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Abstract: With the growth of 3D printing in the production space, it is inevitable that quality assurance
will be needed to keep final products within the constraints of requirements. Also, the variety of
materials that can be used with 3D printing has increased over the years. Testing also must consider
the process of manufacturing. This paper focuses its efforts on the finished product and not the
process of manufacturing. Ultrasonic testing is a type of nondestructive testing. The experiments
performed in this study aim to explore the usefulness of ultrasonic testing in materials that are
3D printed. The two materials used in this study are steel alloy metals and aluminum blocks of
the same dimensions—120 mm × 40 mm × 15 mm. These materials represent common choices in
additive manufacturing processes. The chosen alloys, such as Aluminum (6063T6) and grade-304
stainless steel, possess distinct properties crucial for validating the proposed testing method. Metal
3D-printed materials play a pivotal role in diverse industries, since ensuring their structural integrity
is imperative for reliability and safety. Testing is crucial to identify and mitigate defects that could
compromise the functionality and longevity of the final products, especially in applications with
demanding performance requirements. An ultrasonic transducer is used to scan for subsurface
defects within the samples and an oscilloscope is used to analyze the signals. Furthermore, several
Machine Learning (ML) techniques are used to estimate the severity of the defects. The application
of Machine Learning methods in the manufacturing industry has proven advantageous in terms
of detecting defects due to its practicality and wide application. Due to their distinct benefits in
processing image information, convolutional neural networks (CNNs) are the preferred method
when working with picture data. In order to perform binary and multi-class classification, support
vector machines that employ the alternative kernel function are a viable option for processing sensor
signals and picture data. The study reveals that ultrasonic tests are viable for metallic materials.
The primary objective of this work is to evaluate and validate the application of ultrasonic testing
for the inspection of 3D-printed steel alloy metals and aluminum blocks. The novelty lies in the
integration of Machine Learning techniques to estimate defect severity, offering a comprehensive
and non-invasive approach to quality assessment in 3D-printed materials. The proposed method
can successfully detect the presence of internal defects in objects, as well as estimate the location and
severity of the defects.

Keywords: additive manufacturing; non-destructive testing; ultrasonics; machine learning piezoelectric;
metals

1. Introduction

Additive Manufacturing (AM), commonly known as 3D printing, has undergone a
remarkable evolution since its inception in the 1980s [1]. Initially conceived as a prototyping
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tool, in the form of Material Extrusion (MEX) [2–4], it has rapidly transitioned into a viable
method for production. This transformation has underscored the critical need to ensure the
quality of AM-produced materials, particularly with regard to the detection of defects like
holes and voids. Despite numerous quality assessment methods available, Non-Destructive
Testing (NDT) techniques have remained under-explored [5]. NDT, as a non-invasive testing
approach, offers great potential for assessing the structural integrity of AM components
without causing any damage [6].

Additive manufacturing has a lot of potential when compared to other manufacturing
methods. This is partly due to the fast development of printer technologies and printable
materials. The turnaround time for objects manufactured this way is faster. The feasibility
of producing complex shapes is also much better than with other manufacturing methods.

In analyzing internal defects within a printed structure, several factors are considered,
such as the type of material used, the force acting on the structure (stress), and the strain
(displacement) caused by the applied force. Metals are common materials used and will be
of importance in validating the proposed method. More importantly, each metallic material
used for 3D printing processes has its own elastic and thermal properties, as well as its
respective sound velocity, as seen in Table 1.

Table 1. Comparison of the physical properties of Aluminum, Brass, Titanium, and Stainless-
Steel metals.

Properties
Metals

Aluminum (6063T6) [7] Brass [8] Titanium (Ti64) [9,10] Stainless Steel (Grade-304) [11]

Density (g/cm3) 2.7 8.75 4.5 8

Melting Point (°C) 655 990 1670 1450

Elastic Modulus (GPa) 69.5 115 113.8 193

Elongation (%) 5 60 54 40

Tensile strength (MPa) 220 270 950 515

Yield strength (MPa) 190 69 880 205

Thermal conductivity
(W/mK) 201 159 6.6 16.2

Sound Velocity (m/s) 6320 4430 6100 5800

1.1. Metallic Materials for 3D Printing

Metals are the main materials of interest for this study, as additive manufacturing has
improved, and it is becoming more common to use this technique for complex metallic
manufacturing. The common ways of manufacturing metallic parts using AM are Powder
Bed Fusion (PBF) and Directed Energy Deposition (DED) [12].

The present research addresses a pressing concern within this context by investigat-
ing the effectiveness of ultrasonic piezoelectric transducers in detecting internal defects,
specifically holes and voids, in 3D-printed metal structures. It recognizes the shortcomings
of existing methods and the urgency of advancing defect detection in AM. As AM gains
prominence as a manufacturing method, a critical knowledge gap has emerged, hindering
the production of high-quality, defect-free components. This research bridges this gap
by shedding light on the intricate interplay of materials, forces, and strains within AM
structures and its impact on defect detection. Furthermore, it provides an in-depth analysis
of various metallic materials commonly used in AM, underscoring their unique properties
and applications. Among these materials, aluminum, titanium, and stainless steel emerge
as favored choices [13].

