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Abstract: The mine ventilator plays a role in protecting the life safety of underground workers, which
is very significant to the production and development of coal mines. In total, 70% of ventilator failures
are mechanical failures, and bearing failures are the most likely to occur in mechanical failures, which
are also difficult to find. In order to identify fan bearing faults accurately, this paper proposes a fault
diagnosis method based on improved variational mode decomposition and density peak clustering.
First, the variational mode decomposition’s modal number K and secondary penalty factor α are
chosen employing the improved sparrow optimization process. The bearing vibration signal is
decomposed by the variational mode decomposition algorithm with optimized parameters. To create
the characteristic vector, the multi-scale permutation entropy of the fourth order intrinsic mode
function is determined. Then, the characteristic matrix is dimensionally reduced by kernel principal
component analysis, and the two-dimensional matrix after dimensionality reduction is divided by
density peak clustering method to find the clustering center of the training sample features. Lastly, the
membership degree is assessed using the normalized clustering distance between the characteristic
matrix of the test sample and the cluster center of the training sample. The accuracy of bearing
fault identification on the self-constructed experimental platform can reach 100%, which verifies the
effectiveness and potential of the proposed method.

Keywords: mine ventilator bearing; variational mode decomposition; multi-scale permutation entropy;
density peak clustering

1. Introduction

As an important part of the mine ventilator, the running state of bearing directly affects
its working performance. When the bearing fails, the damage point repeatedly collides with
other parts in contact with it, resulting in impact vibration and non-stationary, nonlinear,
and multifrequency signals [1]. Sudden failures, such as bearing looseness or damage
can lead to uneven stress, increased resistance, or stall, which will cause misalignment,
imbalance, surge, and other failures of the fan. The faults caused by bearings account for
about half of the total faults of mine ventilators. Therefore, it is of great significance for the
safety and reliability of the mine ventilator to be able to accurately identify bearing faults.

There are many factors that will adversely affect the motor bearing operation when
the mine ventilator is running. When the air enters the impeller through the collector, if the
air flow is uneven along the circumference, the axial thrust will be unbalanced. Long-term
operation of bearings under alternating loads will reduce the service life of the bearings.
When the motor is fixed in the air duct, the unbalanced rotation of the impeller will be
caused due to the asymmetry of the support points and the distortion of the flow field at
the inlet and outlet, so that the motor shaft will swing radially. The radial swing of the
motor shaft not only has a large variable load on the bearing, but also makes the axis of the
inner ring of the bearing incline to the axis of the outer ring, which is an important factor
causing bearing fatigue failure.
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The vibration analysis method shows the underlying characteristics of bearing defect;
thus, it is frequently used to diagnose bearing faults. It is generally believed that vibration
analysis methods mainly include three aspects: data preprocessing, extraction of fault fea-
ture, and fault mode classification [2]. Research in recent years has mostly concentrated on
time–frequency analysis technology since the recorded vibration signals frequently exhibit
nonlinear and nonstationary properties. The current time–frequency analysis technology is
mainly divided into two categories. The first method does not need to set parameters before
analyzing vibration signals. A typical example is local mean decomposition (LMD). LMD
is an adaptive vibration analysis technology, which can decompose any complex signal into
multiple product functions (PF) according to the inherent vibration in the vibration signal.
Although the effectiveness of LMD in bearing fault diagnosis has been widely proved
by many applications [3], it still has issues with endpoint effect and mode aliasing. The
second needs to set some parameters, such as wavelet transform (WT). Although WT can
decompose signals well, the setting of wavelet basis function and threshold requires a lot
of prior experience, and different choices of wavelet basis function will have a significant
impact on the final result. Wavelet transform lacks adaptive properties as a result.

