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Abstract: As the field of fault diagnosis in electrical machines has significantly attracted the interest of
the research community in recent years, several methods have arisen in the literature. Also, raw data
signals can be acquired easily nowadays, and, thus, machine learning (ML) and deep learning (DL) are
candidate tools for effective diagnosis. At the same time, a challenging task is to identify the presence
and type of a bearing fault under noisy conditions, especially when relevant faults are at their incipient
stage. Since, in real-world applications and especially in industrial processes, electrical machines
operate in constantly noisy environments, a key to an effective approach lies in the preprocessing stage
adopted. In this work, an evaluation study is conducted to find the most suitable signal preprocessing
techniques and the most effective model for fault diagnosis of 16 conditions/classes, from a low-
workload (computational burden) perspective using a well-known dataset. More specifically, the
reliability and resiliency of conventional ML and DL models is investigated here, towards rolling
bearing fault detection, simulating data that correspond to noisy industrial environments. Diverse
preprocessing methods are applied in order to study the performance of different training methods
from the feature extraction perspective. These feature extraction methods include statistical features
in time-domain analysis (TDA); wavelet packet decomposition (WPD); continuous wavelet transform
(CWT); and signal-to-image conversion (SIC), utilizing raw vibration signals acquired under varying
load conditions. The noise effect is examined and thoroughly commented on. Finally, the paper
provides accumulated usual practices in the sense of preferred preprocessing methods and training
models under different load and noise conditions.

Keywords: bearing fault; induction motors; signal processing; convolutional neural networks;
continuous wavelet transform; signal-to-image conversion; fault diagnosis; noisy environments

1. Introduction

Rolling bearings are essential components of rotating machinery with considerable
importance in the problem of fault detection and diagnosis, accounting for one-third of
the total defects in induction machine failures [1]. The quality and performance of these
indispensable parts directly affect the reliability, efficiency and down-time of electrical
machines. Four main faults can occur in bearings, namely, inner race; outer race; ball or
rolling element; and cage, under variable and high loads, resulting in economic costs and
even safety accidents in case of escalation. Fault detection and diagnosis in rolling bearings
have been widely studied using model-based methods [2], signal processing approaches [3]
and data-driven techniques [4]. Developing a mathematical model of bearing faults is
not always feasible, especially in complex dynamic systems. The continuously increasing
availability of data has led the research focus on data-driven techniques. Knowledge is
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extracted incorporating feature engineering processes on raw data acquired from diverse
sensor measurements. These sensing modalities include the following [5]: stator current
measurements, vibration signals, sound or acoustic emission signals, and thermal analysis.
Major efforts are needed to establish a real-world testbed to collect measurements from
bearing faults of different types. Fortunately, different organizations publicly provide such
bearing fault datasets, that contain individual stator current signals, vibration signals or
both. For example, the most popular bearing fault datasets among them are CWRU [6],
IMS [7], Paderborn university [8] and PRONOSTIA [9]. These bearing datasets are used
as a standard reference since they are essential for validating the performance of different
models and approaches in the field of fault detection and diagnosis.

Conventional signal processing techniques for rolling-element bearing fault detec-
tion using vibration signals include time-domain [10], frequency-domain [11] and time–
frequency-domain analysis [12]. In time-domain analysis, characteristic features of signal
statistics are calculated using temporal vibrational signal data. These features include root
mean square (RMS), peak value, peak-to-peak value, skewness, kurtosis, crest factor, form
factor, standard deviation and min–max values [13]. The time-domain vibration signals can
be converted to frequency components using fast Fourier transform (FFT). Thus, FFT and
discrete Fourier transform (DFT), spectrum analysis and envelope analysis are the most
common frequency domain candidates detecting the required specific frequency compo-
nents [14,15]. In time-frequency domain analysis there is a combination of both time and
frequency domains using approaches like short-time Fourier transform (STFT) [16], wavelet
analysis (continuous wavelet transform—CWT, discrete wavelet transform—DWT) [17,18],
wavelet packet decomposition [19], empirical mode decomposition [20], variational mode
decomposition [21], Hilbert transform [22] and stochastic resonance [23].

There is a long list of machine learning (ML) and deep learning (DL) methods that are
utilized in the rolling bearing fault diagnosis domain [17]. ML approaches find patterns
in the extracted features producing predictions of bearing fault types. On the other hand,
DL methods incorporate processes that enable feature extraction in an automatic manner,
learn high-level features in their hidden layers and classify fault types. However, as the
availability of data increases then the performance produced by DL techniques can be sig-
nificantly enhanced compared with standard ML models. Indicative ML-based approaches
that have been reported in the literature for bearing fault detection are support vector ma-
chine (SVM) [24], k-nearest neighbor (k-NN) [25], principal component analysis (PCA) [26],
singular value decomposition (SVD) [27] and fuzzy cognitive networks with functional
weights (FCN-FW) [28]. Approaches of particular importance are those that are based on
optimization methods such as particle swarm optimization (PSO) [29], mayfly optimization
algorithm (MMA) [30], whale optimization algorithm (WOA) and gray wolf optimization
(GWO) [31]. Broadly practiced DL implementations in the application under examination
are as follows: convolutional neural networks (CNNs) [32,33]; auto-encoders (AEs) [34,35];
deep belief networks (DBNs) [36]; recurrent neural networks (RNNs) [37]; long short-term
memory (LSTM) [38]; and generative adversarial networks (GANs) [39]. This class of
models can deal with 1D signals, as well as 2D images that have been converted from the
raw vibration signal or a feature extraction method such as continuous wavelet transform.

A challenging task is to identify the presence and type of a bearing fault under noisy
conditions, especially when faults are at their incipient stage. In real-world applications
and especially in industrial processes, electrical machines operate in constantly noisy
environments. The background noise is an inherent characteristic in industrial sites and
practically unavoidable. In the case of rolling bearings, the acquired vibration signals
may contain a level of noise due to lack of lubrication, improper installation, imprecise
manufacturing, high rotational speed or vibration caused by other parts of the machine.
For this reason, denoising methods have been proposed to remove the noisy part from
vibration signals [40], but prior and expert knowledge is required often [41]. Deep learning
has attracted increasing interest in recent years for its use in bearing fault diagnosis in noisy
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environments. Different implementations have been presented in the literature aiming to
propose an accurate learning model to detect such faults in noisy environments [42–45].

The subject of this work is evaluating different conventional learning models utilizing
different preprocessing methods. Also, this work is aligned with a low-cost orientation and,
therefore, evaluations are made on the 12 kHz of the CWRU dataset taking into account
the total number of trainable parameters. For example, instead of using large segments
of 1D vibration signals to produce larger images as inputs to the learning models and
subsequently aim at higher overall performance, we study the performance of all adopted
learning approaches from the preprocessing perspective under more feasible computational
workloads. More specifically, in this work we investigate the reliability and resiliency
of conventional ML and DL models towards rolling bearing fault detection, simulating
data that correspond to noisy industrial environments. Diverse preprocessing methods
have been applied in order to study the performance of SVM, Lenet-5, 1D-CNN and 2D-
CNN from the feature extraction perspective. These feature extraction methods include
statistical features in time-domain analysis (TDA); wavelet packet decomposition (WPD);
and continuous wavelet transform (CWT); signal-to-image conversion (SIC), utilizing raw
vibration signals acquired under varying load conditions of a 2 Hp induction motor with a
sampling frequency of 12 kHz, as mentioned.

The paper is organized as follows: Section 2 presents, in a brief and comprehensive
manner, a review of the bearing fault detection problem from basic notions and theoreti-
cal background to the main diagnostic workflow needed, embodying feature extraction
methods and learning models. Section 3 is devoted to the development of the adopted
implementations, as well as to their evaluation in different simulated noise environments.
Section 4 covers the comparison of different cases, in terms of preprocessing methods as
well as different learning models, in the bearing fault detection problem. Section 5 provides
an analytical discussion of the conducted study, while conclusions are given in Section 6.

