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Abstract: The temperature prediction of hoist motor is one of the effective ways to ensure the safe
production of mine hoist. Digital twin technology is a technology that combines the physical system
of the real world with the digital model of the virtual world. Through digital twin technology, the
physical system in the real world can be monitored and simulated in a virtual environment, and the
state information of these systems can be monitored in real time. Recurrent neural network is a kind
of neural network suitable for processing sequence data, which can automatically extract and learn
the feature information in sequential data. To achieve online monitoring and over-advance perception
of the temperature of the mine hoist motor, a temperature prediction and advance sensing method
based on digital twins and recurrent neural network is proposed. To begin with, a high-fidelity
digital twin monitoring system for mine hoists is constructed, enabling the acquisition of real-time
temperature data. These temperature data are then fed into a neural network for feature extraction
and precise prediction of the motor’s state. Subsequently, based on the temperature prediction
module in the digital twin hoist monitoring system, a user interface (UI) is developed, and a fully
functional digital twin temperature monitoring system is built and experimentally validated. The
experimental results demonstrate that the digital twin system effectively monitors the real-time
temperature state of the motor during the operation of the mine hoist. Furthermore, the integration
of digital twin and recurrent neural network enables the accurate prediction and proactive detection
of temperature variations in the motor of the mine hoist. This innovative approach introduces a
novel perspective for implementing predictive maintenance in the mining industry, enhancing the
safety and reliability of mine hoists. Additionally, it offers valuable technical support in improving
maintenance efficiency and reducing associated costs.

Keywords: mine hoist; digital twin; recurrent neural network; state prediction

1. Introduction

As a crucial component of the coal mine infrastructure, ensuring the safe and stable
operation of the mine hoist is of utmost importance for maintaining the overall produc-
tivity of the mine [1]. During motor operation, there is a high likelihood of overheating,
which poses a significant risk. Prolonged overheating can lead to motor winding damage,
resulting in severe consequences such as complete failure of the hoist’s traction system and
irreparable and catastrophic accidents [2].

Extensive research has been conducted by scholars on the monitoring and estimation
of motor temperature. Jiang Shuanlei et al. [3] developed an online motor temperature
monitoring system that utilizes LoRa wireless communication and virtual instruments.
Popov, N.Z. et al. [4] introduced a novel sensorless temperature estimator for permanent
magnet synchronous motor drivers. Yutthanawa, A. et al. [5] used an automatic machine
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learning method to estimate the temperature of a multi-surface permanent magnet syn-
chronous motor. Kirchgassner, W. et al. [6] employed deep loops and convolutional neural
networks with residual connections to predict high dynamic temperatures within perma-
nent magnet synchronous motors, eliminating the need for domain expertise or specific
drive chain specifications in topology design.

Digital twin, a novel technology capable of capturing the entire life cycle process of the
corresponding physical equipment [7,8], has been recognized as a disruptive technology
and one of the top ten strategic science and technology trends by Goldner [9,10]. Cur-
rently, digital twin technology has undergone broad research and application in sectors
such as healthcare [11,12], electric power [13,14], and smart cities [15]. In contrast, the
implementation of digital twins in the mining industry has been relatively recent but
holds significant potential with a wide range of application scenarios. In previous stud-
ies, Kalinowski, P. et al. [16] suggested employing a combination of digital 3D structure
models, BIM, and digital twins for diagnosing and monitoring the infrastructure of shaft
hoisting systems. Jacobs, D.R. et al. [17] utilized digital twins to simulate and plan com-
prehensive ventilation networks in deep mines, enabling the identification and diagnosis
of high-risk areas prone to high temperatures, dust absorption, and gas accumulation.
Additionally, digital twins have been applied to monitor the temperature of electric motors.
Li Heng et al. [18] proposed a thermal sensing digital twin model based on BP neural
networks to precisely estimate motor torque and speed. Venkatesan, S. et al. [19] developed
intelligent digital twins in MATLAB/Simulink for health condition monitoring, including
temperature, and established a remote monitoring center. Brandtstaedter, H. et al. [20]
presented the application of digital twins in large electric drive trains. Their model-based
simulation approach enables monitoring and prediction of the system behavior, including
the temperature of the synchronous motor during power-on scenarios.

In this paper, the monitoring data are obtained through the intelligent sensing sensor
network of mine hoist, the digital twin model of physical entity object is established, and
the digital twin system of mine hoist is constructed. The main objective of this paper is to
analyze the prediction of temperature and the perception of over-advance in the mine hoist
motor using a fusion method that combines the digital twin model with neural networks.
The real-time temperature data from multiple points on the hoist motor are acquired and
preprocessed. Subsequently, the data are fed into the neural network individually, and the
optimal model is determined through comparative training. This enables the prediction of
temperature data for each cycle of the lifting process, thereby facilitating the over-advance
perception of motor temperature.