Variational mode decomposition (VMD), a technique for identifying the frequency
center and bandwidth of a variational model, was developed by Dragomiretshiy [4]. VMD
has a firm mathematics theoretical base and can separate vibration signals reliably and
effectively in contrast to LMD and WT. The VMD approach can adaptively split the vi-
bration signal frequencies, but the outcomes of attenuation are still constrained by the
choice of the modal number K and the secondary penalty parameter α [5]. Researchers
frequently integrate intelligent algorithms with the parameter optimization of VMD due
to the growing applications of intelligent algorithms [6]. In order to boost K, Zijian Guo
developed the cuckoo search algorithm [7]. Mengjiao Wang presented a sparrow search
method that simultaneously optimizes K and α [8]. Although using an intelligent algorithm
to optimize the parameters of VMD takes a relatively long time, it has gained popular-
ity in research because it considers how the coupling of the two components affects the
decomposition result.

The following objective is to seek out how to extract the defect information from the
acquired intrinsic mode function (IMF) weights once the vibration data signal has been
broken down into a series of IMFs through VMD. Richman [9] made sample entropy (SE)
his explicit suggestion. SE is of widespread significance since it is less susceptible to noise
and data length. Bandt [10] proposed the use of permutation entropy (PE) to examine and
evaluate the various mechanical systems. PE is straightforward and unaffected by noise
since it evaluates complexity in terms of proximity that is comparatively near. PE and
SE, on the other hand, only calculate complexity on a single scale, which has unfavorable
effects when used to analyze data over various time periods. Due to this flaw, Costa [11]
created a method employing a multi-scale sample entropy (MSE) approach for evaluating
the complexity of unprocessed time series at several scales. MSE has the advantages of low
requirements on sequence length and immunity to noise. However, it uses a step function
to evaluate the similarity between two vectors, which is inconsistent with the actual signal
characteristics. The multiscale permutation entropy (MPE) was developed by Aziz and
Arif [12] to evaluate the complexity of time-series data. Additionally, the MPE’s stability
and toughness were confirmed. J. Zheng used MPE and SVM to find rolling bearing flaws,
demonstrating MPE’s advantage in feature extraction of these flaws [13]. MPE is thus
chosen in this article as a particular tool for the density peak clustering (DPC) algorithm.

J. Tian [14] used spectral kurtosis and cross correlation to extract fault features that
represent different faults, aiming to solve the difficulty of extracting fault features from
vibration signals. It was found in the research that although the signal has been prepro-
cessed, there is still some interference information around the spectral peak in the envelope
spectrogram that may mislead the inspectors. If the inspectors set wrong parameters, it is
very likely to cause errors in fault diagnosis, resulting in unnecessary consequences. This
requires the inspectors to be careful and have a lot of prior experience, or use intelligent
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methods to carry out fault diagnosis research on rolling bearings. In this paper, we focus
on a lower-level but automated analysis based on machine learning (feature extraction
and classification). In this case, industrial level acquisition systems and lower sampling
frequencies are likely to be acceptable, and better for integration.

Machine learning techniques employ feature sets as training examples and test samples
for pattern identification in defect detection. Dimension reduction, classification, regression,
and clustering are the main topics in this section. K-means clustering was utilized by
Yiakopolos to find rolling bearing defects in commercial settings. The fuzzy C-means (FCM)
clustering technique was utilized by Hongwei Fan to separate signal feature sets with
various levels of deterioration [15]. In order to decrease noise sensitivity and classification
mistake, S.C. Shu suggested a novel tensor-based classifier that uses a fuzzy support tensor
with marble loss [16]. A pattern recognition technique based on EEMD, PCA, and Gatt Geva
(GG) clustering was proposed by Xiong Zhang [17]. Wu suggested a pattern recognition
technique in which GG clustering organizes sample data while EEMD improves signal
dimension and PE builds feature matrices [18]. The benefits of this approach are confirmed
when compared to FCM clustering and Gustafson Kessel (GK) clustering.