2. Bearing Fault Detection Workflow, Problem Description and Review

Various parts of a rotating electrical machine, such as the stator, rotor and rolling
bearings, are susceptible to significant issues [46]. Notably, rolling bearing defects are
among the most frequent types of failures in electrical motors, occurring at a rate of 30–40%.
As the component that secures the rotor’s appropriate rotation from the machine shaft and
serves as a mechanical connection point of the electric motor, bearings are crucial to the
lifespan of an electrical machine. The rolling balls, the inner and outer races and the cage,
which keeps the distance between the balls equal, are just a few of the components that
make up Figure 1, which illustrates a typical geometry of a rolling bearing.

Figure 1. Rolling bearing geometry.

Furthermore, bearing faults are caused by a variety of factors like insufficient lubrica-
tion, misalignment of rotor and mechanical stress. Each kind of bearing fault produces a
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pulse in the frequency spectrum, which is known as the bearing characteristic frequency.
The frequencies for ball fault ( fb f ), inner race fault ( fir f ), outer race fault ( for f ) and cage
fault ( fc), respectively, can be mathematically described by the following equations:

fb f =
CD
BD

fr

(
1−

B2
D

C2
D

cos2β

)
(1)

fir f =
Nb
2

fr

(
1 +

BD
CD

cosβ

)
(2)

for f =
Nb
2

fr

(
1− BD

CD
cosβ

)
(3)

fc =
fr

2

(
1− BD

CD
cosβ

)
(4)

where BD is the ball diameter, CD is the pitch diameter, β is the contact angle of the ball
with the rails, Nb is the number of rolling bearing balls and fr is the rotor frequency [47].

2.1. General Perception of the Bearing Fault Detection Workflow

The general working procedure towards bearing fault detection involves different
operational stages such as data acquisition, preprocessing, feature extraction and selection,
learning mechanism and finally diagnostic decision. In a preparatory stage, a set of sensors
is required to be placed at specific locations of the machine under examination. Usually,
vibration data are collected, and then a preprocessing stage is applied to extract features of
different domains and textures. Traditionally, the most used feature extraction methods
include short-time Fourier transform (STFT), empirical mode decomposition or an extension
like ensemble empirical mode decomposition (EEMD), continuous wavelet transform
(CWT), signal-to-image conversion (SIC) or statistical methods. The latter provides the
most compressed representation of the original signal leading to the strict utilization of
machine learning approaches. Training mechanisms that incorporate deep neural learning
algorithms utilize either 1D raw vibration signals or 2D representations that are produced
by the aforementioned feature extraction processes. Convolutional neural network (CNN)
architectures are widely used for signal processing and especially fault detection, extracting
potential features encapsulated in signals and detecting local information during training.
Figure 2 illustrates the general flow procedure for bearing fault detection adopting either
1D or 2D CNN as training candidate algorithms under different feature extraction methods.

Figure 2. Visual representation of the rolling bearing fault detection process from the CNN perspective
using different feature extraction methods.
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2.2. A Short Review of Bearing Fault Datasets

One of the most challenging tasks in the Artificial Intelligence universe is the existence
of descriptive and coherent benchmark datasets. Often, in large-scale datasets, there is the
need for multidisciplinary perspectives to ensure the creation of a flawless dataset, under
specific conditions and parameters, that is a reliable solution to be utilized towards solving
a real-world problem. This process is consequently even more ambitious in the case of
electrical machines and bearing faults. This stems from the fact that degradation occurs
gradually over a long operating horizon passing from incipient stages and malfunctions
towards severe conditions and eventually total degradation.

For this reason, a usual practice for data collection is to either include artificially
induced faults or perform testing methods that accelerate the life-cycle of components.
Apart from being time consuming, this process is prohibitively expensive and requires
expert assistance to ensure that all intermediate fault states have been acquired smoothly
and accurately. The following are well-known bearing fault datasets that are publicly
available from different organizations: (a) Case Western Reserve University (CWRU) bear-
ing dataset (https://engineering.case.edu/bearingdatacenter (accessed on 1 July 2023));
(b) Intelligent Maintenance Systems (IMS) (https://www.nasa.gov/content/prognostics-
center-of-excellence-data-set-repository (accessed on 1 July 2023)); (c) Paderborn univer-
sity bearing dataset (https://mb.uni-paderborn.de/kat/forschung/ (accessed on 1 July
2023)); and (d) IEEE PHM 2012 Prognostic Challenge (PRONOSTIA). A brief comparison of
the aforementioned datasets is presented in Table 1, illustrating the differences among fault
mode, sensor type, sampling frequency and fault type. Note that the PRONOSTIA and IMS
datasets are preferred for use in remaining useful life (RUL) prediction problems [48,49].

Table 1. Description of well-known rolling bearing fault datasets.

Dataset Name Fault Mode Sensor Type Sampling Rate Fault Type

CWRU [6] Artificial Accelerometer
(2 sensors)

12/48 kHz Inner and outer race, ball
fault; 4 fault diameters:
0.007, 0.014, 0.021 and
0.028 inches; 4 load con-
ditions: 0, 1, 2 and 3 (HP)

IMS [7] Accelerated
aging test

Accelerometer
(2 sensors)

20 kHz Inner and outer race, ball
fault; 3 run-to-failure tests

Paderborn [8] Artificial
and Ac-
celerated
aging test

Accelerometer
(1 sensor), Cur-
rent (2 sensors),
Thermocouple
(1 sensor)

64 kHz 6 undamaged bearings
and 12 artificially dam-
aged; 14 bearing faults
emerged from acceler-
ated life tests; inner and
outer race fault

PRONOSTIA [9] Accelerated
aging tests

Accelerometer
(2 sensors),
Thermocouple
(1 sensor)

25.6 kHz 3 operating conditions;
17 run-to-failure tests

2.3. Feature Extraction and Selection

Diverse signal processing methods can be applied to obtain the required useful infor-
mation from vibration data. These methods may vary between time-domain, frequency-
domain and time–frequency-domain analysis [50]. A comprehensive review that presents
the signal processing techniques utilized in the rolling element bearings fault detection area
is presented in [51]. For example, the most common approaches are (a) time domain or tem-
poral analysis—statistical features; (b) frequency domain—fast Fourier transform (FFT), power
spectrum, cepstrum, envelope spectrum; (c) time–frequency domain techniques—short-time
Fourier transform (STFT), wavelet based approaches like continuous wavelet transform
(CWT), discrete wavelet transform (DWT), wavelet packet transform (WPT) and tunable

https://engineering.case.edu/bearingdatacenter
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://mb.uni-paderborn.de/kat/forschung/


Machines 2023, 11, 1029 6 of 29

Q-factor wavelet transform (TQWT), also empirical mode decomposition (EMD) and its
extensions, and empirical wavelet transform (EWT) and morphological filter.

Feature selection is a usual practice during preprocessing in order to divide attributes
into informative, redundant or irrelevant ones. This operation reduces the feature vector
dimension keeping the most related and important features, while also removing the
redundant and irrelevant features, avoiding overfitting and alleviating the workload.
Different feature selection strategies have been proposed in the literature to choose the
most discriminant features using the CWRU dataset. For example, there are approaches
that are based on particle swarm optimization (PSO) [52], principal component analysis
(PCA) [53] or conventional search of the feature space by greedy methods [54].

2.4. Machine Learning and Deep Learning Models

In the field of fault detection and diagnosis in electrical machines, machine learning
algorithms play a crucial role offering data-driven approaches for identifying anoma-
lies, malfunctions, degradation levels and defects. These models are trained to recognize
patterns associated with normal and faulty behavior based on historical data. Feature
extraction and feature engineering are essential steps in preparing the data for training
machine learning models in fault detection. They involve transforming raw data into
meaningful and informative features that capture relevant patterns and characteristics
related to the fault type. However, these preprocessing steps may involve complex feature
engineering approaches or may require domain-related expertise. Machine learning ap-
proaches that have been reported in the literature regarding bearing fault detection include
mainly artificial neural networks (ANNs) [55], support vector machines (SVMs) [56] and
k-nearest neighbor (KNN) [57].