Table 1 highlights up to eight major properties of interest when considering metals for
3D printing. Aluminum, titanium, and stainless steel are popular options for the additive
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manufacturing of metals [13]. To use these metals in 3D printing, Selective Laser Sintering
(SLS) or Direct Metal Laser Sintering (DMLS) are methods employed in the industry.

Aluminum, for instance, stands out as an attractive option due to its abundance,
versatility, and corrosion resistance [14,15]. Similarly, stainless steel, characterized by its
exceptional strength, high ductility, and corrosion resistance, holds promise, particularly
the Direct Metal Laser Sintering (DMLS) method [16]. However, effectively employing
these materials in AM necessitates reliable defect detection techniques.

1.2. Non-Destructive Testing Methods for Defect Detection in Additive Manufacturing

There are several testing methods for additive manufacturing. Some of these are
destructive and others are non-destructive [17]. Quality control in AM produces some
unique challenges. These challenges arise from the uniqueness of how parts are produced
in AM. The material is formed under conditions that vary spatially and temporarily across
the entire structure [18].

Critically, this research identifies and addresses the shortcomings of existing defect
detection methods. While Scanning Electron Microscopy (SEM) and visual inspection excel
in identifying surface defects, techniques such as pulsed thermography and microwave
imaging offer limited insights into internal defects [18,19]. The proposed method, utilizing
ultrasonic transducers and pulse-echo technology, aims to rectify these limitations by
providing a cost-effective and accurate solution. It not only detects defects but also classifies
their size and position within the structure (Table 2).

Table 2. A comparison of different NDT methods [17–20].

Techniques
Properties

Application Ease of
Use

Cost Surface
Defects

Subsurface
Defects

Microscopy Non-Contact Complex High 3 7

Visual
Inspection Non-Contact Complex Moderate 3 7

Pulsed
Thermography Non-Contact Simple Moderate 7 3

Microwave
Imaging Non-Contact Complex High 3 3

Ultrasonic
Test Contact Simple Low 3 3

1.3. The Integration of Machine Learning in Defect Classification

A notable trend in recent years is the integration of ML methods into NDT practices for
defect classification and characterization. ML techniques have shown exceptional promise
in handling large datasets and extracting valuable insights from sensor data [21]. Within the
AM context, ML has been applied to estimate defect size, classify defects, and even predict
component failure [22].

However, despite the increasing use of ML in AM quality control, there is a distinct lack
of comprehensive comparisons between ML methods and traditional NDT techniques [23].
Such comparisons are crucial for identifying the most suitable ML algorithms for spe-
cific AM applications and defect types. Furthermore, understanding the limitations and
advantages of ML in this context is essential for effective implementation.

Moreover, this research expands beyond defect detection to explore the role of Ma-
chine Learning (ML) methods in analyzing sensor data. With the growing importance of
ML techniques in conjunction with NDT approaches for estimating defect size and dimen-
sions [21,22], there arises a crucial need to compare their performance against traditional
NDT techniques [23]. This paper takes up this challenge and conducts a comprehensive
comparative analysis of five prominent supervised ML methods—Decision Trees (DT),
Random Forests (RF), Logistic Regressions (LR), K-Nearest Neighbors (KNN), and Support
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Vector Machines (SVM). These methods are assessed not only for their proficiency in defect
classification but also for their ability to classify defects into four categories: small, medium,
large, and non-defect.

In essence, this research serves as a beacon in the AM landscape, addressing the
drawbacks of previous methods and spearheading innovation in both NDT for AM quality
control and the integration of ML for defect classification, particularly within the context of
3D-printed metal structures.

2. Materials and Methods

In ultrasonic testing, high-frequency sound energy is used for measuring and exam-
ining materials. Typically, an ultrasonic testing setup comprises a transmitter/receiver,
a transducer, and a display unit to view the results [24]. The proposed method utilizes a
pulser–receiver as the transmitter/receiver, and a delayed contact ultrasonic transducer is
used to scan the objects under testing.

The pulser–receiver triggers the transducer, which is placed on the surface of the
object, and high-frequency waves are sent through the material (pulse). When the waves
encounter a change in the medium, such as a crack or a hole, a portion of the pulse is
reflected back to the transducer (echo), while the rest continues traveling through the
material, as shown in Figure 1.

Figure 1. Schematic illustration of the test setup, showing the flow from the transducer to the
waveform on the oscilloscope.

The echoes received by the transducer are sent via the pulser–receiver to the oscillo-
scope where the waveform can be observed. The visualization technique employed is the
A-scan method [25], which represents the magnitude of echoes against time on a graph, as
seen in Figure 2. The echoes are displayed in the order they are received by the transducer.
In Figure 2, the first echo, C, is from the first defect encountered by the traveling wave,
which is the largest of the three defects, and the third echo, A, is the last echo before the
end of the material, representing the smallest of the three defects within the path of the
traveling waves. The presence, size, and location of the defects can be analyzed based
on the characteristics of the echoes. For instance, the decrease in signal strength is due to
the size of the defect encountered by the waves. Echoes of higher amplitude signifies a
larger defect as a large portion of the incident wave is reflected back to the transducer while
the rest continue to travel through the material until another defect or end of material is
encountered, as seen in Figure 2.
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Figure 2. A-scan technique for data visualization showing the magnitude of the signal against time.