Inspired by previous research, this paper describes a technique for generating bearing
fault feature matrices using improved variational mode decomposition (IVMD) and MPE.
Kernel principal component analysis (KPCA) is used to intuitively reduce the dimension of
the feature matrices, and DPC clustering is then utilized to categorize the feature matrices.
The generated feature matrices could have greater aggregation and higher distance between
various categories due to the comprehensive theoretical IVMD model, the capability of
signal subdivision, as well as the strong resilience of MPE indicators. Additionally, DPC has
a clear segmentation border that may precisely split various data samples. The remaining
chapters of this article are structured as follows: The algorithm basis, evaluation indicator,
and technical processes are introduced in the second section. The effectiveness of this
approach for bearing data of various fault kinds is examined in the third part. Concluding
observations are included in the final part.

2. The Proposed Method
2.1. Improved Variational Mode Decomposition

As an increasingly widely used time–frequency analysis method, VMD has a good
performance in signal processing. For the original signal y(t), it can be decomposed into a
series of IMFs uk [19].

y(t) = ∑kuk (1)

To minimize the summation of the bandwidth of each mode function, the procedure
can be expressed as:

min〈uk}(ωk}

{
∑k‖ ∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt ‖2
2

}
(2)

where δ(t) is a pulse signal; j is an imaginary unit.
A sequence of decomposed IMFs is represented by {uk} = {u1, . . . , uk}, and the central

frequency corresponding to each IMF is represented by {ωk} = {ω1, . . . , ωk}. Secondary
penalty factor α and Lagrangian penalty factor L are included in Equation (2) to help
discover the best answer. The expression is presented in Formula (3).

L({uk}, {ωk}, λ) = α∑i ‖ ∂t[(δ(t) +
j

πt ) ∗ uk(t)]e−jωit ‖2
2

+ ‖ f (t)−∑k uk(t) ‖2
2 +〈λ(t), f (t)−∑k uk(t)〉

(3)

where f (t) is the real part of the signal; λ(t) is Lagrange multiplier which changes with the
number of iterations.

The decomposition level K and the secondary penalty factor α impose a limit on the
VMD algorithm’s ability to decompose data. Under decomposition and false components
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result from a K value that is too little, while over decomposition and false components
result from a K value that is too big [20]. If α is too big, each center frequency’s bandwidth
will be too tiny; if α is too small, each center frequency’s bandwidth will be too big. The
ultimate accuracy of defect diagnosis will be impacted by the difficulty of feature extraction
caused by improper parameter selection. Therefore, choosing appropriate parameters is
essential to obtaining good decomposition results.

The predatory and anti-predatory behavior of sparrows in the natural world was the
basis for the sparrow search algorithm (SSA). The Sparrow set matrix reads like this:

X = [x1, x2 · · · xn]
T

Xi = [xi,1, xi,2 · · · xi,d]
(4)

In Formula (4), n stands for the total number of sparrows, i equals “1, 2, . . . , n”, and
d refers to the number of dimensions.

The sparrow with better position in the population has priority in obtaining food and
leads the whole population to the food source as the finder. The location of the finder is
updated as follows:

Xt+1
i,j =

Xt
i,j · exp

(
−i

α·iter

)
R2 < ST

Xt
i,j + Q · L R2 > ST

(5)

where t represents the current number of iterations, j = (1, 2, . . . , d); Xt
i,j represents the

position of the ith sparrow in the jth dimension; iter represents the maximum number
of iterations [21]; α is a random number in the range of (0, 1); R2 is a random number
(R2 ∈ [0, 1]); and ST is a constant number (ST ∈ [0.5, 1]) which represent the danger value
and security value, respectively; L stands for a 1D matrix, and each item in the matrix is
1. Q represents a random integer with a normal distribution of [0, 1]. All the others are
followers except the finders. The formula for followers’ location update is as follows:

Xt+1
i,j =


Q · exp

(
Xt

worst −Xt
i,j

i2

)
i > n

2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L i ≤ n
2

(6)

where the overall worst position is represented by Xworst, while A represents 1 × D. A+ =
AT (AAT)−1 and 1 or −1 are randomly allocated to each matrix element. When i > n/2, it
indicates that the ith follower has a low fitness value [22], is not fed, and has a very low
energy value. It must currently travel to other locations for food, i.e., energy intake.