Consequently, deep learning algorithms with automated feature extraction capabilities
have gained popularity in bearing fault diagnostics. Deep learning is a subset of machine
learning that excels in representing the problem under examination through nested hi-
erarchies of concepts. The transition from classical machine learning to deep learning
is driven by factors such as data explosion, algorithm evolution and hardware advance-
ments. The advantages of deep learning over conventional machine learning include better
performance, automatic feature extraction and transferability to different domains. As a
result, deep learning has witnessed exponential growth in applications, including machine
health monitoring and fault diagnostics, with bearing fault detection being a prominent
example. Indicative methodologies include auto-encoder implementations [58], 2D CNN
structures [59], 1D CNN classifier [60], deep belief network (DBN) [61] and attention mech-
anism [62]. Extensive review studies have been reported in the literature regarding the
field of bearing fault detection from the scope of learning models [63–65].

3. Study of the Noise Effect in Bearing Fault Detection
3.1. Emulation of Different Noisy Environments

Noise in real-world applications is inevitable due to a wide range of factors that
affect industrial machines: (a) inaccuracies in manufacturing and/or improper installation;
(b) high rotating speed; (c) lack of lubrication in rolling bearings; (d) fluctuations in rotating
parts or processes; and (e) vibration caused by other mechanical components, such as
gears, blades, other bearings and rotors. However, measuring noise is a crucial step in
assessing and addressing the noise generated by industrial systems. It is an essential part
of noise control and management. Measuring and monitoring noise levels is important
in evaluating the effectiveness of noise reduction measures and ensuring compliance
with noise regulations. The choice of noise type depends on the specific application and
the characteristics of the noise that need to be represented accurately. Different types
of noise may be used to better match the noise sources and conditions encountered in a
given domain. Additive white Gaussian noise (AWGN) is a common practice to generate
different levels of noisy environments mimicking the effect of such operations. This is a
preferred choice for simulating noisy environments and testing signal processing algorithms
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in bearing fault analysis due to its simplicity and versatility. This type of noise is well-
understood and characterized by a uniform distribution of energy across all frequencies
(flat power spectral density, i.e., equal intensity at all frequencies). Its straightforward
mathematical properties make it an advantageous option when developing and evaluating
signal processing techniques. Moreover, AWGN is often used as a baseline model for
assessing algorithm performance. This choice provides a clear reference point, enabling
researchers to evaluate algorithms under controlled conditions and establish a foundation
for further analysis.

In bearing fault analysis, the main emphasis typically centers on the vibrational signals
produced by the bearing and its components. AWGN remains a valuable tool for evaluating
how algorithms respond to random, wide-band noise. This noise type can effectively
replicate the background noise present in real-world industrial and mechanical settings,
helping researchers test the robustness of their signal processing methods. However, in
specific cases, and especially when examining rare or unusual bearing fault scenarios,
color noise or Poisson noise may be more appropriate. These types of noise can help
capture specific characteristics of noise sources that AWGN cannot represent accurately.
Moreover, color or Poisson noise may be better in capturing the dynamic nature of industrial
environments in the sense of simulating non-stationary conditions, but there are no widely
specified levels reported in detail in the research works representing them as more accurate
than AWGN.

On the other hand, the AWGN is independent of the characteristics of the analyzed
signal and offers a generic mapping of different noisy situations without the need to know
beforehand the specific properties of the signal. In this work we use 16 operational cases
which stem from 4 main operational cases (normal, ball, inner and outer). If the objective of
this work was related to rare and unusual bearing fault scenarios under specific conditions
(like examining cases that stem solely from lack of lubrication or vibration caused in other
components), then Poisson noise and more appropriately color noise would have been
considered. Thus, in order to study the wide-band noise impact from an aggregated
point view and estimate the capability of different models in real-world situations, we
generated noisy signals by adding AWGN. The produced signals are proportional to the
clean (meaningful) signal based on signal-to-noise ratio (SNR). The ratio of the power of the
clean signal to the power of the background noise is denoted in the decibel form as follows:

SNRdB = 10 log10

(Psignal

Pnoise

)
(5)

where the power of the original and the emulated signal is indicated as Psignal and Pnoise,
respectively. Thus, we simulated five levels of noisy signals with SNR between −2 and
15 dB. More specifically, the noisy cases under investigation are as follows: (a) SNR =−2 dB;
(b) SNR = 2 dB; (c) SNR = 4 dB; (d) SNR = 10 dB; and (e) SNR = 15 dB. For example,
SNR = −2 dB means that noise power is 1.58 times greater than clean signal power and
SNR = 15 dB means that the signal is 31.62 times more powerful than the noisy signal.
However, it is important to define whether the specified noise levels are aligned with
the noise interference conditions in real-life testing. In general, simulated noise signal
with negative (−2 dB), slightly positive (up to 4 dB) and positive (5∼15 dB) values of SNR
indicate strong, medium and weak noise conditions, respectively, in this application [45,66,67].
In this work, we perform an evaluation study of the noise effect in rolling bearing fault
detection, emulating different noisy environments, following the noise levels utilized
in [68].

3.2. Dataset under Consideration

The CWRU dataset is an open-source and widely used benchmark dataset for study-
ing the health of rotating machinery. It is provided by the Department of Mechanical
Engineering at Case Western Reserve University and contains vibration signals of four
different bearing conditions: normal, inner race fault, outer race fault and ball fault. Data
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have been collected from an induction motor under different loading conditions (0 Hp,
1 Hp, 2 Hp and 3 Hp) within a speed range of 1797 to 1730 rpm (1797, 1772, 1750 and 1730),
respectively. The experiment setup shown in Figure 3 consists of a 2 Hp induction motor, a
dynamometer, a torque transducer and control electronics which are not depicted. Data
collection was carried out using accelerometers attached to the housing with magnetic
bases. Accelerometers were located at the 12 o’clock position on both drive end and fan
end of the motor. Additionally, a 16 DAT recorder was used in order to collect the vibration
signals and two sampling frequencies of 12 kHz and 48 kHz were used as well.

Figure 3. CWRU testbed.

In this work, we choose to encapsulate all 16 bearing conditions of the CWRU dataset,
as presented in Table 2, for the evaluation study under examination. The 12 kHz drive
end data provide a database including 16 different bearing conditions at four different
fault diameters. The overall dataset consists of healthy condition, ball fault, inner race
fault and outer race fault with artificially induced faults (see Table 1) including cases under
four different diameters: 0.007, 0.014, 0.021 and 0.028 inches. The diameters of ball and
inner race faults are as stated above, whereas the diameters of outer race faults can reach
a maximum value of 0.021 inches. More precisely, the outer race faults are divided into
three categories: “Centered” (6 o’clock position), “Orthogonal” (3 o’clock position) and
“Opposite” (12 o’clock position). Subsequently, the vibration data were postprocessed in a
Matlab environment and each one of the faulty conditions was saved in a .mat file together
with the speed level, drive end and fan end data.

3.3. Adopted Feature Domains for Evaluation

In the domain of fault detection and diagnosis for electrical machines, feature ex-
traction and signal processing play a pivotal role in enabling effective and precise health
monitoring, especially when dealing with rolling bearing faults [69]. By leveraging sophisti-
cated feature extraction and signal processing techniques, essential information is extracted
from vibration and acceleration signals. Vibration signals are invaluable in a variety of
engineering applications as they provide crucial insights into the condition monitoring and
fault diagnosis of mechanical systems. These types of signals, typically recorded by ac-
celerometers, capture the dynamic behavior of rotating machinery. However, raw vibration
signals are often complex and rich in information, making direct interpretation challenging.
The CWRU dataset contains vibration signals collected from different bearing faults under
various operating conditions. Figure 4 presents, for example, the amplitude/time diagram
acquired from the drive end data with a frequency range of 12 kHz for each of the 16 dif-
ferent bearing conditions. As illustrated, each health status has a unique vibration signal
signature, taking different amplitude values for each bearing condition. The following
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signals serve as critical inputs for our survey, and enable us to examine the performance
and the efficacy of our proposed models.

Table 2. CWRU dataset description.