2.1. Test Bench Setup

For the specific results presented in this paper, a 5 MHz transducer was used along
with an Olympus pulser–receiver (Olympus, Waltham, MA, USA).The WRD37-5 (5 MHz)
(Ultran, State College, PA, USA) transducer was manufactured by the ultran group, USA;
the pulser–receiver is an Olympus squarewave pulser–receiver model 5077PR; and the
oscilloscope is a Tektronix DPO 5204B Digital Phosphor Oscilloscope (Beaverton, OR, USA).
On the pulser–receiver, the pulse-echo mode was selected and the pulse voltage was set to
100 V, as seen in the setup in Figure 3.

Figure 3. Setup comprising of ultrasonic transducer, pulser–receiver, and oscilloscope.

The corresponding transducer frequency was set on the pulser–receiver, along with a
suitable gain value for a visible reading of the waveform. The selected transducer is usually
determined by the nature and size of the defect. Firstly, the diameter of the transducer has
to be significantly larger than the size of the defect. Secondly, the corresponding wavelength
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of the wave’s frequency in the material under test has to be smaller than the size of the
defect to be detected. The wavelength can be computed using the following formula:

λ =
v
f

(1)

where λ is the wavelength, v is the sound velocity in that material (refer to Table 1 for val-
ues), and f is the transducer frequency. Repeating this computation for different transducer
frequency values will provide enough information to select the appropriate transducer
frequency for the test. For the purpose of this paper, sample A is made of stainless steel
and sample B is made of aluminum. Referring to Table 1 in the previous section, vA is
5800 m/s and vB is 6320 m/s. Also, noting that the size of the smallest defect in this
study is about 3 mm, the different transducer frequency values are listed in Table 3, which
justifies the selection of the 5 MHz transducer. When dealing with known smaller defect
sizes, transducers of higher frequency values should be employed for detection. In cases
where the defect sizes are unknown, there will be a need to utilize multiple transducers of
different frequency values until the defect is detected and readable on the oscilloscope.

Table 3. The calculated wavelengths for samples A and B for the respective frequency values.

F (MHz) A (mm) Verdict B (mm) Verdict

0.5 11.6 No 12.64 No

1 5.8 No 6.32 No

2 2.9 Yes 3.16 No

5 1.16 Yes 1.264 Yes

10 0.58 Yes 0.632 Yes

The computed results indicated that only the 5 MHz and 10 MHz transducers were
suitable for all the samples in this study based on the principle that the wavelength
should be smaller than the defect size. Specifically, the wavelength values for both the
5 MHz and 10 MHz transducers were below 3 mm for all the samples. Consequently,
the 5 MHz transducer with a diameter of 9.5 mm was chosen for conducting the defect
detection experiments.

2.2. Defect Localization

After the presence of an internal defect (hole or void) has been confirmed, the next
step is to estimate the location of the defect. The time taken for the waves to travel between
the transducer and the defect can be calculated by measuring the time difference between
the pulse sent by the transducer and the echo received back from the defect. This time
difference is known as the “time-of-flight” and is directly proportional to the distance
between the transducer and the defect. By using the known velocity of the waves in the
material being tested, the distance can be calculated, and hence, the location of the defect
can be estimated. This process is commonly known as “time-of-flight diffraction” (TOFD)
and is widely used in ultrasonic testing for defect localization.

When the transducer is placed directly above an internal defect, a corresponding
change is expected in the resulting waveform on the oscilloscope. An extra echo develops
after the echo that signifies the end of the material. A vertical cursor is used to track the
time for the defect echo and the end-of-material echo, respectively. After retrieving the
time for these echoes, the next step is to calculate the distance of the defect from the surface
using the basic relationship between speed, distance, and time. The distance obtained is for
the time it takes the wave to travel to and from the transducer; hence, it must be divided by
two to obtain the distance from the transducer to the defect.

d =
vt
2

(2)
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where d is distance, v is the sound velocity in steel, and t is the time taken for the waves to
return to the transducer.

2.3. Defect Severity

Estimating the size of the detected defect is a valuable piece of information. This can
be achieved by analyzing the signal resulting from the oscilloscope. Specifically, any corre-
sponding changes in the signal’s shape can be used as a criterion for the defect’s dimensions.
In this paper, four types of classifications are assumed for estimating the size of the defects:
small, medium, large, and non-defect, which contribute to the classification mean.

The presence of a defect results in additional echoes between the initial pulse and
echo from the end of the material. Therefore, by comparing information associated with
the additional echo in terms of magnitude with the initial and final pulse, we can have an
estimation of the defect’s severity. The magnitude of the disturbance signal is proportional
to the severity of the defect. Hence, the severity of the defect can be determined from
the additional echo originating from it. In Figure 4, sending and receiving pulses are
depicted for small defect, medium defect, large defect, and no defect conditions in Figure 4a,
Figure 4b, Figure 4c, and Figure 4d, respectively.

