral relaxation length (secant)
ly1 pneumatic trail distance constant 1
ly2 pneumatic trail distance constant 2
ly2−se pneumatic trail distance constant 2 (secant)
n pneumatic trail transient parameter n
m pneumatic trail transient parameter m
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