ISSA is proposed to solve the engineering optimization problems of SSA, which is
easy to fall into premature, resulting in low convergence accuracy and local convergence.
Firstly, the algorithm employs Tent mapping to initialize the population and increase the
homogeneity of the initial population. Chaos initialization has randomness, ergodicity,
and initial value sensitivity, which can make the algorithm converge faster. The process of
generating chaotic sequences based on Tent map is as follows:

T =

{
x(n + 1) = µx(n), 0 6 x(n) 6 0.5

x(n + 1) = µ[1− x(n)], 0.5 < x(n) 6 1
(7)

where µ is the mapping factor, which is set to 2 in this paper.
Secondly, in the basic SSA algorithm, as the number of iterations increases, each

dimension of the individual sparrow becomes smaller, the search space gradually decreases,
and the probability of falling into the local space increases. The discoverer location update
approach incorporates the sine and cosine algorithm (SCA) to address this issue, and the
nonlinear sine learning factor is also incorporated. In the early stages of the search, it is
quite valuable and aids in worldwide exploration. It has a negligible value in the later
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stages of the search, which helps to increase the precision and capability of local growth.
The enhanced discoverer location formula and the learning factor formula are as follows:

ω = ωmin + (ωmax −ωmin) · sin(tπ/ iter max) (8)

Xt+1
i,j


(1−ω) · Xt

i,j + ω · sin(r1) ·
∣∣∣r2 · Xbest − Xt

i,j

∣∣∣, R2 < ST

(1−ω) · Xt
i,j + ω · cos(r1) ·

∣∣∣r2 · Xbest − Xt
i,j

∣∣∣, R2 > ST
(9)

In Formula (9), r1 is a random number in [0, 2π], and r2 is a random number in [0, 2].
Finally, in order to avoid the algorithm falling into local optimization, Lévy flight

strategy is introduced into the follower update formula to improve the global search
ability [23]. The improved formula is as follows:

Xt+1
i,j =


Q · exp

(
Xt

wort−Xt
i,j

i2

)
i > n

2

Xt+1
p + Xt+1

p ⊗ Levy(d) i ≤ n
2

(10)

When using ISSA to determine the parameter setting of the VMD, it is necessary to
select a proper fitness function. Since the low-frequency signal is the basic frequency of
the component, while the high-frequency harmonic contains a lot of noise, this paper uses
the mean envelope entropy (MEE) of the third to sixth intrinsic mode functions in the
decomposition results as the fitness function.

Qj = a(j)/∑N
j=1 a(j)

Ee = −∑N
j=1 QjlgQj

MEE = (Ee1 + Ee2 + Ee3 + Ee4)/4

(11)

where Qj converts the envelope signal acquired following Hilbert’s demodulation of the
original signal into a series of probability distributions; a(j) is the envelope signal; and
Ee is the envelope entropy value which has the ability to quantify the vibration signal’s
sparsity [24]. The fault impact and modulation phenomena caused by the fault will be
buried in the signal when there are many noise components present, resulting in a weak
signal sparsity and a higher value at this time [25]. The signal’s sparsity is greater and the
value at this point is lesser when the signal clearly exhibits fault impulse and modulation
phenomena. The primary IMFs’ sparsity may be thoroughly assessed using the mean
envelope entropy. The VMD algorithm uses MME as the fitness function for parameter
selection, and the optimization of the pertinent parameters may be finished by using its
minimal value as the program’s search objective.