Figure 4. Sample (a) Small defect, (b) Medium defect, (c) Large defect, and (d) No defect signals
extracted from oscilloscope for four different defect sizes.

The approach suggested in this paper involves creating a data frame containing the
signal’s features (Table 4). Since each signal extracted from the oscilloscope comprises
1000 time points with their respective amplitude, the greatness of each signal throughout
this 1000-point period can be considered as its feature, allowing for signal comparison.
Thus, the resulting data frame contains 1000 columns representing time points as features,
with each signal’s amplitude passed to the corresponding column, giving each signal its
own value. The data frame is completed with one more column indicating the classification
of each signal. Once completed, the resulting data frame can be seen in Table 3. Echo’s
magnitude is box-plotted for each defect class shown in Figure 5.
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Table 4. Time series data frame after data refinement.

Time Series Time 1 Time 2 . . . Time 999 Time 1000 Size

1 −1.87 1.47 . . . −0.07 −0.01 Small

2 −0.67 1.93 . . . 0.01 −0.01 Medium

3 −2.49 0.03 . . . −0.01 −0.01 Large

4 −2.45 0.87 . . . 0.03 0.01 Non-defect
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97 −2.49 −0.03 . . . 0.03 0.01 Small

98 −2.49 −0.35 . . . 0.01 0.03 Medium

99 −2.37 0.95 . . . 0.01 −0.01 Large

100 −2.94 −0.192 . . . −0.032 −0.032 Non-defect

Figure 5. Box plots showing the magnitude of defect echoes for each size classification.

In this study, five ML methods are utilized and compared to conduct classification
analysis to estimate the size of the defects. Each ML method is run on two datasets. First,
the ML methods are applied to the raw data obtained from experiments. Since there are one
thousand data points, this could result in multiple features and lower accuracy. To address
this, Principal Component Analysis (PCA) is used to effectively reduce the features and
potentially obtain better accuracy. Therefore, an abbreviated data frame is obtained by
applying PCA to the raw data, resulting in enhanced accuracy. This paper is notable
for its innovative approach to extracting raw signals from laboratory experiments as the
datasets are fitted to the ML methods in order to compare their performance. Following
this, the data associated with the signals will be analyzed using the PCA method in order
to determine the extent to which the performance can be improved.

2.3.1. Principal Component Analysis

A data frame may contain redundant features that may compromise the accuracy of
the Ml methods. To address this issue, Principal Component Analysis (PCA) is commonly
used to reduce the dimensionality of the data while maintaining the most relevant infor-
mation [10,26]. PCA is known for its low noise sensitivity and high efficiency in smaller
dimensions. Additionally, it is often applied to reduce the feature vector of laser ultrasonic
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signals [27]. In this study, since the proposed data frame contains 1000 features, applying
PCA to reduce the feature dimensionality can lead to enhanced accuracy.

PCA is used to convert the original feature data group into a subspace by employing
orthogonal transformations to eliminate irregularities in the raw data and project the
original data from a high-dimensional to a low-dimensional space [28]. Let us consider a
data frame where xi contributes as features, yi as label size classification, and T represents
the vector transpose with respect to the mean x̄.

COV(x) =
1
n

i=n

∑
i
(xi − x̄)(xi − x̄)T (3)

The covariance matrix of xi features can be calculated to find the eigenvectors mi that
correspond to the eigenvalues λi. Therefore, we can obtain both the eigenvectors matrix
and the eigenvalues matrix:

λimi = COV(x)mi, i = 1, 2, . . . , n (4)

M = (mi)
A = diag(λi)

(5)

As a result, the largest eigenvalue d(d ≤ n) can be chosen based on the cumulative
contribution rate for reducing the feature dimensions:

∑d
i=1 λi

∑n
i=1 λi

× 100 (6)

As a result, the value of d can be determined based on the threshold parameter T.
Then, the principal components of feature vectors with a lower dimension, determined
using the h largest eigenvalues, can be obtained using the following method:

[m1, m1, m1, . . . , m1]
T × xi (7)

2.3.2. ML Classification Methods

The supervised ML methods, including Decision Tree, Random Forest, Logistic Regres-
sion, K-Nearest neighbors, and Support vector machines, are widely used for classification
challenges due to their outstanding superiority [29]. In this study, all five methods are
compared against each other to conduct a classification analysis for quantifying the size of
the defect. To ensure a fair assessment of computational efficiency across different models,
a uniform environment was utilized. Python on Google Colab was the programming
language employed for all machine learning processes. Moreover, the intuition and detail
of each model are interpreted below [29]. Additionally, Grid Search was leveraged to obtain
the parameters for each ML method in a manner resulting in the best performance.

Decision Tree

The regression process in this method involves dividing a dataset into smaller sub-
datasets and developing a decision tree that is constructed incrementally using the data.
The result is a decision tree that consists of decision nodes and leaf nodes.