Class Fault Type Fault Diameter (inch)

0 Ball 0.007
1 Ball 0.014
2 Ball 0.021
3 Ball 0.028
4 Inner 0.007
5 Inner 0.014
6 Inner 0.021
7 Inner 0.028
8 Outer@3.00 0.007
9 Outer@6.00 0.007

10 Outer@12.00 0.007
11 Outer@6.00 0.014
12 Outer@3.00 0.021
13 Outer@6.00 0.021
14 Outer@12.00 0.021
15 Normal -

3.3.1. Statistical Features

Statistical features based on either time-domain or frequency-domain analysis can be
extracted to identify bearing faults with minimum preprocessing effort and computational
complexity. This is a simple and less time consuming method to extract knowledge feeding
classifiers with information from an oversight perspective. The most dominant features in
the frequency domain are root mean square frequency (RMSF), root variance frequency
(RVF) and frequency center (FC). However, in this work we use solely the time-domain
analysis (TDA) features that are presented in Table 3.

Table 3. Time-domain analysis (TDA) features.

Name Formula

min value min{xi}N
i=1

max value max{xi}N
i=1

mean value x̄ = ∑N
i=1 xi
N

standard deviation value σ =
√

1
N ∑N

i=1(xi − x̄)2

root mean square value rms = ( 1
N ∑N

i=1 x2
i )

1/2

skewness value skewness = 1
N ∑N

i=1
[ (xi−x̄)

σ

]3
kurtosis value kurtosis = 1

N ∑N
i=1
[ (xi−x̄)

σ

]4 − 3

crest factor crest = max(xi)

( 1
N ∑N

i=1 x2
i )

1/2

form factor f orm =
( 1

N ∑N
i=1 x2

i )
1/2

x̄
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(a) Ball 0.007” (b) Ball 0.014” (c) Ball 0.021” (d) Ball 0.028”

(e) IR 0.007” (f) IR 0.014” (g) IR 0.021” (h) IR 0.028”

(i) OR 0.007” @6.00 (j) OR 0.007” @3.00 (k) OR 0.007” @12.00 (l) OR 0.014” @6.00

(m) OR 0.021” @6.00 (n) OR 0.021” @3.00 (o) OR 0.021” @12.00 (p) Normal

Figure 4. Indicative samples of raw vibration signals.

3.3.2. Wavelet Packet Decomposition

Wavelet packet decomposition (WPD) is a generalized form of discrete wavelet trans-
form (DWT), where the 1D time-domain vibration signal is filtered using low-pass and
high-pass filters. The two filters are related to each other; thus, they are both named
quadratic mirror filters. Their cut-off frequency is one fourth of the sampling frequency
signal. The output from the high-pass filter gives the detail coefficients (D), while the
low-pass side gives the approximation coefficients (A). Both types of coefficients hold half
of the original signal representing the high and low frequency content of the signal. If
the decomposition continues further, then the new level (second level) will consist of four
signals (each is one fourth of the original) named approximation of the approximation
(AA), detail of the approximation (DA), approximation of the detail (AD) and detail of
the detail (DD). In this work we use a tree depth of 3 (decomposition level); hence, the
three level signals that represent the frequency content of the original signal within the
bands 0− fs/16, fs/16− fs/8, fs/8− 3 fs/16, 3 fs/16− fs/4, fs/4− 5 fs/16, 5 fs/16− 3 fs/8,
3 fs/8− 7 fs/16 and 7 fs/16− fs/2 are named AAA, DAA, ADA, DDA, AAD, DAD, ADD
and DDD. Note that fs is the sampling rate of the signal. Note that the schematic diagram of
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a WPD tree with three levels is illustrated in Figure 5. Let there be a 1D vibration signal of
S number of samples. Denoting each packet or leaf node by j, and the decomposition level
or tree depth as k, then there are 2k leaves that are obtained, Wk,0, . . . , Wk,2k−1, that span in
the aforementioned bands, since here k = 3. The energy Ej of each packet j at each level k
is given by the energy of the wavelet coefficients of each packet. The wavelet coefficients
of each packet can be expressed as dk

j = {dk
j (1), . . . , dk

j (n)} with n being the number of

coefficients (n = 1, . . . , S/2k). Hence, the energy of each packet is denoted as follows:

Ej =
n

∑
i=1

[dk
j (i)]

2 (6)

Then, the jth wavelet packet feature is given by the following:

ρj =
Ej

∑N
i=1 Ej

, ∑
j

ρj = 1 (7)

where N = 2k is the number of packets and j = 0, . . . , N − 1. Since in this case we have a
depth of 3, there are eight features {ρj|j = 1, . . . , 16} with ∑16

j=1 ρj = 1. Other works that
utilize WPD in the CWRU dataset are [70,71].

Figure 5. Schematic diagram of a WPD tree with three levels.

3.3.3. Continuous Wavelet Transform

Continuous wavelet transform (CWT) provides an established method for constructing
a time–frequency representation of a signal with increased accurate time and frequency
localization. Therefore, a signal is decomposed into wavelets, and the CWT basis functions
are scaled and shifted forms of the time-localized mother wavelet. The adopted procedure
includes, at first, data collection from each class in segments of length 1024. It should be
noted that the input signal is a 1D vibration signal of S number of samples with S = 1024,
as mentioned in the WPD case. CWT is conducted on segments of data at 64 different scales.
A set of 100 segments is gathered from each one of the 16 specified classes for each load
condition, with no overlap between segments, leading to an output size of (6400, 1024).
The continuous wavelet coefficients (CWCs) of vibration signals are calculated directly
with the PyWavelets Python Package using Morlet wavelet ψ:

ψ(t) = exp−t2/2 cos(5t) (8)

The wavelet transform with the wavelet ψ of a signal y(t) is given by the following [72]:

Wy
ψ =

1√
cψ|α|

∫ ∞

−∞
y(t)ψ

(
t− b

α

)
dt (9)
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where cψ =
√

π/β, α and b are the dilatation and translation parameters, respectively,
and β = ω2

0 and ω0 are defined accordingly based on application. The final output is
resized into (6400, 32, 32) forming 6400 images in total to feed the two-dimensional neural
network implementations. Figure 6 illustrates indicative CWT representations for each of
the 16 health condition classes.

(a) Normal

(b) IR 0.007” (c) Ball 0.007” (d) OR 0.007” @3:00 (e) OR 0.007” @6:00 (f) OR 0.007” @12:00

(g) IR 0.014” (h) Ball 0.014” (i) OR 0.014” @6:00

(j) IR 0.021” (k) Ball 0.021” (l) OR 0.021” @3:00 (m) OR 0.021” @6:00 (n) OR 0.021” @12:00

(o) IR 0.028” (p) Ball 0.028”

Figure 6. Indicative examples of continuous wavelet transform.

3.3.4. Signal-to-Image Conversion

The core idea of signal-to-image conversion is converting time-domain raw signals into
images presenting an alternative preprocessing procedure [73]. For the creation of an M×M
image, a segmented signal of length M2 is obtained from the raw vibration signal. In this
work we produce 32× 32 grayscale images as the segment signal is of length 1024. The values
of the segmented part are expressed as L(i) with i = 1, . . . , M2, while the pixel strength of
the converted image is denoted as P(j, k) where both j, k = 1, . . . , M. Hence, the converted
grayscale images are given by:

P(j, k) = round
{ L((j− 1)×M + k)−min(L)

max (L)−min (L)
× 255

}
(10)

where round{·} stands for the rounding function and the transformation takes place within
the interval [0, 255], presenting a grayscale image. As can be easily understood, the whole
procedure offers a direct translation of 1D raw signals to 2D textured representations.
This way, each bearing defect and the normal condition can be directly connected with a
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specific class of similar textured images without pre-defined parameters. Figure 7 presents
indicative examples of this method applied in the CWRU dataset.

(a) Normal

(b) IR 0.007” (c) Ball 0.007” (d) OR 0.007” @3:00 (e) OR 0.007” @6:00 (f) OR 0.007” @12:00

(g) IR 0.014” (h) Ball 0.014” (i) OR 0.014” @6:00

(j) IR 0.021” (k) Ball 0.021” (l) OR 0.021” @3:00 (m) OR 0.021” @6:00 (n) OR 0.021” @12:00

(o) IR 0.028” (p) Ball 0.028”

Figure 7. Indicative examples of signal-to-image conversion.