2.2. Multiscale Permutation Entropy and Dimension Reduction

Referencing [26] illustrated the related ideas of multi-scale permutation entropy, and
the following is a summary of its theory:

To establish a new time series, the existing time series of length n is coarsened:

y(s)
j =

1
s ∑

js
i=(j−1)s+1Xi, j = 1, 2, · · · , [N/s] (12)

where s denotes the scale factor; N is the sequence length; [N/s] represents rounding. The
following are the time reconstructions for each scale sequence:

Y(s)
l =

{
y(s)

l , y(s)
l+τ, · · · , y(s)

l+(m−1)τ

}
(13)

where m is encapsulation size; τ is time delay.
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If the values of the reconstructed sequences are the same, they are ordered according
to the footmark. For each scale sequence, a set of symbol sequences may be generated.
The symbol sequence is one of the permutations, and the probability of each symbol
sequence occuring is calculated (r = 1, 2, . . . , R). The permutation entropy of various
symbol sequences is defined in terms of information entropy.

Hp(m) = −∑R
r=1Pr ln Pr (14)

The highest value is attained when Pr = 1/m!. Normalization is generally accom-
plished for convenience.

Hp = Hp(m)/ ln(m!) (15)

Prior to using MPE, four variables must be defined: encapsulation size (m), series
length (N), scaling factor (s), and delay (τ). Since m! is the maximum allowed number of
permutations, it emerges that m is the crucial variable. PE is highly sensitive to the value
of m, the encapsulation dimension. In addition, for robust statistics N should be greater
than 5 × m factorial. Bandt remarked that this strategy works well if the encapsulation
dimension is between three and seven. If the encapsulation dimension m is too low, there
will not be enough distinct states for the method to work. However, it becomes impractical
when the encapsulation dimension m is too high. The encapsulation dimension m is often
selected with the trade-off between information content impairment and measurement
complexity [27]. In this piece, m is 5. Since there is little effect of the delay on the result, we
leave this τ = 1. If N is too large, computation speed suffers. If N is too little, the condition
N > 5 * m! cannot be satisfied. A data length of 2048 points is adequate to obtain a stable
permutation entropy when this constraint is taken into consideration. Therefore, we put
2048 as N. The permutation entropy of each scale is calculated by setting the scaling factor
s to 15.

Kernel principal component analysis (KPCA) is a simple and effective nonlinear
principal component analysis method, whose nonlinear mapping is completed by kernel
function. Initially, KPCA was developed by Schölkopf, and applied to fault diagnosis and
process monitoring by W.U. [28]. The research on KPCA shows that it can effectively detect
faults, but in KPCA-based monitoring, due to the difficulty or even impossibility of locating
the inverse mapping function from the feature space to the original space [29], it is difficult
to determine the contribution of the original process variables. In this article, we used a
new contribution framework to provide the contribution of KPCA method. KPCA maps
the input space to the feature space through nonlinear transformation and extracts the
principal components in the feature space. Assuming a nonlinear mapping function ϕ(x)
that converts the input space to the feature space, the covariance matrix in the feature space
may be presented as:

cov(Φ(X)) =
1

n− 1 ∑n
j=1Φ

(
Xj
)TΦ

(
Xj
)

(16)

where xj is the jth line of the X vector. In order to complete the kernel principal component
analysis, it is necessary to solve the eigenvalue problem in vector space.

cov(Φ(X))pi = λipi (17)

It is noticeable that the problem of Equation (17) is not easy to solve, because in most
cases ϕ(x) is not available. However, there are coefficients αij that can make the eigenvalue
be approximately expressed as:

pi = ∑n
j=1αijΦ

(
Xj
)T (18)

By combining Equations (16)–(18), the following equation can be obtained:

(n− 1)λiαi = Kαi (19)
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Here, K is defined as [K]ij = k
(
xi,ηxj

)
=
〈
Φ(xi), Φ

(
xj
)〉

. KPCA is applied to re-
duce the dimension of the extracted multi-scale permutation entropy feature matrix to
two dimensions.