Random Forest

It is an extension of bagging that introduces an additional level of randomness. Instead
of using all predictors to split a node, a random subset of predictors is chosen to find the
optimal split. The decision trees are constructed independently and combined to form a
forest. This method is easy to use and requires only two parameters: the number of trees in
the forest and the number of predictors considered at each node [30].
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Logistic Regression

It is a reliable method for addressing binary classification problems. It utilizes a logistic
function, which is an S-shaped curve that transforms any real-valued input into an output
value between 0 and 1 (but never exactly at 0 or 1), to predict the probability of an outcome
with only two possible values [31].

K Nearest Neighbors

This technique is valued for its simplicity, owing to factors such as ease of interpre-
tation and quick calculation time. It involves storing available cases and classifying new
cases based on their similarity to existing cases, which is determined using a measure, like
distance. The object is classified by tallying the classification of its nearest neighbors and
assigning it to the most common class. This is performed by identifying the class with the
highest similarity among the K nearest neighbors, of which the object is then assigned to
that class [7]. As for choosing the most suitable value for K, we can plot our errors for each
K and obtain the K value with the minimum error rate. The error rate versus K values is
depicted in Figure 6 (before applying PCA) and Figure 7 (after applying PCA).

Figure 6. Plotting the error rate against K values to select the best value of K.

Figure 7. Plotting the error rate against K values to select the best value of K after applying PCA.
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Support Vector Machines

The SVM algorithm has proven to be a highly effective tool for solving binary classifica-
tion problems in practical applications. Research has demonstrated that SVMs outperform
other supervised learning techniques in terms of classification accuracy and generalization
performance [8]. In recent years, SVMs have emerged as one of the most widely used clas-
sification methods due to their strong theoretical foundations and superior generalization
ability. Their popularity has increased significantly as they have demonstrated impressive
performance in various real-world applications.

The primary objective of SVM is to effectively separate multiple classes in the training
dataset using a surface that maximizes the margin between them. This, in turn, maximizes
the generalization ability of the model. This aligns with the Structural Risk Minimization
principle (SRM), which aims to minimize the generalization error bound of a model rather
than simply minimizing the mean squared error on the training dataset, as is typically
performed using empirical risk minimization methods.

By prioritizing generalization over minimizing the training error, SVM can produce
more reliable and accurate predictions on new, unseen data [9].

3. Results
3.1. Defect Localization

Focusing on sample A as a case study to demonstrate the method for defect localization,
the transducer was placed on the surface of the sample. The method highlighted in the
methodology section above was then applied to observe the waveform on the oscilloscope,
which can be seen in Figure 3.

An extra echo was observed before the echo, indicating the end of sample B (as
shown in Figure 8b). To determine the time for the defect echo and the end-of-material
echo, a vertical cursor was used to track their respective times. The defect echo was
received 609 ns after the initial signal, while the end-of-material echo was received 1378 ns
later. By using the time values obtained along with the sound velocity for stainless steel
(5800 m/s). These values are plugged into Equation (2) to locate the defect.

d =
vt
2

v = 5800 m/s = 5, 800, 000 mm/s; t = 609 ns

dde f ect =
5, 800, 000 × (609 × 10−9)

2
= 1.7661 mm

dend−o f−material =
5, 800, 000 × (1378 × 10−9)

2
= 3.9962 mm

= 4 mm

The calculations indicate that the defect is located near the center of sample B. As the
thickness of the sample is 4 mm and the echo indicating the end of the material corresponds
to this value, it proves the reliability of this method. The ultrasonic piezoelectric transducer
is not only helpful in detecting defects but also in estimating the distance of the defect
from the surface of the sample. The use of a couplant is necessary to allow a significant
amount of waves to pass into the material being tested. The test conducted on sample A
was successful.
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Figure 8. Output waveform for test on sample A (a) showing the initial pulse and the echo from the
end of material; (b) showing an additional echo signifying the presence of an internal defect within
the structure.

3.2. Defect Severity
3.2.1. Feature Reduction

To improve the performance of ML models, feature reduction is implemented to
mitigate the dimensionality of the feature datasets. Superfluous feature datasets can result
in reduced accuracy of the model [10]. Therefore, PCA is implemented to remove redundant
features and retain only those that have a profound impact on the determination of results.
We may ascertain the number of components necessary to enhance the model performance
by referring to Figure 9, which displays the cumulative explained variance ratio as a
function of the number of components. Consequently, we were able to keep 90% of the
variance by reducing the number of components to 36. As we can see in Figure 4, since only
the signal information associated with the part where the defect is located is important for
us, we can neglect the signal information showing the beginning and ending, which leads
to better accuracy for each ML model as well as a faster training process.
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Figure 9. Number of principal components required to reach a 90% cut-off threshold.

3.2.2. Models’ Training and Testing

In order to assess the effectiveness of the PCA algorithm, the following datasets
were used. The selected ML models were trained with the data both with and without
PCA treatment. It is important to reduce bias resulting from random data selection to
ensure robust evaluation results. Therefore, five-fold cross-validation was used throughout
this study, with 70% and 80% of the total 100 samples randomly selected for training
the ML models, and the remaining 30% and 20% of the data dedicated to evaluating the
models [11,32].