3.4. Adopted Learning Models and Evaluation Study

This section describes in a brief manner the selected candidates, from the machine
learning and deep learning contexts, that formulate the evaluation study under diverse
noisy conditions. It is to be remembered that the data under examination concern vibra-
tion signals acquired using a 12K sampling frequency under motor loads of 0, 1, 2 and
3 horsepower (HP), as described in Section 3.2. On the machine learning side, the support
vector machine (SVM) has been chosen as an established and simple solution that maps
data from low-dimensional space into higher feature space using kernel functions. The
regularization parameter, also known as the penalty factor, C, is chosen to be equal to
10. This serves as the controlling variable of the trade-off between the maximization of
the margin and the minimization of the training error. Also, the radial basis function is
selected as the kernel function with a width of γ = 0.01. From the deep learning domain,
one-dimensional (1D) and two-dimensional (2D) versions of convolutional neural networks
are selected, as well as the traditional LeNet-5 network. Starting with the conventional
LeNet-5, its detailed architecture is presented in Table 4, while 1D and 2D CNN extensions
using different numbers of layers are presented in Tables 5–8.

The bearing fault detection process initially includes vibration signal collection under
different loading conditions to formulate the base dataset for 16 classes (Table 2). The SVM
approach is tested under two distinct preprocessing cases utilizing input data produced
by time-domain analysis (TDA) and wavelet packet decomposition (WPD) following
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the procedures described in Section 3.3.1 and Section 3.3.2, respectively. Continuous
wavelet transform (CWT) and signal-to-image conversion (SIC) are used to feed the 2D
implementations, including LeNet-5, following the preprocessing procedures described in
Section 3.3.3 and Section 3.3.4, respectively. In 1D CNN implementations, raw vibration
data and the 1D version of CWT are tested for the input space. Note that, in all feature
extraction methods, 100 instances are used for each of the 16 categories (classes) forming a
total of 1600 instances per load condition, i.e., 6400 instances in total when a merged dataset
is considered. Also, both 2D feature extraction models (CWT and SIC) produce images
of 32× 32 pixels. Although bigger sized images will lead to increased fault diagnosis
accuracy, larger images lead to slower training time and higher complexity. The same
rationale is followed on the depth of the adopted learning models that do not adopt
many convolutional layers to avoid increasing the difficulty of the optimization problem.
Therefore, all conducted experiments have been performed in a low computational load
orientation. However, fair comparisons are followed among all feature extraction models
regarding input size, while similar architectural sizes are also used for the learning models.
In our survey, the dataset is divided into training and testing sets, with, respectively, an
80% and 20% split. Furthermore, the optimization algorithm utilizes Adam, employing a
learning rate of 0.001 and a batch size of 32. In addition, Categorical Crossentropy serves as
the models’ loss function, which is commonly used for multi-class classification problems.
In the LeNet-5 architecture, a dropout rate of 0.5 is applied after the 2nd Pooling layer and
2nd Dense layer, as shown in Table 4. As a consequence, dropout prevents overfitting and
enhances the generalization capabilities of the models by randomly deactivating 50% of the
neurons during the training process. For the LeNet-5 model, the Tanh activation function is
applied in both the convolutional and dense layers, while the Softmax function is used in
the output layer. On the other hand, in the remaining CNN models, the Rectified Linear
Unit (ReLU) is applied, whereas the Softmax function is still used in the final output layer.

Table 4. Architecture of the Lenet-5.

Layer Layer Kernel
Stride Filters

Output Trainable
No. Type Size Shape Parameters

1 Convolution 1 5× 5 1 6 28× 28 156
2 Pooling 1 2× 2 2 6 14× 14 -
3 Convolution 2 5× 5 1 16 10× 10 2416
4 Pooling 2 2× 2 2 16 5× 5 -
5 Dense - - - 120 48,120
6 Dense - - - 84 10,164
7 Output - - - 16 1360

Table 5. Architecture of the 1D CNN-2L.

Layer Layer Kernel
Stride Filters

Output Trainable
No. Type Size Shape Parameters

1 Convolution 1 3× 1 2 64 511× 64 256
2 Pooling 1 2× 1 2 64 255× 64 -
3 Convolution 2 3× 1 2 128 127× 128 24,704
4 Pooling 2 2× 1 2 128 63× 128 -
5 Dense - - - 100 806,500
6 Dense - - - 50 5050
7 Output - - - 16 816
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Table 6. Architecture of the 1D CNN-4L.

Layer Layer Kernel
Stride Filters

Output Trainable
No. Type Size Shape Parameters

1 Convolution 1 3× 1 2 16 511× 16 64
2 Pooling 1 2× 1 2 16 255× 16 -
3 Convolution 2 3× 1 2 32 127× 32 1568
4 Pooling 2 2× 1 2 32 63× 32 -
5 Convolution 3 3× 1 2 64 31× 64 6208
6 Pooling 6 2× 1 2 64 15× 64 -
7 Convolution 4 3× 1 2 128 7× 128 24,704
8 Pooling 4 2× 1 2 128 3× 128 -
9 Dense - - - 100 38,500
10 Dense - - - 50 5050
11 Output - - - 16 816

Table 7. Architecture of the 2D CNN-2L.

Layer Layer Kernel
Stride Filters

Output Trainable
No. Type Size Shape Parameters

1 Convolution 1 3× 3 2 64 16× 16 640
2 Pooling 1 2× 2 2 64 8× 8 -
3 Convolution 2 3× 3 2 128 4× 4 73,856
4 Pooling 2 2× 2 2 128 2× 2 -
5 Dense - - - 100 51,300
6 Dense - - - 50 5050
7 Output - - - 16 816

Table 8. Architecture of the 2D CNN-4L.

Layer Layer Kernel
Stride Filters

Output Trainable
No. Type Size Shape Parameters

1 Convolution 1 3× 3 2 16 16× 16 160
2 Pooling 1 2× 2 2 16 8× 8 -
3 Convolution 2 3× 3 2 32 4× 4 4640
4 Pooling 2 2× 2 2 32 2× 2 -
5 Convolution 3 3× 3 2 64 1× 1 18,496
6 Pooling 6 2× 2 2 64 1× 1 -
7 Convolution 4 3× 3 2 128 1× 1 73,856
8 Pooling 4 2× 2 2 128 1× 1 -
9 Dense - - - 100 12,900
10 Dense - - - 50 5050
11 Output - - - 16 816

4. Results

The experimental analysis of evaluating a set of learning models fed with data from
diverse preprocessing methods is unfolded into two main scenarios: (a) evaluation study
with no noise; (b) evaluation study in different noise environments. We discretize further
two sub-tasks as follows: (i) training and testing phases are conducted solely on each indi-
vidual load condition of 1600 instances; (ii) training and testing stages are performed in a
merged dataset that includes an aggregated form of all load conditions with 6400 instances.



Machines 2023, 11, 1029 16 of 29

4.1. Performance with No Noise

In this subsection, the performance of the adopted models is presented in detail
for each type of signal preprocessing and for each of the four different load conditions
individually. The results of the investigation provide valuable information for selecting
the best model and feature extraction method for the detection and diagnosis of rolling
bearing faults in this specific dataset. Initially, in Table 9, the results from the SVM and
LeNet-5 models are presented as the standard machine learning candidates that utilize
1D and 2D input data, respectively. Although SVM that is fed with statistical data (TDA)
performs better than SVM-WPD, it presents inconsistency with low accuracy under the
no-load condition. On the LeNet-5 side, the case with CWT as the preprocessing method
performs well in all loading conditions. It seems that extracted images using SIC do not
provide informative enough data for LeNet-5, leading it to sustain low levels of accuracy in
all load cases.

Table 9. Performance metrics (%) of SVM and LeNet-5.