2.3. Density Peak Clustering

The clustering approach described in “Clustering by quick search and discovery of
density peaks”, a work by Alex Rodriguez and Alessandro Laio [30] published in Science
in June 2014, is both simple and sophisticated. Different shaped clusters may be easily
identified using this approach, which is based on density and whose characteristics can
be easily determined. It fixes the issue with generic density-based clustering algorithms,
whereby the density of various classes varies substantially, and the neighborhood range is
hard to determine.

The density peak clustering (DPC) method relies on the following two tenets: (1) for a
given dataset, the cluster center is surrounded by several data points with low local density;
and (2) these low local density points are relatively far away from other points with high
local density.

Local density ρi is defined as:

ρi = ∑jχ(dij − dc) (20)

where χ(x) =
{

1, x < 0
0, x ≥ 0

;

dc is the cutoff distance. ρi means the number of objects whose distance to the ith
object is less than dc. The selection of dc is critical [31], because the algorithm is sensitive to
the relative value of ρi.

High local density distance δi is defined as:

δi = minj:ρj>ρi (dij) (21)

The points with high local density ρi and high local density δi are considered as the
center of the cluster. The points with high local density distance δi and low local density ρi
are the abnormal points. After determining the cluster center, other points are classified
according to the nearest distance from the known cluster center. As shown in Figure 1,
point 1 and point 10 are selected as the cluster center. Point 8 and point 7 are excluded
because their ρ values are large while δ values are low.
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The flowchart of the bearing fault diagnosis method proposed in this paper is shown
in Figure 2. The specific process is described as follows:

(1) Establish characteristic matrix. Select the original vibration signal to form time series
x = (x1, x2, . . . , xn), and each time series x is processed with IVMD. The third to sixth
intrinsic mode functions form a matrix. The characteristic matrix is constructed by
computing the multi-scale permutation entropy of each IMF.
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(2) The characteristic matrix’s dimension is decreased with the help of KPCA. Project-
ing the feature matrix onto a two-dimensional space, we then use the two primary
components with the greatest contribution rate to build a feature matrix in the two-
dimensional space.

(3) Training evaluation model. The training set composed of principal components is
input into the DPC classifier to obtain the cluster category and cluster center.

(4) Use a test set to confirm. Replicate steps 1 and 2, then feed the trained DPC classifier
the test set’s main component matrix. The clustering distance between the test samples
and the cluster center of the training set is used to categorize test samples.
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Figure 2. Flowchart of IVMD-DPC.

3. Experiment and Results
3.1. Experimental Platform

The experimental data were collected from the bearing simulation failure part of the
rotating machinery test bench in the laboratory of the China University of Mining and
Technology (Beijing, China). The test bench is shown in Figure 3. Bearing fault types
are inner race fault, outer race fault, and rolling element fault. The inner race, outer race
and rolling element were wired by EDM 0.2 mm to simulate fatigue wear after long-time
operation, as shown in Figure 4a–c.
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First, the vibration acceleration signals of normal bearings were collected, and then the
three kinds of faulty bearings were installed to the test bench for fault signal collection. The
INV3062C acquisition instrument was used to connect to the computer through the adapter
cable. INV3062C data acquisition instrument is an industrial high-precision distributed
acquisition instrument, which is suitable for data acquisition of rotating machinery and
modal testing. We opened the DASP digital signal acquisition software to refresh and
connected the acquisition instrument equipment with the software. Then, we connected
one end of the adapter wire to the acquisition instrument and the other end to the INV9822
acceleration sensor. The sensitivity of INV9822 acceleration sensor was 100 mv/g and the
frequency range was 0.5 Hz~8 kHz. We installed the magnetic base of the acceleration
sensor and confirmed that the connection was not loose. The acceleration sensor was
attached to the upper part of the bearing bracket, that is, the red circle in Figure 3. The sam-
pling frequency was set to 5.12 kHz according to Shannon sampling theorem. Meanwhile,
5.12 kHz was behind the middle of the maximum range of the acceleration sensor, which
belongs to the proper working range of the instrument. We collected 40 groups of samples
containing 2048 points. The sampling time was set to exactly 16 s. After multiple zero-point
calibrations, sampling was performed and the collected vibration signal data were saved.