2. Construction of a Digital Twin Monitoring System for Mine Hoists
2.1. Composition of the Monitoring System

The mine hoist monitoring system based on digital twin technology encompasses five
dimensions: virtual digitization, simulation interaction, online perception, over-perception,
and twin co-intelligence, as shown in Figure 1. In the process of operation, the system
continuously learns, grows, and improves its functions required for practical production.
The whole system is not only driven by the real world, but in turn leads the changes
within it. This paper focus on analyzing the dynamic prediction of motor temperature,
which surpasses the conventional real-time tracking. Temperature over-advance perception
is no longer satisfied with the real-time dynamic following of the motor temperature, it
also involves predicting the temperature dynamics based on the analysis of real-time data
acquisition and its underlying mechanisms.



Machines 2023, 11, 966 3 of 17Machines 2023, 11, x FOR PEER REVIEW 3 of 17 
 

 

virtual 
digitization

interaction 
simulation

online 
perception

twin wisdom

advance 
perception

data model

GUI-interface

……

sheave pulley 
model

roller model

UGUI interactive display

API script driver

MySQL database 
communication

ETH-YC 
communication module

PLC data acquisition 
module

industrial ethernet

RBF surrogate model 
training

finite element mesh 
dividing

Untiy3D real-time 
rendering

Scoket Communication

Online analysis 
results

behavioral data

over-temperature 
warning

temperature prediction

recurrent neural 
network feature mining

Tensorflow

AI algorithm

edge computing

cloud computing distributed storage 
and multi-computing 

terminal 
implementation model self-renewal

multi-device 
collaboration

park 
Information

environmental 
information

machinery 
parts

father-son relationship 
establishing

3dmax coordinate 
transformation

UV material mapping

PLC

Visual Studio C++

Cloudcompare

……

sheave pulley 
GUI

roller GUI

 
Figure 1. Digital twin five-dimensional maturity model of mine hoist. 

2.2. Construction of the Monitoring System 
Given the large scale and numerous components of the mine hoisting system, a 3D 

laser point cloud-based geometric modeling method was employed. The 3D point cloud 
data of the mine shaft are obtained by scanning the entire mine hoist using a handheld 3D 
laser scanner (GeoSLAM system). During the scanning of the point cloud data, a specific 
path scanning optimization scheme is implemented to maximize the preservation of point 
cloud integrity and accelerate data acquisition speed. Various parameters are configured 
to apply radius and statistical joint filtering to the point cloud, aiming to identify the op-
timal combination of filtering parameters. Then, poisson surface reconstruction is carried 
out on the processed point cloud data of the mine hoisting system to generate a realistic 
three-dimensional surface model. According to the above point cloud processing, recon-
struction, and rendering process for the main shaft and other environmental data, a highly 
realistic digital twin geometric model of the hoisting machine is finally obtained. The con-
struction of the localized monitoring scene based on digital twin is shown in Figure 2. 
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Figure 1. Digital twin five-dimensional maturity model of mine hoist.

2.2. Construction of the Monitoring System

Given the large scale and numerous components of the mine hoisting system, a 3D
laser point cloud-based geometric modeling method was employed. The 3D point cloud
data of the mine shaft are obtained by scanning the entire mine hoist using a handheld 3D
laser scanner (GeoSLAM system). During the scanning of the point cloud data, a specific
path scanning optimization scheme is implemented to maximize the preservation of point
cloud integrity and accelerate data acquisition speed. Various parameters are configured to
apply radius and statistical joint filtering to the point cloud, aiming to identify the optimal
combination of filtering parameters. Then, poisson surface reconstruction is carried out
on the processed point cloud data of the mine hoisting system to generate a realistic three-
dimensional surface model. According to the above point cloud processing, reconstruction,
and rendering process for the main shaft and other environmental data, a highly realistic
digital twin geometric model of the hoisting machine is finally obtained. The construction
of the localized monitoring scene based on digital twin is shown in Figure 2.

Then, based on the reference of the five-dimensional architecture of the digital twin [21],
a highly realistic digital twin system for the mine hoist is constructed. This system is capa-
ble of simulating the appearance of the hoist and continuously evolving in parallel with the
real hoist. This digital twin system possesses the ability to carry out independent learning
and exhibit intelligence. The architecture of the system is depicted in Figure 3.
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The mine hoist is already equipped with a comprehensive sensing system. Therefore, 
a behavioral modeling method is proposed, as shown in Figure 4, which makes full use of 
the existing sensing perceptual network of the mine hoist and the centralized control pro-
vided by the Programmable Logic Controller (PLC). This method aims to establish a map-
ping of the behavioral dimensions within the digital twin, ensuring that the twin exhibits 
consistent behavior with the physical model over time. 

Figure 3. Digital twins structure of mine hoist.