3.2.3. Results of ML Models’ Assessment

As mentioned in the methodology, a comparison of the performance of ML methods
is conducted using both raw data and PCA-processed data. To achieve this, as shown in
Table 5, the correlation metric coefficients (Accuracy, Precision, Recall, and F1 score) were
calculated from the datasets both with and without PCA treatment [33]. Although KNN
is the only ML method that does not show improvement, all of the other methods do.
Additionally, based on the performance of the SVM model, it is evident that it possesses the
highest accuracy among all the methods. The process of defect detection and classification
is summarized in a flowchart shown in Figure 10.
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Table 5. ML methods performed and comparing their accuracy, precision, recall, and F1 Score as data
is divided and fitted by common manners.

Reports/Methods
By 20 vs. 80 By 30 vs. 70 By five folds

Accuracy Precision Recalls F1-
Scores Accuracy Precision Recalls F1-

Scores Accuracy Precision Recalls F1-Scores

Raw
Data

SVM 75 78 76 74 75 78 76 74 78 80 73 73
DT 75 77 76 74 74 77 76 74 72 75 69 69
RF 89 91 90 89 88 90 89 88 89 87 87 86

KNN 91 92 92 91 88 90 89 89 91 93 92 91
LR 87 89 88 87 85 87 86 85 89 91 91 90

PCA
Reduced
Feature

SVM 98 98 98 98 97 97 98 97 99 99 99 99
DT 96 97 97 97 96 97 97 96 98 98 98 98
RF 96 97 97 97 95 96 96 96 96 97 96 96

KNN 89 92 90 89 85 89 86 86 87 92 87 87
LR 97 97 97 97 96 97 97 96 97 98 97 97

All values are in percentage.

Figure 10. Flow chart depicting the procedure of how raw data from the oscilloscope proceed, making
them applicable and fitted to ML methods in order to conduct comparison.

4. Discussion

While it is true that both ultrasonic testing and traditional Machine Learning (ML)
methods have established themselves as valuable tools in the realm of non-destructive
testing (NDT), the novelty of this study lies in their integration within the specific context
of 3D-printed metal structures. The intersection of these two well-established domains
creates a unique synergy that offers distinct advantages over existing approaches.

Firstly, the novelty of this research stems from its emphasis on the application of ultra-
sonic testing to 3D-printed metal components. While ultrasonic testing is not new to NDT,
its adaptation to the intricate and evolving landscape of additive manufacturing presents
a fresh challenge. The varying material properties, geometric complexities, and layer-
by-layer fabrication process of 3D printing introduce unique acoustic characteristics that
require tailored testing methods. This study investigates how ultrasonic piezoelectric
transducers can be optimized and customized for the specific requirements of 3D-printed
metal structures, addressing a critical gap in the literature.

Secondly, the innovation lies in the comparative analysis of Machine Learning (ML)
methods in tandem with traditional NDT techniques for defect classification in AM. While
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ML has made significant inroads in various fields, its application within AM, particularly
for defect classification, remains an evolving frontier. This research goes beyond simply
applying ML to the NDT data; it delves into the comparative performance of five prominent
ML methods within the specific context of AM. By systematically evaluating Decision
Trees, Random Forests, Logistic Regressions, K-Nearest Neighbors, and Support Vector
Machines, this study offers valuable insights into which ML algorithms are best suited for
AM defect classification.

In essence, the novelty of this study lies in its tailored approach to addressing the
unique challenges posed by 3D-printed metal structures via the integration of ultrasonic
testing and ML, ultimately paving the way for more reliable and efficient quality control in
additive manufacturing.

5. Conclusions

Testing is crucial in identifying internal defects such as voids and holes in materials
before they are put into service. Failure to detect a defect and accurately quantify its severity
can result in accidents or failures during service. For testing purposes, two samples, each
with similar defects, were used. Ultrasonic testing was performed on samples A and B,
where internal defects were accurately detected, and their locations were estimated with
precision. The method was successful in detecting the presence of a defect and determining
its location within the structure from the returned signal. The location could also be visibly
estimated on the oscilloscope.

The size of the defect is a crucial part of defect detection. The presence of a defect
creates additional echoes, of which the magnitude of the defect can be determined by
examining these echoes. Therefore, ML methods can be used to estimate the size of the
defect by analyzing the amplitude values of the additional echoes. In this study, 100 sample
signals were utilized, with 25 samples for each size classification: Small, Medium, Large,
and non-defect. All data associated with the samples were obtained via the experimental
procedure. The five ML models were compared—Decision Tree, Random Forest, Logistic
Regression, K-Nearest Neighbors, and Support Vector Machines, to determine the size of
the defects. Based on the results, SVM shows better performance, holding a 98%, 97%,
and 99% accuracy for three data distribution approaches, including 70% and 80% of the
total samples as training samples along with a five-fold cross-validation test, followed by
TD, which shows a 98% accuracy as its highest accuracy, and LR, standing in the third
place holding a 97% accuracy. Moreover, as illustrated in Table 5, significant improve-
ments are evident in all of the methods when PCA is applied to the data supplied to
the machine learning methods. Specifically, we can see around a 20% improvement in
accuracy when PCA is applied to the datasets that are analyzed using methods such as
SVM and DT. The prominent trend in Table 5, which illustrates the enhancement that k-fold
cross-validation provides to all methods, indicates that this approach to data distribution is
superior to the traditional training datasets of 70% and 80%. We also used PCA analysis
to reduce redundant features, resulting in enhanced accuracy. The results showed that
SVM had the best performance among all models. Although ML offers distinct benefits,
there are strict application requirements. For manufacturing systems, the tiny datasets
that are normally accessible lead to overfitting models, which result in low fault detection
accuracy. A significant obstacle to the practical application of ML in defect identification
is the absence of accurate, thorough, and easily available databases for various materials,
designs, and printing techniques.