Table 1 shows that there are one group of normal data and three groups of fault
data of bearing vibration acceleration signal data collected in the laboratory. The original
waveform of signal data is shown in Figure 5. A total of 50 samples were collected for each
type, of which 30 samples were used as training set and 20 samples as test set. The length
of each sample was 2048.
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Table 1. Signal Data Type Description.

Signal Type Motor Load (HP) Motor Speed (rpm)

NOR

0 1500
IF

OF

RF
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3.2. Results and Discussion

IVMD algorithm was used to decompose the vibration signal. Taking rolling element
fault as an example, the parameters of VMD algorithm were optimized by using the
improved sparrow algorithm. The minimal mean envelope entropy value change curve is
shown in Figure 6 as the number of iterations in the ISSA optimization process increases.
The graphic shows that the minimal mean envelope entropy is 3.7268 at the seventh iteration.
Because the improved sparrow optimization algorithm introduces chaos initialization and
sine cosine ideas, it has a smaller initial value and can jump out of the local optimal
solution. The optimization procedure is finished and the optimization parameters [K, α]
are [11, 2257] when the number of iterations approaches 10. The ideal value K was used to
reset VMD, and the optimized VMD was then used to generate 11 modal components.

The ideal values K and αwere found by using ISSA to optimize the VMD algorithm
under various failure circumstances of rolling bearings. Set the VMD algorithm’s settings
using the recommendations in Table 2. The VMD method was used to dissect the vibration
signals at various rolling bearing damage areas once the parameters were optimized.

In order to quantify the fault information contained in the IMFs, MPE values of the
third to sixth intrinsic mode functions of vibration signals in different states after VMD
were calculated. Figure 7 shows the MPE of the first IMF of different samples of rolling
element fault state. It can be seen that the trend of multi-scale arrangement entropy
value of different samples changing with the change of scale factor s is basically the same.
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Under the condition of the same scale factor, the difference of arrangement entropy of
different samples is very small. This shows that multi-scale permutation entropy has good
robustness as a characteristic index of quantifying fault information and can stably extract
fault information contained in vibration signals.
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Table 2. Optimization parameters obtained by using the ISSA.

Normal Inner race Outer Race Rolling Element

K 11 11 11 11
α 2761 2822 3995 2257
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In order to facilitate the subsequent accurate judgment of the fault type of bearings,
the multi-scale permutation entropy difference extracted from bearings in different states
should be obvious enough. Figure 8a shows the multi-scale permutation entropy of
different scale factors of the first intrinsic mode function. It can be seen from the figure that
when s = 1, the permutation entropy values of the normal state and the inner race fault
are very close, and the permutation entropy values of the outer race fault and the rolling
element fault are also very close, which is easy to cause confusion in the later classification.
Through many groups of experiments, we found that both the maximum difference and
minimum difference of permutation entropy have an impact on the final classification
results, and the minimum difference has a greater impact. Setting the weight of the
minimum difference to 0.7 and the weight of the maximum difference to 0.3 is a reasonable
weight distribution. In this way, we set the scale factor s to 5 for calculating the permutation
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entropy of the first IMF. According to the same principle, the scale factors s of the second
IMF, the third IMF and the fourth IMF were set to 6, 14, and 10, respectively. Then, the
extracted four-dimensional permutation entropy matrix was reduced to two-dimensional
by kernel principal component analysis.
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The selection of cutoff distance dc greatly affects the results of density peak clustering,
while the current research on the selection of cutoff distance dc still largely depends on
human subjective experience. Generally, the optimal dc value is 0.1–0.2 times that of the
maximum distance between two points. The Davies–Bouldin index (DBI) was selected here
as the index to evaluate the clustering results, which guided the selection of the truncation
distance dc.