The mine hoist is already equipped with a comprehensive sensing system. Therefore,
a behavioral modeling method is proposed, as shown in Figure 4, which makes full use
of the existing sensing perceptual network of the mine hoist and the centralized control
provided by the Programmable Logic Controller (PLC). This method aims to establish
a mapping of the behavioral dimensions within the digital twin, ensuring that the twin
exhibits consistent behavior with the physical model over time.
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3. Twin-Based Data-Driven Over-Advance Sensing of Hoist Motor Temperature
3.1. An RNN-Based Temperature Prediction Method for Hoist Motor

The recurrent neural network (RNN) is a widely used learning model for modeling
sequential data. It falls under the category of feedback neural networks and was originally
applied in the domain of natural language processing, including tasks like speech recogni-
tion and translation [22]. Based on the recursive structure of shared weights, RNN unfolds
input sequential data in the direction of time or event evolution for operation, and its basic
structure is shown in Figure 5.
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In this model, x is the input matrix, U is the weight matrix of the input layer, V is the
hidden layer vector, W is the weight matrix of the hidden layer, and o is the output matrix.
The hidden layer st of the recurrent network at the current time step depends not only on
the inputs at the current moment, but also on the hidden layer st−1 from the previous time
step. The weight matrix W determines the extent to which information in the hidden layer
st−1 is retained. This structure has a natural advantage for processing sequential data as it
can dig out relationships between preceding and subsequent sequences and assign weights
to form a memory that influences subsequent operations.
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3.2. A LSTM-Based Temperature Prediction Method for Hoist Motor

In practical applications, the traditional recurrent neural network (RNN) encounters
difficulties in dealing with long-term dependencies and faces challenges such as gradient
disappearance or explosion [23]. Consequently, several variants have been developed
to address these issues. One notable example is the Long Short-Term Memory (LSTM)
network [24]. LSTM incorporates a deliberate design that introduces a “gate” mechanism,
analogous to a logic gate, to regulate the flow of information using binary signals of 0
and 1. However, in LSTM, the “gate” mechanism is not simply a binary on or off state,
but is controlled by an activation function, which enables the control of the amount of
information transmitted.

The main activation functions used in LSTM are sigmoid and tanh, represented by
Equations (1) and (2) respectively:

sigmoid(x) =
1

1 + e−x (1)

tanh(x) =
ex − e−x

ex + e−x (2)

Their function curves are shown in Figure 6:
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Figure 6. Graph of sigmoid function and tanh function.

According to the graph and formula, it becomes evident that the sigmoid function has
a value range of (0, 1). This characteristic limits the output range and enables the mapped
matrix to control another matrix through a dot product operation, thereby regulating the
amount of information that passes through it. Furthermore, the tanh activation function,
which acts in a way that is consistent with the sigmoid function, has a value range of
(−1, 1).

The core idea behind LSTM is the introduction of the cell state concept and the ability
to make decisions regarding the retention or forgetting of information using the forgetting
gate within its memory block. Similar to other recurrent neural networks, LSTM follows a
chain-like structure for reusing information, as shown in Figure 7.
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The calculation formulas of the input gate, forgetting gate, and internal cell state in
LSTM structure are as follows:

it = σi(Wi[ht−1, xt] + bi) (3)

ft = σf (W f [ht−1, xt] + b f ) (4)

C̃t = tanh(Wc[ht−1, xt] + bc) (5)

Ct = ft•Ct−1 + it•C̃t (6)

Among them, σ and tanh represent the sigmoid and hyperbolic tangent activation
functions, respectively, W denotes the corresponding weight matrix, ht−1 and xt refer to the
hidden state from the previous time step and the input at the current time step respectively,
b represents the corresponding bias matrix, and • signifies the dot product operation.

The above formulas illustrate the roles of various components in the LSTM structure.
Specifically, it is the input gate, ft is the forgetting gate, C̃t is the internal cell state, Ct−1 is
the cell state in the previous time step, and Ct is the cell state in the current time step. Ct is
computed by summing the dot product of ft and Ct−1 with the dot product of it and C̃t.
The activation of ft restricts its value to the range of (0, 1), allowing it to control the amount
of information from the previous cell state that contributes to the current operation. This
gating mechanism selectively retains information by discarding 0 values and retaining 1
values, playing the role of selection and forgetting. The activation of tanh limits the value
of C̃t to the range of (−1, 1), which is advantageous for neural network computations. It is
important to note that the computing formulas for it and ft are the same, but they serve
different roles. The value of it ranges from 0 to 1 and limits the information involved in
the calculation, enabling selective retention. These gate operations effectively update Ct to
facilitate the calculation of the hidden state.

Then, the output gate and hidden state are calculated. The operation formulas are
as follows:

ot = σo(Wo[ht−1, xt] + bo) (7)

ht = ot•tanh(Ct) (8)

Here, ot represents the output gate, and ht corresponds to the hidden state at the
current time step. Prior to its involvement in the operation, tanh activation is applied to Ct,
which assists in mitigating the problem of gradient explosion and enhances the learning
process of neural networks. The activation of ot is achieved through the sigmoid function,
and the value of the cell state Ct is constrained by the dot product operation to obtain ht.