Load SVM SVM LeNet-5 LeNet-5
(Hp) TDA WPD SIC CWT

0 80.00 80.62 74.37 99.06
1 94.68 85.41 73.75 95.31
2 94.58 84.58 82.81 98.75
3 94.37 84.79 81.56 98.44

Similarly, in Table 10, the performance outcome for the 2D-CNN models is presented,
providing a comprehensive overview of how these models perform with different types of
data representations. The performance of these models is depicted for different numbers
of convolutional layers (2 layers and 4 layers), considering data converted from SIC and
CWT in both architectures. Generally, images that are extracted from CWT provide more
proper features as they are exploited more efficiently by both 2D-CNN architectures. The
2D-CNN2L with features extracted from CWT presents the most dominant performance
among all working load conditions.

Table 10. Performance metrics (%) of 2D-CNN with different types of layers.

Load 2D CNN-2L 2D CNN-2L 2D CNN-4L 2D CNN-4L
(Hp) SIC CWT SIC CWT

0 84.06 97.50 70.31 96.56
1 81.87 94.06 75.31 75.94
2 83.75 97.50 77.81 89.69
3 85.93 98.12 78.75 94.68

In Figure 8, the confusion matrices provide valuable insights into the performance of
the 2D CNN-2L model using SIC input data (32× 32 images) for different load conditions.
We choose to present insights about 2D CNN-2L as it outperforms its variant with four
layers in terms of accuracy. It is noticeable that the CWT features tend to yield higher
accuracy compared to the signal-to-image conversion features. This suggests that the CWT
feature extraction method may capture more distinctive patterns and information relevant
to the classification task. In Figure 8, the x axis represents predicted output, while actual
classes are represented on the y axis. As can be observed in Figure 8, irrespectively of the
loading condition, the highest misclassification rates are found in similar classes. More
specifically, ball-related faults (class ID 0–3) are heavily misclassified, while a few faults in
the inner and outer cases are also predicted wrongly leading to the degraded performance
reported in Table 10 for the 2D CNN-2L model that is fed with SIC data. Fortunately, the
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normal operating condition (class ID 15) is correctly discriminated from bearing fault cases,
showing a reliability level in this diagnostic aspect.

(a) 0Hp : SIC (b) 1Hp : SIC

(c) 2Hp : SIC (d) 3Hp : SIC

Figure 8. Confusion matrices of 2D CNN-2L model for SIC data.

Finally, in Table 11, the results for the usage of 1D-CNN models are presented. The
performance of these models is evaluated utilizing 1D signals of raw vibration data and
those that are extracted from the CWT approach. In both cases, the 1D-CNN models
demonstrate satisfactory performance, indicating their effectiveness in diagnosing rolling
bearing faults in the given dataset. In contrast with 2D-CNN implementations, the 1D-CNN
variants enhance their performance when adding convolutional layers.

Table 11. Performance metrics (%) of 1D-CNN with different types of layers.

Load 1D CNN-2L 1D CNN-2L 1D CNN-4L 1D CNN-4L
(Hp) Raw CWT Raw CWT

0 95.00 99.10 94.68 99.17
1 93.12 98.44 97.81 98.81
2 96.87 98.75 97.82 99.06
3 96.24 99.28 98.12 99.37

In addition to the individual analysis of each load condition, a separate study is
conducted applying a fusion of the four subsets of the CWRU dataset. Specifically, the
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data from 0 Hp, 1 Hp, 2 Hp and 3 Hp are merged, creating a combined dataset with
6400 instances. The combination of subsets creates a unified dataset that encompasses a
wider range of fault types and operating conditions from the perspective of all varying
loading conditions of rolling bearings. Therefore, the increased variability is expected to
contribute to improvements in the model accuracy and signal processing techniques applied
for this specific fault diagnosis process. Furthermore, the merged dataset may enhance
the generalization of the models, reducing the impact of potential biases or limitations
that may exist in the individual subsets of data. In Table 12, the produced performance
for each learning model under the merged dataset is provided. As can be observed, CWT
provides the best feature extraction method either in the form of 1D signals or in the
transformed 2D images. Indeed, the complexity and the workload in the neural network
implementations are both increased in comparison with SVM. Based on that, SVM produces
a decent classification accuracy and, more specifically, the TDA method serves as a better
preprocessing method compared with WPD.

Table 12. Performance metrics (%) on merged dataset.

Models Data Type Accuracy

SVM TDA 92.34
SVM WPD 89.92

Lenet-5 SIC 87.42
LeNet-5 CWT 99.29

2D CNN-2L SIC 92.81
2D CNN-2L CWT 98.28
2D CNN-4L SIC 87.65
2D CNN-4L CWT 98.00
1D CNN-2L Raw 98.28
1D CNN-2L CWT 99.37
1D CNN-4L Raw 98.76
1D CNN-4L CWT 99.53

The t-Distributed Stochastic Neighbor Embedding (t-SNE) is considered a power-
ful dimensionality reduction tool applied in both machine learning and deep learning
to visualize high-dimensional data. In this study, this algorithm is applied to shed light
on the training process and increase its transparency towards understanding how the
neural network implementations process different textures of input data. Thus, the t-SNE
algorithm is applied on the dense output layer of each different convolutional network to
map the n-dimensional features (84 for LeNet-5 and 50 for the remaining CNN models)
to two dimensions, demonstrating the relationship between features, enhancing the inter-
pretability of the learned patterns by the network. By doing so, it becomes possible to map
the high-dimensional vectors onto a lower-dimensional plane that can be visualized and
analyzed more easily, as mentioned. This mapping of high-dimensional data points to a
lower-dimensional space (2D in our case) preserves the pairwise similarities as much as pos-
sible and the two axes in the lower-dimensional space represent the t-SNE axes using this
non-linear transformation. Thus, the t-SNE axes represent a transformation of the data in a
way that clusters similar data points together and separates dissimilar ones. The specific
position and orientation of these axes in the lower-dimensional space are determined by the
t-SNE algorithm during the optimization process. From a practical point of view, the t-SNE
axes, visualizing data, represent the relative positions of data points. Data points that are
close to each other on the t-SNE axes are similar in the high-dimensional space, while those
that are far apart are dissimilar. Overall, this technique assists in the direction of assessing
the clustering ability in the last dense layers, understanding the complex relationships
among the features of the learning models. Figure 9 indicates that all models present a
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good ability to extract useful features presenting fine-separated clusters. Each data point
that belongs to the same class is represented with the same color (each operational class
is represented by the same color map). Generally, the clusters in the t-SNE visualization
are well separated in all cases suggesting that all models are likely to perform well as they
learned to extract meaningful and separable features. However, the Lenet-5 model that
uses SIC features shows a worse performance as some data points from different classes
present an overlapping behavior.

(a) LeNet-5 : SIC (b) 1D-CNN-2L : Raw (c) 1D-CNN-4L : Raw (d) 2D-CNN-2L : SIC (e) 2D-CNN-4L : SIC

(f) LeNet-5 : CWT (g) 1D-CNN-2L : CWT (h) 1D-CNN-4L : CWT (i) 2D-CNN-2L : CWT (j) 2D-CNN-4L : CWT

Figure 9. Feature representation for all learning models in their last dense layer under normal
conditions (no-noise).

4.2. Performance in Noisy Environments

The addition of white Gaussian noise is a technique used for simulating noisy envi-
ronments to test the robustness of signal processing algorithms. However, it is important
to acknowledge certain potential issues associated with this technique which are mainly
related to the noise level control. Indeed, the objective of adding noise is to (i) assess the
performance of preprocessing algorithms and training methods; (ii) test their robustness
and their ability to handle noisy data; and (iii) determine the algorithm’s limitations and
provide insights into its performance under extreme conditions. However, excessive noise
may lead to unrealistic test conditions that have changed the nature of the problem it-
self, driving the algorithms to learn specific “highly degraded conditions” rather than
generalized noisy scenarios. More specifically, extremely high noise levels may require
model tuning that does not generalize well to less noisy scenarios, potentially leading
to overfitting to unrealistic conditions diminishing the diagnostic value of the prediction
mechanism. Thus, there is a trade-off between challenging noisy environmental conditions
and non-realistic scenarios.