According to Table 3, when the cutoff distance dc is 0.07, the DBI reaches the minimum
value of 0.2174, so the cutoff distance dc was set to 0.07. The result of clustering the training
set with peak density is shown in Figure 9.

Table 3. DBI of different cutoff distances.

dc 0.05 0.06 0.07 0.08 0.09

DBI 0.2196 0.2176 0.2174 0.2189 0.2237

It can be seen from Figure 9 that the coordinate points representing normal state and
rolling element fault have good aggregation. Although the aggregation of coordinate points
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representing inner race fault and outer race fault is slightly poor, it does not affect the final
result. The coordinates of the cluster center are shown in Table 4.
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Table 4. Coordinates of four cluster centers.

Cluster Center 1 Cluster Center 2 Cluster Center 3 Cluster Center 4

PC1 0.5435 0.6889 0.5510 0.8732
PC2 0.5842 0.5713 0.7911 0.8609

Then, 80 groups of test set samples were processed in the same way to construct the
principal component feature matrix. The cluster distance between the coordinate point
representing the test set and the cluster center of the training set was calculated to determine
the classification of the unknown state samples of the test set. The results are shown in
Figure 10 (the abscissa 1–20 interval represents the clustering distance between each sample
and cluster center 1, and the next represents the clustering distance between each sample
and cluster center 2, 3, and 4 in turn). It can be seen that the distance between different
test samples and the four cluster centers is obviously different. Therefore, the state types
of the four test samples can be accurately determined. Figure 11 shows the confusion
matrix results obtained by using IVMD-DPC method under four different fault states. All
80 groups of test samples were classified correctly, and the final recognition accuracy was
100%. The results show that the fault diagnosis method can accurately identify bearing
faults in different states.

To verify the effectiveness of the proposed method, SSA-VMD was used for signal
processing, and then density peak clustering was used for classification. The parameters
of VMD were set according to the reference. The results are shown in Figure 12. The final
classification accuracy of this method is 96.25%. It verifies that the ISSA-VMD proposed in
this paper has excellent signal dissection capability. The ISSA-VMD was used for signal
processing, and then fuzzy mean clustering (FCM) was used for clustering. The results are
shown in Figure 13. The final classification accuracy of this method is 97.5%. It verifies that
DPC has better clustering performance than FCM.

In order to improve the confidence in the results, the experiments were repeated ten
times to take the average identification accuracy for comparison. Every time, the training
set and test set were randomly divided. The results are shown in Table 5.
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Table 5. Average accuracy of different classifiers.

Classifier DPC SVM ELM KNN

Average accuracy 99.25% 97.75% 96.25% 97.37%

As shown in Table 5, we compared the average accuracy of the algorithm in this paper
with other methods. The methods of feature extraction remain the same, and only different
classifiers are applied at the end. The average accuracy of other methods cannot reach
above 98%. Comprehensively analyzing the experimental results of different classifiers, the
bearing fault diagnosis method based on the MPE feature extraction and DPC classifier
proposed in this paper has achieved satisfactory results.

4. Conclusions

This work proposes a technique combining ISSA-VMD, MPE, and DPC for ventilator
bearing problem diagnostics. Data preprocessing, fault feature extraction, and fault feature
identification were used to diagnose and analyze bearing faults, and the experimental
verification was carried out on the self-built experimental platform.

For VMD parameter selection, the optimal VMD parameters were found using the
improved sparrow search algorithm, and information on fault feature extraction was
subsequently obtained using the optimized VMD approach. The results show that ISSA-
VMD can effectively extract bearing fault information. The cutoff distance dc in the DPC
fault diagnosis model was set according to the DBI index. The findings demonstrate the
DPC method’s strong classification efficiency, and the diagnostic accuracy can reach 100%.
It can be observed from the findings that this approach can accurately identify various
forms of bearing damage and has better identification accuracy when compared to the
outcomes of other methods.

In future work, we will be committed to collecting the on-site signal of the coal mine
ventilator bearing to verify the feasibility of the proposed method in practical production.
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