4. Simulation and Experiment

The digital twin monitoring system incorporates a data over-advance prediction mod-
ule. This module initially preprocesses the state twin data, which is subsequently fed
into the built-in optional neural network (LSTM or RNN) for training. It extracts relevant
features and predicts the future state, thereby facilitating over-advance sensing and guiding
predictive maintenance. Figure 8 illustrates the specific process of predicting hoist motor
temperature based on digital twin data. Four temperature sensors are strategically posi-
tioned on the stator winding of the motor, with adjacent sensors spaced 90◦ apart. The mine
hoist intelligent sensing network is employed to monitor the entire lifting process of the
mine hoist, capturing real-time temperature data from four motor points (each dataset con-
sists of 1933 consecutive temperature samples). Subsequently, the digital twin monitoring
system of the mine hoist is trained in conjunction with a neural network. Through a com-
parative analysis of the model’s prediction output, sensor-measured data, and prediction
variances between different networks, the digital twin model and neural network are opti-
mized to enhance the precision of motor temperature prediction. Ultimately, the optimized
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prediction model effectively captures the motor temperature trend. The entire process
involves a series of successive steps for the twin data. These steps include preprocessing,
division of data into training and test sets, normalization, iterative training, selection of
the best model, extraction of optimal parameters, anti-normalization, and the utilization
of these optimal parameters for predicting the complete motor temperature cycle data,
which encompasses loading, unloading, and returning to the bottom of the well. Then, the
digital twin monitoring system digitally displays the operating state. Taking advantage of
historical state data, the system enables online prediction and advanced perception of the
next cycle’s state to determine if it exceeds the temperature threshold, thereby providing
valuable guidance for predictive maintenance.
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Motor temperature data exhibit clear time series characteristics, and the influence of
past data on future temperature prediction is significant. RNN and LSTM models possess
memory functions that allow them to retain historical information, making them suitable
for processing sequential data. Previous studies [25,26] have demonstrated the effectiveness
of RNN and LSTM models in temperature prediction tasks, validating their feasibility for
this purpose. This section constructs RNN and LSTM networks in the neural network
prediction section and compares their respective prediction results. For a fair comparison,
the network parameters for both LSTM and RNN are kept identical. The RNN and LSTM
networks are constructed with two layers of recurrent kernels each, with the first layer
having 80 memories and the second layer having 100 memories. A Dropout parameter of
0.2 is employed, and Adam optimization is used. The loss function is defined as the mean
square loss. During training, 64 temperature training samples are fed per iteration, with a
total of 80 iterations.

4.1. Data Processing

Due to the complex working conditions of the hoist motor, the accuracy of the sensor
itself is inherently limited. In addition, noise is introduced during the temperature data
acquisition process, which adversely affects the accuracy of the acquired temperature data.
Consequently, Gauss–Kalman joint filtering is considered as a method to reduce noise in
the acquired data. The data over-prediction module applies Gauss–Kalman joint filtering
to the state data in order to mitigate measurement errors caused by sensor limitations and
environmental disturbances. The one-dimensional zero-mean Gaussian function for the
state data is defined as follows:

f (t) =
1√
2πσ

e−
(t−µ)2

2σ2 (9)
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In the above formula, σ is the standard deviation of the Gaussian function, t is the
random variable and u is the mean value. As the value of the σ increases, the frequency band
of the Gaussian filter widens. This widening results in a broader range of frequencies being
considered during the filtering process. Consequently, the filtered data exhibit improved
smoothness. In other words, a larger value of the standard deviation enhances the filtering’s
ability to reduce high-frequency variations, eventually leading to a smoother output.

Kalman filter theory also provides a method to reduce the impact of noise, through
the construction of a state space model and the formulation of prediction–update iterative
equations for optimal estimation of state variables. The state space equation for the Kalman
filter is defined as follows [27]:{

xk = Axk−1 + Buk−1 + wk

zk = Hxk + vk
(10)

Equation (10) defines the following variables: xk, zk, A, B, H, wk, uk−1, vk; they rep-
resent the state vector, observation vector, state transfer matrix, input control matrix,
observation matrix, process noise vector, system control vector, and measurement noise
vector, respectively. It is assumed that wk and vk are positive definite, symmetric, uncorre-
lated, zero-mean Gaussian white noise vectors, and k is a subscript. Then, wk and vk fulfill
Equation (11): 

cov(wk) = E(wkwT
k ) = Q

cov(vk) = E(vkvT
k ) = R

E(wk) = 0, E(vk) = 0, E(wkvT
k ) = 0

(11)

where cov denotes the covariance, E is the expectation, Q is the covariance matrix of the
process noise, and R is the covariance matrix of the observation noise.