This situation is much more significant when dealing with severity levels of faults in
addition to different types of faults, as it is an important aspect to add noise without making
it difficult to distinguish between these severity levels. A balance has to be established
between realistic and excessive noise to ensure that the differences between severity levels
remain discernible, while introducing enough noise to mimic real-world conditions. This
is a very important aspect that has to be considered when evaluating the performance
of algorithms under emulated noisy environmental conditions. For this reason, in this
work we follow SNR range levels that have been widely considered in the literature, as
mentioned in Section 3.1. Thus, degradation of signal quality is accepted in order to induce
difficulties for the algorithms in extracting useful information; up to a certain point that
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does not change the nature of the problem. This is particularly true when the signal-to-noise
ratio is low, as the noise can obscure significant features in the data and make it harder to
discriminate between different signals. The adopted process for emulating different noisy
environments has been described in Section 3.1. The SNR values applied range from −2 to
15, including intermediate values such as 2, 4 and 10. These SNR levels were selected to
simulate a range of signal-to-noise ratios and evaluate the performance of the algorithms
under different noise level conditions.

In general, the results presented in Table 13 indicate that, as the SNR level increases, the
classification accuracy improves for all diagnostic approaches. This is expected, as a higher
signal-to-noise ratio implies less distortion in the measurement signal and, consequently,
easier classification. However, the models exhibit varying performance at specific SNR
levels and load conditions. This suggests that the model’s effectiveness can be influenced
by the specific SNR level and power load, highlighting the importance of considering these
factors when evaluating and selecting learning models, as well as preprocessing methods
for different diagnostic scenarios. It is obvious that the LeNet5-CWT model demonstrates
relatively higher accuracy in all cases for this comparison presented in Table 13. Note
that the last split presented in Table 13 refers to the merged dataset that incorporates all
loading conditions.

Table 13. Performance metrics (%) in noisy environments: SVM vs. LeNet-5.

Load SNR SVM SVM LeNet-5 LeNet-5
(Hp) (dB) TDA WPD SIC CWT

−2 16.87 13.43 15.31 32.18
2 21.25 20.31 21.25 53.44

0 4 47.50 37.18 29.69 59.69
10 60.93 64.68 38.44 80.00
15 77.50 80.25 47.50 92.19

−2 14.37 15.43 18.44 26.88
2 30.62 22.81 20.62 45.00

1 4 43.75 35.00 34.00 53.44
10 65.31 61.56 44.37 67.50
15 77.50 81.87 62.19 82.19

−2 13.12 14.73 17.19 33.75
2 32.50 20.62 20.31 50.31

2 4 41.56 34.06 35.00 53.43
10 67.50 59.06 52.81 80.31
15 72.18 84.06 67.19 89.37

−2 18.12 11.56 17.50 30.31
2 32.18 20.00 24.68 49.06

3 4 48.12 33.75 26.87 60.00
10 66.87 64.37 48.12 84.06
15 70.32 83.12 68.19 95.93

−2 20.40 23.51 17.50 37.66
2 32.57 30.15 27.66 54.61

0–3 4 57.34 45.93 34.45 62.66
10 70.00 69.92 46.56 83.20
15 85.00 89.14 62.73 94.61
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From Table 14, it is evident that 2D-CNN models that utilize CWT extracted features
consistently outperform those fed with SIC data in terms of accuracy. This suggests that
the continuous wavelet transform is more effective in capturing and representing the
underlying patterns in the data, leading to improved classification performance. The
results also reveal the impact of different signal-to-noise ratio levels on the performance of
the models. As the SNR increases, the accuracy of all models tends to improve, indicating
the importance of a higher signal-to-noise ratio for better classification results. Overall, the
results emphasize the importance of considering both the choice of layers and the noise
levels when designing and evaluating deep learning models for classification tasks. The use
of techniques like CWT can greatly contribute to the robustness and accuracy of the models
in real-world applications. It should be noted that, in the 2D case, the less deep network
with more filters in the first two convolutional layers (2D CNN-2L) is more resilient overall,
performing better than the 2D CNN-4L in both preprocessing scenarios.

Table 14. Performance metrics (%) in noisy environments of 2D-CNN with different numbers
of layers.

Load SNR 2D CNN-2L 2D CNN-2L 2D CNN-4L 2D CNN-4L
(Hp) (dB) SIC CWT SIC CWT

−2 26.56 34.06 25.00 29.06
2 38.44 50.63 31.87 42.81

0 4 49.37 54.68 35.94 49.69
10 65.93 80.31 53.75 73.12
15 73.12 91.87 60.00 86.87

−2 23.43 29.69 16.56 30.00
2 34.06 44.37 35.62 38.12

1 4 44.06 54.37 39.69 40.62
10 65.62 76.56 60.00 59.68
15 76.56 84.38 71.88 73.75

−2 28.12 32.19 24.06 29.06
2 39.69 48.75 38.12 38.44

2 4 44.69 50.31 39.38 44.69
10 64.06 74.69 59.69 66.56
15 75.31 89.37 65.68 80.32

−2 29.37 31.56 21.25 27.81
2 44.37 52.49 32.49 42.50

3 4 47.49 57.49 36.56 45.93
10 65.31 80.31 59.87 65.93
15 82.18 94.06 82.18 64.06

−2 37.73 39.14 28.82 37.57
2 49.53 55.54 40.70 55.08

0–3 4 60.00 61.56 47.65 60.46
10 80.16 84.61 70.63 81.41
15 86.89 94.14 83.44 93.91

From the results given in Table 15, it is evident that 1D CNN variants perform better
than 2D CNN implementations, while a few SNR levels provoke noticeable challenges in
the classification process. In general, 1D CNN-4L with raw input data (vibration signals)
demonstrates satisfactory accuracy at lower signal-to-noise ratios, whereas the 1D CNN-2L
with CWT exhibits a very high classification performance at higher ratios, with some
exceptions. In a head-to-head comparison between 1D CNN-4L using CWT and 1D CNN-
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2L using raw signals, the first is more noise resilient in all cases. Overall, the models are able
to achieve relatively high levels of accuracy, especially at higher signal-to-noise ratio levels.

Following the same rationale as before, the t-SNE algorithm is applied to the last
dense layer of each CNN model. The generated plots provide valuable insights into how
the features are separated in the multidimensional space under heavy noise (SNR = −2).
However, as illustrated in Figure 10, the clusters are not as well-separated as before,
indicating that the added Gaussian noise imposes challenges in feature extraction and
image analysis, especially in a low-workload scenario as presented in this study. The
most separable clusters are observed in the 1D-CNN-4L that uses raw vibration 1D signals.
The rest of the models exhibit clusters with poor separation, where data points from
different classes significantly overlap. This suggests that these models struggle to effectively
distinguish between the classes. As a result, the classification of classes becomes challenging,
leading to a decrease in the models’ diagnostic performance in heavy noise environments.

Table 15. Performance metrics (%) in noisy environments of 1D-CNN with different numbers
of layers.

Load SNR 1D CNN-2L 1D CNN-2L 1D CNN-4L 1D CNN-4L
(Hp) (dB) Raw CWT Raw CWT

−2 35.62 41.20 44.37 39.06
2 50.31 59.69 60.94 57.49

0 4 57.50 65.94 69.38 66.87
10 80.62 88.75 81.25 82.81
15 89.06 96.56 94.68 93.12

−2 32.19 33.75 56.56 32.19
2 41.56 53.43 63.12 49.69

1 4 46.56 62.50 71.25 61.25
10 80.00 85.32 88.68 82.18
15 89.69 93.75 93.72 89.06

−2 33.13 38.44 50.00 33.45
2 47.50 56.25 63.75 54.37

2 4 58.44 60.62 71.25 60.94
10 80.31 88.75 86.56 79.37
15 89.38 97.50 90.62 94.38

−2 28.44 33.75 48.12 31.56
2 40.62 54.68 59.68 55.00

3 4 52.19 65.93 73.44 61.87
10 81.25 91.87 87.19 87.18
15 90.31 99.06 92.81 96.87

−2 40.39 41.25 54.14 44.99
2 59.76 59.92 69.92 61.56

0–3 4 68.59 66.56 75.58 68.59
10 85.07 88.52 90.55 89.14
15 94.06 96.64 97.11 97.19
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(a) LeNet-5 : SIC (b) 1D-CNN-2L : Raw (c) 1D-CNN-4L : Raw (d) 2D-CNN-2L : SIC (e) 2D-CNN-4L : SIC

(f) LeNet-5 : CWT (g) 1D-CNN-2L : CWT (h) 1D-CNN-4L : CWT (i) 2D-CNN-2L : CWT (j) 2D-CNN-4L : CWT

Figure 10. Feature representation for all learning models in their last dense layer in noisy environ-
ments (SNR = −2).