The main contributions of this study include:

• Successful Ultrasonic Testing: Implemented ultrasonic testing on different samples,
accurately detecting internal defects and precisely estimating their locations within
the structure.

• ML-Based Size Estimation: Used ML methods, including SVM with a 98–99% accuracy,
for defect size estimation by analyzing amplitude values in 100 sample signals.
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• Enhanced Accuracy with PCA: Applied PCA to improve accuracy, particularly with
SVM showing significant improvement, and emphasized the need for comprehensive
databases in ML applications for effective defect identification.

In light of our findings, future endeavors will focus on diverse materials, varying 3D
printing shape, and smaller defect sizes, aiming for more precise outcomes. This extended
research will contribute significantly to a deeper understanding of the impacts of the
above-mentioned parameters on defect detection and potentially unlock new avenues for
innovation and application in non-destructive testing.

Author Contributions: D.A. contributed to testbed development, data collection, and manuscript
writing. M.S. contributed to data analysis, the development of machine learning models, and manuscript
writing. F.F., A.K. and J.R. contributed to idea development, testbed development, and manuscript
writing and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the U.S. National Science Foundation under grant number OIA-
1946231 and the Louisiana Board of Regents for the Louisiana Materials Design Alliance (LAMDA)
under grant #LEQSF-EPS(2022)-LAMDASeed-Track1B-09.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Savini , A.; Savini, G. A short history of 3D printing, a technological revolution just started. In Proceedings of the 2015

ICOHTEC/IEEE International History of High-Technologies and Their Socio-Cultural Contexts Conference (HISTELCON),
Tel-Aviv, Israel, 18–19 August 2015; pp. 1–8. [CrossRef]

2. Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. Mechanical and thermal study of 3D printing composite filaments
from wind turbine waste. Polym. Compos. 2021, 42, 2305–2316. [CrossRef]

3. Sam-Daliri, O.; Ghabezi, P.; Steinbach, J.; Flanagan, T.; Finnegan, W.; Mitchell, S.; Harrison, N. Experimental study on mechanical
properties of material extrusion additive manufactured parts from recycled glass fibre-reinforced polypropylene composite.
Compos. Sci. Technol. 2023, 241, 110125. [CrossRef]

4. Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. Recycling of fiberglass wind turbine blades into reinforced filaments
for use in Additive Manufacturing. Compos. Part B Eng. 2019, 175, 107101. [CrossRef]

5. Pereira, T.; Potgieter, J.; Kennedy, J. Development of Quality Management Strategies for 3D Printing Testing Methods—A Review.
In Proceedings of the 2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Mana Island,
Fiji, 11–13 December 2017 ; pp. 224–231. [CrossRef]

6. Dwivedi, S.; Vishwakarma, M.; Soni, A. Advances and Researches on Non Destructive Testing: A Review. Mater. Today Proc.
2018, 5, 3690–3698. [CrossRef]

7. Bicego, M.; Loog, M. Weighted K-nearest neighbor revisited. In Proceedings of the 2016 23rd International Conference on Pattern
Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1642–1647.

8. Sun, B.Y.; Huang, D.S.; Fang, H.T. Lidar signal denoising using least-squares support vector machine. IEEE Signal Process. Lett.
2005, 12, 101–104.

9. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine
classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]

10. Su, L.; Shi, T.; Liu, Z.; Zhou, H.; Du, L.; Liao, G. Nondestructive diagnosis of flip chips based on vibration analysis using PCA-RBF.
Mech. Syst. Signal Process. 2017, 85, 849–856. [CrossRef]

11. Wong, T.T.; Yeh, P.Y. Reliable accuracy estimates from k-fold cross validation. IEEE Trans. Knowl. Data Eng. 2019, 32, 1586–1594.
[CrossRef]

12. Luo, H.; Sun, X.; Xu, L.; He, W.; Liang, X. A review on stress determination and control in metal-based additive manufacturing.
Theor. Appl. Mech. Lett. 2022, 13 , 100396. [CrossRef]

13. 3DEXPERIENCE Platform. Available online: https://make.3dexperience.3ds.com/materials/metal-materials-for-3d-printing-
processes (accessed on 7 November 2022).

14. Beemaraj, R.K. Optimization of CNC machining parameters for surface roughness in turning of Aluminium 6063 T6 with
response surface methodology. Int. J. Mech. Eng. 2018, 2, 23.

15. Shepheard, S. The Complete Aluminum 3D Printing Guide. 2020. Available online: https://www.3dsourced.com/3d-printer-
materials/3d-printing-aluminum-guide/ (accessed on 7 November 2022).