The core of the Kalman filter is divided into two main categories: prediction and up-
date. The prediction equation, defined as Equation (12), serves as a fundamental component:{

x̂k = Ax̂k−1 + Buk−1

Pk = APk−1 AT + Q
(12)

The update equation is defined as Equation (13):
Kk = Pk HT(HPk HT + R)−1

x̂k = x̂k + Kk(zk − Hx̂k)

Pk = (I − Kk H)Pk

(13)

The symbols Kk, x̂k, Pk, and I in Equations (12) and (13) represent the Kalman gain
matrix, the filter optimum, the deviation matrix, and the unit matrix, respectively. By
appropriately adjusting the matrices Q and R, the degree of suppression of process noise
and measurement noise by the Kalman filter can be controlled and realized. The results
obtained from processing a subset of acquired data using the Gauss–Kalman filter are
shown in Figure 9.

Machines 2023, 11, x FOR PEER REVIEW 10 of 17 
 

 

obtained from processing a subset of acquired data using the Gauss–Kalman filter are 
shown in Figure 9. 

0 50 100 150 200 250 300
80
82
84
86
88
90
92
94
96

T
em

pe
ra

tu
re

(℃
)

Time(s)

  raw data
  smoothed data

 
Figure 9. Gauss–Kalman filtering data results. 

4.2. Data Training and Evaluation 
Considering that the digital twin system undergoes real-time varies, the twin data 

are consistently fed into the constructed neural network for the purpose of feature extrac-
tion. Consequently, this allows for the execution of real-time temperature predictions for 
the subsequent complete lifting cycle. 

For enhanced evaluation and comparison of training results, three metrics are intro-
duced: mean square error (MSE), root mean square error (RMSE), and mean absolute error 
(MAE). RMSE and MSE are calculated by squaring prediction errors, offering the ad-
vantage of considering the variability of errors and being sensitive to large errors or out-
liers. This is crucial in time series forecasting, as significant errors can have a substantial 
impact on future predictions. Compared with RMSE and MSE, MAE represents the aver-
age absolute value of prediction errors, and it prioritizes the average magnitude of errors 
rather than their distribution. Unlike RMSE and MSE, MAE is less influenced by outliers 
and extreme values since it does not involve squaring the errors; these metrics, repre-
sented by equations (14), (15), and (16), respectively, allow for comprehensive compara-
tive assessment. 

2

1

ˆ( )
MSE

n

i i
i

y y

n






 
(14) 

RMSE MSE  (15) 

1

ˆ

MAE

n

i i
i

y y

n






 
(16) 

The above equations define the following terms: iy  represents the true value, ˆiy  
represents the predicted value, n represents the number of predicted samples, MSE rep-
resents the mean square error, RMSE represents the root mean square error, and MAE 
represents the mean absolute error. 

The primary objective in temperature prediction is to determine if the maximum tem-
perature exceeds the motor’s maximum tolerance limit. Therefore, the accurate prediction 
of temperature extremes is crucial. However, during the motor’s shutdown at low tem-
peratures, the prediction data may exhibit some degree of fluctuation. These characteris-
tics align with the mathematical properties of the evaluation indices trained by the LSTM 
network. Specifically, when the temperature extreme value prediction is accurate, and the 
prediction results of other temperature points have errors, the evaluation index values are 
better than the evaluation index with large temperature extreme value prediction error 
and good prediction adaptability of other sections. Thus, it is acceptable to choose the 
above evaluation metrics to measure the excellence of the final results. 

Figure 9. Gauss–Kalman filtering data results.



Machines 2023, 11, 966 10 of 17

4.2. Data Training and Evaluation

Considering that the digital twin system undergoes real-time varies, the twin data are
consistently fed into the constructed neural network for the purpose of feature extraction.
Consequently, this allows for the execution of real-time temperature predictions for the
subsequent complete lifting cycle.

For enhanced evaluation and comparison of training results, three metrics are intro-
duced: mean square error (MSE), root mean square error (RMSE), and mean absolute error
(MAE). RMSE and MSE are calculated by squaring prediction errors, offering the advantage
of considering the variability of errors and being sensitive to large errors or outliers. This
is crucial in time series forecasting, as significant errors can have a substantial impact on
future predictions. Compared with RMSE and MSE, MAE represents the average absolute
value of prediction errors, and it prioritizes the average magnitude of errors rather than
their distribution. Unlike RMSE and MSE, MAE is less influenced by outliers and extreme
values since it does not involve squaring the errors; these metrics, represented by Equations
(14), (15), and (16), respectively, allow for comprehensive comparative assessment.

MSE =

n
∑

i=1
(yi − ŷi)

2

n
(14)

RMSE =
√

MSE (15)

MAE =

n
∑

i=1
|yi − ŷi|

n
(16)

The above equations define the following terms: yi represents the true value, ŷi repre-
sents the predicted value, n represents the number of predicted samples, MSE represents
the mean square error, RMSE represents the root mean square error, and MAE represents
the mean absolute error.

The primary objective in temperature prediction is to determine if the maximum tem-
perature exceeds the motor’s maximum tolerance limit. Therefore, the accurate prediction
of temperature extremes is crucial. However, during the motor’s shutdown at low temper-
atures, the prediction data may exhibit some degree of fluctuation. These characteristics
align with the mathematical properties of the evaluation indices trained by the LSTM
network. Specifically, when the temperature extreme value prediction is accurate, and the
prediction results of other temperature points have errors, the evaluation index values are
better than the evaluation index with large temperature extreme value prediction error and
good prediction adaptability of other sections. Thus, it is acceptable to choose the above
evaluation metrics to measure the excellence of the final results.