Finally, Figure 11 illustrates the overall performance trend of the models for the
merged data (all loading condition data are merged formulating a unified larger dataset)
with respect to the different levels of SNR values applied. In summary, the merged data not
only increased the volume and quality of the dataset but also resulted in higher accuracy at
all SNR levels compared to individual load conditions. This indicates that the merged data
contributes to improved performance and robustness across different charge states.

Figure 11. Overall performance for all models with respect to the different SNR values for the merged
dataset case (all loading conditions).
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5. Discussion

The field of fault diagnosis in electric machines has significantly attracted the interest
of the research community. In this work, an evaluation study was conducted to find the
most suitable signal preprocessing techniques and the most effective model for fault di-
agnosis of 16 conditions/classes, from a low-workload perspective using the well-known
CWRU dataset. The data were preprocessed in various ways, including feature extraction
in the time domain, wavelet packet decomposition, signal-to-image conversion and contin-
uous wavelet transform. The processed data served as inputs to the classification models
in order to evaluate the latter in terms of accuracy, noise resiliency and complexity. The
learning models perform better when the noise is in a smaller fraction of the overall signal,
as expected. Table 16 reports the number of trainable parameters and the training time for
each neural network implementation. Generally, the 1D CNN has lower computational
complexity and workload compared with the 2D operations needed for 2D CNN. This is
also translated into faster training times for 1D CNN models. It is worth mentioning that, in
the no-noise scenario, CWT is the best preprocessing method for all neural network imple-
mentations both handling the dataset with individual loading conditions (see Tables 9–11)
and in the merged dataset (Table 12). Also, for the machine learning candidate (SVM),
the best preprocessing technique is TDA compared with WPD. In the noisy environment
scenario, TDA is again preferred over WPD for the SVM model (Table 13) and CWT leads to
better classification accuracy for LeNet-5 and the other 2D CNN models (Tables 13 and 14).
In 1D CNN-4L, the best performing preprocessing method is the raw vibration signals
(Table 15). However, 1D CNN-2L using CWT performs better than 1D CNN fed with raw
vibration signals (Table 15), showing that, as the number of layers increases in 1D CNNs,
raw signals are exploited more efficiently to classify bearing faults under heavy noise.
Similar behavior is observed when all loading conditions are merged in a unified dataset as
illustrated in Figure 11 from an oversight perspective.

Table 16. Number of trainable parameters and training times for each learning model.

Models Trainable Parameters Training Time (s)

LeNet-5 62,216 55.89
2D CNN-2L 131,662 55.22
2D CNN-4L 115,918 37.95
1D CNN-2L 837,326 37.44
1D-CNN-4L 76,910 15.87

Finally, in a “lessons learned” context we provide accumulated usual practices in the
sense of preferred preprocessing methods and training models under different load and
noise conditions:

1. No-noise under individual load conditions:

- Preprocessing method: For machine learning candidates, TDA is preferred over
WPD. Apart from the better produced performance, TDA typically involves
straightforward computations directly in the time domain which is often simpler
to implement and computationally less intensive compared to frequency domain
methods like Fourier transform. In the deep learning context CWT appears to be a
strong approach as it consistently produced high accuracy results across different
neural network architectures, including LeNet-5, 1D CNN-2L, 1D CNN-4L, 2D
CNN-2L and 2D CNN-4L.

- Training model: It appears that the 1D CNN model with four layers consistently
performed very well across the different load conditions. This model is also rela-
tively easier to implement compared to deep 2D convolutional architectures like
LeNet-5 and 2D CNNs, making it an attractive choice in terms of both performance
and simplicity.
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2. No-noise with all load conditions considered in a merged dataset:

- Preprocessing method: In this case, TDA is preferred over WPD again, while,
in the deep learning context, CWT appears to be again the most dominant ap-
proach in all training model cases. It should be noted that, with low deviation
from the best performed approach, raw signals can be used in 1D implementa-
tions in the case that the lowest computational burden is needed from the signal
processing perspective.

- Training model: The most dominant model is 1D CNN-4L, while 1D CNN-2L
and both 2D CNNs can also be used. However, the 1D CNN models seem to
be more effective at capturing the relevant features of rolling bearing fault data
compared with 2D CNNs. Also, 1D CNN architectures are generally simpler than
2D CNN architectures, both in terms of the model architecture and the number
of parameters.

3. Noisy environment under individual load conditions:

- Preprocessing method: For machine learning candidates, WPD seems to perform
slightly better under weak noise conditions only; thus, TDA is preferable in
general in this case. For deep learning cases, CWT is clearly the most suitable for
all cases with raw signals producing noise resilient forms in the 1D-CNN models.

- Training model: It appears that the 1D CNN model with two layers performs
better than 1D CNN-4L for weak noise conditions, but the latter is more resilient
to medium and strong noise environments. In the 2D CNN implementations the
one with two layers performs consistently better than the one which includes four
layers. However, 1D CNN is preferred over 2D CNN in terms of performance
and complexity.

4. Noisy environment with all load conditions considered in a merged dataset:

- Preprocessing method: In this case, WPD performs slightly better than TDA under
strong noise but produces a degraded performance with respect to TDA in all
other cases. In deep learning models, CWT provides a reliable preprocessing
approach in all cases. However, the most resilient case is to include raw signals in
deeper architectures of 1D CNN.

- Training model: From the 2D CNN family, as the number of layers increases a
less accurate performance is observed. In general, 1D CNN models seem to be
well-suited to processing such data because they are designed to capture patterns
along a single dimension, making them a natural choice for time series analysis.
Deeper 1D CNN seems to work better with raw data in this generalized scenario
under all noisy conditions. Also, this model provides the best choice from the
computational burden perspective.

6. Conclusions

Different machine learning and deep learning models were evaluated utilizing differ-
ent preprocessing methods. A low-cost (in terms of computational burden) orientation of
the study was selected and, thus, evaluations were made on the 12 kHz of CWRU dataset
considering all the trainable parameters. To align with possible real-time implementations,
considering real-world noisy industrial environments, the performances of all adopted
learning approaches from the preprocessing perspective under more feasible computational
workloads were examined. Specifically, SVM, Lenet-5, 1D-CNN, and 2D-CNN from the
feature extraction perspective, i.e., TDA, WPD, CWT and SIC, were evaluated, utilizing raw
vibration signals acquired under varying load conditions of a 2 Hp induction motor with a
sampling frequency of 12 kHz. Several findings were reported analytically and discussed.
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BF Ball Fault ML Machine Learning

CNN Convolutional Neural Network MMA Mayfly Optimization Algorithm

CWC Continuous Wavelet Coefficient ORF Outer Race Fault

CWRU Case Western Reserve University PCA Principal Component Analysis

CWT Continuous Wavelet Transform PSO Particle Swarm Optimization

DAT Digital Audio Tape RMSF Root Mean Square Frequency

DBN Deep Belief Network RNN Recurrent Neural Network

DFT Discrete Fourier Transform RUL Remaining Useful Life

DL Deep Learning RVF Root Variance Frequency

DWT Discrete Wavelet Transform SIC Signal-to-Image Conversion

EMD Empirical Mode Decomposition SNR Signal-to-Noise Ratio

EEMD
Ensemble Empirical

STFT Short-Time Fourier Transform
Mode Decomposition

EWT Empirical Wavelet Transform SVD Singular Value Decomposition

GAN Generative Adversarial Network SVM Support Vector Machine

GWO Gray Wolf Optimization TDA Time-Domain Analysis

FC Frequency Center TQWT Tunable Q-Factor Wavelet Transform

FFT Fast Fourier Transform WOA Whale Optimization Algorithm

IMS Intelligent Maintenance Systems WPD Wavelet Package Decomposition

IRF Inner Race Fault
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