4.3. Analysis of Training Results

By analyzing the temperature behavior of the hoist motor, it is found that the tem-
perature change rule of the hoist motor shows cyclic changes that align with the hoisting
production behavior. The training set comprises temperature state data from the initial
25 lifting behaviors in a day, which are used to predict the temperature data for the 26th
lifting behavior of the hoist motor. The validation set consists of the actual temperature
data from the 26th hoisting behavior. The prediction results for the temperature of four
sensors are compared. The training and prediction outcomes for temperature point sensor
1 are shown in Figure 10.
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Figure 10. Comparison chart of training and prediction results for temperature point sensor 1: (a) 
loss of LSTM; (b) prediction of LSTM; (c) loss of RNN; (d) prediction of RNN; (e) loss of Gauss–
Kalman–LSTM; (f) prediction of Gauss–Kalman–LSTM. 

During the training process, it is evident that the gradient of the RNN network dis-
appears, while the loss function of the LSTM network consistently decreases and stabilizes 
around the 30th epoch, resulting in superior training outcomes. Upon comparing the pre-
diction results, it becomes evident that the RNN network exhibits significant fluctuations 
in each section of the lifting motor operation, and its prediction of the highest temperature 
is inaccurate. Conversely, the LSTM network outperforms the RNN network in terms of 
prediction accuracy. While the predicted temperature trends and values approximate the 
actual temperatures for each section, some peak temperature points have inaccurate pre-
dictions. The temperature state data, after applying Gauss–Kalman joint filtering, reveal 
a favorable trend in the loss function and achieve better accuracy in predicting maximum 
temperatures compared to the LSTM network without filtering. The temperature predic-
tion results were higher than the actual values at many points, with a maximum overesti-
mation of 0.4 °C. This is sufficient to meet the requirements for temperature failure warn-
ing in practice, namely, predicted temperatures should be slightly higher than actual val-
ues within a reasonable range. This helps reserve time in advance for fault disposal.  

Figure 10. Comparison chart of training and prediction results for temperature point sensor 1: (a) loss
of LSTM; (b) prediction of LSTM; (c) loss of RNN; (d) prediction of RNN; (e) loss of Gauss–Kalman–
LSTM; (f) prediction of Gauss–Kalman–LSTM.

During the training process, it is evident that the gradient of the RNN network disap-
pears, while the loss function of the LSTM network consistently decreases and stabilizes
around the 30th epoch, resulting in superior training outcomes. Upon comparing the pre-
diction results, it becomes evident that the RNN network exhibits significant fluctuations
in each section of the lifting motor operation, and its prediction of the highest temperature
is inaccurate. Conversely, the LSTM network outperforms the RNN network in terms
of prediction accuracy. While the predicted temperature trends and values approximate
the actual temperatures for each section, some peak temperature points have inaccurate
predictions. The temperature state data, after applying Gauss–Kalman joint filtering, reveal
a favorable trend in the loss function and achieve better accuracy in predicting maximum
temperatures compared to the LSTM network without filtering. The temperature prediction
results were higher than the actual values at many points, with a maximum overestima-
tion of 0.4 ◦C. This is sufficient to meet the requirements for temperature failure warning
in practice, namely, predicted temperatures should be slightly higher than actual values
within a reasonable range. This helps reserve time in advance for fault disposal.

In Figure 10, only out-of-sample predictions are displayed. However, based solely
on the predicted values, it is not possible to determine whether there is a statistically
significant difference between the predictions of the LSTM and Gauss–Kalman–LSTM
models. Therefore, we followed a statistical testing method reported in [28] for comparing
the predictive accuracy of the two model groups. The results are shown in Figure 11, with
a histogram of the error distribution on the left and an empirical cumulative distribution
function (CDF) on the far right.



Machines 2023, 11, 966 12 of 17

Machines 2023, 11, x FOR PEER REVIEW 12 of 17 
 

 

In Figure 10, only out-of-sample predictions are displayed. However, based solely on 
the predicted values, it is not possible to determine whether there is a statistically signifi-
cant difference between the predictions of the LSTM and Gauss–Kalman–LSTM models. 
Therefore, we followed a statistical testing method reported in [28] for comparing the pre-
dictive accuracy of the two model groups. The results are shown in Figure 11, with a his-
togram of the error distribution on the left and an empirical cumulative distribution func-
tion (CDF) on the far right. 

 
Figure 11. Distribution of errors and empirical CDF of errors. 

In this case, we can see that the errors of the Gauss–Kalman–LSTM model are more 
concentrated within a lower range, while the errors of the other model are more dispersed. 
Based on this analysis, it can be inferred that there is a significant difference in predictive 
accuracy between the two models. Additionally, the CDF curve of the Gauss–Kalman–
LSTM errors is positioned above the CDF curve of the other group of errors, this observa-
tion suggests that the overall distribution of errors for the Gauss–Kalman–LSTM model is 
smaller, indicating that the corresponding model likely possesses superior predictive ac-
curacy.  

A similar process was applied to data from temperature point sensor 2, but the pur-
pose of this set of data is only for predictive comparison, without analyzing significant 
differences between the models. The results of model training and prediction performance 
are shown in Figure 12 for comparison. 

0 10 20 30 40 50 60 70 80
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 10 20 30 40 50 60 70 80
0.000

0.001

0.002

0.003

0.004

0.005

L
os

s

Epoch

 training loss
 validation loss

(a)

 training loss
 validation loss

 training loss
 validation loss

0 20 40 60 80 100 120 140

80

82

84

86

88

90

79

T
em

pe
ra

tu
re

(℃
)

Time(s)

 real
 predicted

(b)

 real
 predicted

 real
 predicted

0 10 20 30 40 50 60 70 80

0.0045

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080

0.0085

0.0043

L
os

s

Epoch

(c)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

80

82

84

86

88

90

79

T
em

pe
ra

tu
re

(℃
)

Time(s)

(d)

L
os

s

Epoch

(e)

0 20 40 60 80 100 120 140
80

82

84

86

88

90

T
em

pe
ra

tu
re

(℃
)

Time(s)

(f)  

Figure 11. Distribution of errors and empirical CDF of errors.

In this case, we can see that the errors of the Gauss–Kalman–LSTM model are more
concentrated within a lower range, while the errors of the other model are more dispersed.
Based on this analysis, it can be inferred that there is a significant difference in predictive ac-
curacy between the two models. Additionally, the CDF curve of the Gauss–Kalman–LSTM
errors is positioned above the CDF curve of the other group of errors, this observation sug-
gests that the overall distribution of errors for the Gauss–Kalman–LSTM model is smaller,
indicating that the corresponding model likely possesses superior predictive accuracy.

A similar process was applied to data from temperature point sensor 2, but the
purpose of this set of data is only for predictive comparison, without analyzing significant
differences between the models. The results of model training and prediction performance
are shown in Figure 12 for comparison.
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Figure 12. Comparison chart of training and prediction results for temperature point sensor 2: (a) loss
of LSTM; (b) prediction of LSTM; (c) loss of RNN; (d) prediction of RNN; (e) loss of Gauss–Kalman–
LSTM; (f) prediction of Gauss–Kalman–LSTM.

The training and prediction results for temperature point sensors 1 and 2 are identical.
Specifically, the temperature prediction results after applying Gauss–Kalman joint filtering
outperform those obtained without neural network filtering. The prediction results of
temperature point sensors 3 and 4 also align with the aforementioned conditions. To further
compare the prediction results, evaluation metrics are introduced as shown in Table 1.
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Table 1. Comparison table of evaluation indexes.

No.
RNN LSTM Gauss–Kalman–LSTM

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

1 0.9308 0.9648 0.5308 0.0998 0.3159 0.2138 0.0134 0.1158 0.0790
2 1.3327 1.1544 0.6895 0.0906 0.3010 0.2093 0.0676 0.2600 0.1725
3 1.5396 1.2408 0.6177 0.0627 0.2505 0.1599 0.0405 0.2012 0.1281
4 1.73594 1.3175 0.6903 0.2143 0.4630 0.3091 0.0559 0.2365 0.1643

Through a comparison and analysis of the evaluation indices in Table 1, it is evident
that the LSTM network training results with Gauss–Kalman joint filtering exhibit smaller
values for MSE, RMSE, and MAE compared to the other two methods. This indicates a
higher level of accuracy in predicting the maximum temperature value. Thus, the over-
advance prediction module in the digital twin monitoring system reads the twin data,
applies the Gauss–Kalman joint filtering process, and then undergoes LSTM network
training and prediction. This approach enables the online prediction of the next cycle’s
state using historical data, allowing for the determination of whether it will exceed the
temperature threshold. This over-advance perception can definitely facilitate in guiding
predictive maintenance efforts.

4.4. Experimental Study

Taking the main hoisting system of a specific mine in China as an example, it has a
lifting height of 483 m and a lifting capacity of 30 tons. Figure 13 illustrates the operation
process of the mine hoisting system. Focusing on the east skip, we can see that it begins
by stopping at a depth of approximately 470 m at the bottom of the well for loading.
After loading, it accelerates to a constant speed for lifting and then decelerates to reach
the unloading platform at the wellhead for unloading. Once unloaded, it returns to the
bottom of the well for reloading. Throughout the entire lifting process, the speed remains
consistently stable with small fluctuations. In contrast, the behavior of the west skip is
precisely opposite to that of the east skip. Figure 14 illustrates the mine hoist digital
twin monitoring system, which is capable of executing various functions, including scene
display, human–computer interaction, motion synchronization, and condition monitoring.
The current and temperature monitoring of the lifting motor is shown in Figure 15.

Machines 2023, 11, x FOR PEER REVIEW 14 of 17 
 

 

0 50 100 150 200
0

100

200

300

400

500

600

D
is

pl
ac

em
en

t(
m

)

Sp
ee

d(
m

/s
)

Time(s)

 east skip  west skip  speed

0

2

4

6

8

10

12

14

 
Figure 13. Running process diagram of mine hoisting system. 

 
Figure 14. Digital twin monitoring system of mine hoist. 

 

0 25 50 75 100
0

200

400

600

800

1000

1200

1400

44 46 48 50 52 54 56 58 60
400

500

600

700

800

900

1000

1100

0 50 100 150 200
80

82

84

86

88

90

92

94

C
ur

re
nt

(A
)

Time(s)

 excitation current of motor  motor current

C
ur

re
nt

(A
)

Time(s)

 motor temperature 

T
em

pe
ra

tu
re

(℃
)

Time(s)  

Figure 13. Running process diagram of mine hoisting system.



Machines 2023, 11, 966 14 of 17

Machines 2023, 11, x FOR PEER REVIEW 14 of 17 
 

 

0 50 100 150 200
0

100

200

300

400

500

600

D
is

pl
ac

em
en

t(
m

)

Sp
ee

d(
m

/s
)

Time(s)

 east skip  west skip  speed

0

2

4

6

8

10

12

14

 
Figure 13. Running process diagram of mine hoisting system. 

 
Figure 14. Digital twin monitoring system of mine hoist. 

 

0 25 50 75 100
0

200

400

600

800

1000

1200

1400

44 46 48 50 52 54 56 58 60
400

500

600

700

800

900

1000

1100

0 50 100 150 200
80

82

84

86

88

90

92

94

C
ur

re
nt

(A
)

Time(s)

 excitation current of motor  motor current

C
ur

re
nt

(A
)

Time(s)

 motor temperature 

T
em

pe
ra

tu
re

(℃
)

Time(s)  

Figure 14. Digital twin monitoring system of mine hoist.

Machines 2023, 11, x FOR PEER REVIEW  15  of  19 
 

 

 

0 25 50 75 100
0

200

400

600

800

1000

1200

1400

44 46 48 50 52 54 56 58 60
400

500

600

700

800

900

1000

1100

0 50 100 150 200
80

82

84

86

88

90

92

94

C
ur

re
nt

(A
)

Time(s)

 excitation current of motor  motor current

C
ur

re
nt

(A
)

Time(s)

 motor temperature 

T
em

pe
ra

tu
re

(℃
)

Time(s)  
(a)  (b) 

Figure 15. Current and temperature behavioral monitoring of hoist motor: (a) current monitoring; 

(b) temperature monitoring. 

   

Figure 15. Current and temperature behavioral monitoring of hoist motor: (a) current monitoring;
(b) temperature monitoring.

The digital twin monitoring system of the mine hoist incorporates an interface con-
structed using the temperature prediction module, which graphically displays the predic-
tion results. Simultaneously, the script API is employed to trigger an alarm response when
the temperature prediction data exceed the temperature threshold (shown in Figure 16). It
can be seen from Figure 16 that the temperature prediction and early warning UI interface
of the machine room motor can display essential information such as motor model and
rated parameters. Additionally, it can predict the parameters of the motor, motor excitation
current, drum speed, and motor temperature for the next lifting cycle during the current
hoist operation cycle. During the operation of the mine hoist, if the predicted temperature
value for the next motor cycle exceeds the normal temperature threshold, the health status
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text content in the basic information panel will indicate that the temperature exceeds the
standard. The curve will be highlighted in red, serving as an early warning of a fault, and
necessitating the machine to be stopped for maintenance. The fault prediction module
effectively evaluates and alerts the health status of the hoist, enabling a monitoring mode
based on virtual monitoring supplemented by real monitoring.
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5. Conclusions

The mine hoist plays a crucial role in mine production, and its efficient and reliable
operation is vital for uninterrupted production and ensuring energy security. This study
addresses the issue of mine hoist monitoring by employing the twin fast modeling method
to develop a digital twin monitoring system that facilitates multivariate collaborative
monitoring. Additionally, deep learning algorithms are utilized to predict the key state
variable parameters. The following conclusions have been drawn:

(1) A five-dimensional framework of mine hoist digital twin is proposed. Each dimension
is closely connected through the twin data flow, and the synchronous mapping from
the real physical world to the virtual twin world is completed. This framework offers
a theoretical support for the development of a mine hoist digital twin system.

(2) A digital twin state variable prediction module is developed by using the Gauss–
Kalman joint filtering algorithm with an LSTM network. This module realizes a more
precise prediction of the temperature state data for the hoisting motor, and it presents
a new approach to predictive maintenance for the mine hoist. Based on the prediction
module, the temperature prediction interface of the hoisting motor is built, which
successfully enables motor temperature warnings.
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