16. Stainless Steel Material for 3D Printing-Ultimate Guide. 2021. Available online: https://pick3dprinter.com/3d-printing-stainless-
steel/ (accessed on 7 November 2022).

http://doi.org/10.1109/HISTELCON.2015.7307314
http://dx.doi.org/10.1002/pc.25978
http://dx.doi.org/10.1016/j.compscitech.2023.110125
http://dx.doi.org/10.1016/j.compositesb.2019.107101
http://dx.doi.org/10.1109/APWConCSE.2017.00047
http://dx.doi.org/10.1016/j.matpr.2017.11.620
http://dx.doi.org/10.1016/j.neucom.2019.10.118
http://dx.doi.org/10.1016/j.ymssp.2016.09.030
http://dx.doi.org/10.1109/TKDE.2019.2912815
http://dx.doi.org/10.1016/j.taml.2022.100396
https://make.3dexperience.3ds.com/materials/metal-materials-for-3d-printing-processes
https://make.3dexperience.3ds.com/materials/metal-materials-for-3d-printing-processes
https://www.3dsourced.com/3d-printer-materials/3d-printing-aluminum-guide/
https://www.3dsourced.com/3d-printer-materials/3d-printing-aluminum-guide/
https://pick3dprinter.com/3d-printing-stainless-steel/
https://pick3dprinter.com/3d-printing-stainless-steel/


Machines 2023, 11, 1038 17 of 17

17. Pereira, T.; Potgieter, J.; Kennedy, J. A fundamental study of 3D printing testing methods for the development of new quality
management strategies. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice
(M2VIP), Auckland, New Zealand, 21–23 November 2017; pp. 1–6. [CrossRef]

18. Pierce, J.; Crane, N. Preliminary Nondestructive Testing Analysis on 3D Printed Structure Using Pulsed Thermography. In
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017;
p. V008T10A083. [CrossRef]

19. Elsaadouny, M.; Barowski, J.; Jebramcik, J.; Rolfes, I. Millimeter Wave SAR Imaging for the Non-Destructive Testing of 3D-printed
Samples. In Proceedings of the 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada,
Spain, 9–13 September 2019; pp. 1283–1285. [CrossRef]

20. Makagonov, N.; Blinova, E.; Bezukladnikov, I. Development of visual inspection systems for 3D printing. In Proceedings of the
2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and
Moscow, Russia, 1–3 February 2017; pp. 1463–1465. [CrossRef]

21. Cui, S.; Ling, P.; Zhu, H.; Keener, H.M. Plant pest detection using an artificial nose system: A review. Sensors 2018, 18, 378.
[CrossRef]

22. Pyle, R.J.; Bevan, R.L.; Hughes, R.R.; Rachev, R.K.; Ali, A.A.S.; Wilcox, P.D. Deep learning for ultrasonic crack characterization in
NDE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 68, 1854–1865. [CrossRef]

23. Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using deep learning to detect defects in manufacturing: A comprehensive
survey and current challenges. Materials 2020, 13, 5755. [CrossRef]

24. Chen, G.H.; Zhang, X.M.; Xie, C.H.; He, X.B. Intelligent recognition of crack depth in ultrasonic testing. Huanan Ligong Daxue
Xuebao/J. South China Univ. Technol. (Nat. Sci.) 2005, 33, 1–5.

25. Abdullah, M.; Zainal Abidin, M.F.; Elmi, A.; Mahmod, M.F. Feature Analysis Thru Image Recognition of C-Scan Image for
Composite Laminated Materials. In Proceedings of the 27th International Invention & Innovation Exhibition, Kuala Lumpur,
Malaysia, 12–14 May 2016.

26. Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal
Inf. Process. 2013, 4, 173. [CrossRef]

27. Li, K.; Sui, H.; Dong, X.; Guo, L.; Gao, H. Intelligent Evaluation of Crack detection with Laser Ultrasonic technique. In Proceedings
of the IOP Conference Series: Earth and Environmental Science, Changchun, China, 21–23 August 2020; IOP Publishing: Bristol,
UK, 2020; Volume 514, p. 022014.

28. Lv, G.; Guo, S.; Chen, D.; Feng, H.; Zhang, K.; Liu, Y.; Feng, W. Laser ultrasonics and machine learning for automatic defect
detection in metallic components. NDT E Int. 2023, 133, 102752. [CrossRef]

29. Choudhary, R.; Gianey, H.K. Comprehensive review on supervised machine learning algorithms. In Proceedings of the 2017
International Conference on Machine Learning and Data Science (MLDS), Noida, India, 14–15 December 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 37–43.

30. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
31. Brownlee, J. Logistic Regression for Machine Learning-Machine Learning Mastery. Machine Learning Mastery. 2016. Available

online: http://machinelearningmastery.com/logistic-regression-for-machine-learning/ (accessed on 12 August 2017).
32. Buntine, W.; Niblett, T. A further comparison of splitting rules for decision-tree induction. Mach. Learn. 1992, 8, 75–85. [CrossRef]
33. Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In

Proceedings of the Advances in Information Retrieval: 27th European Conference on IR Research, ECIR 2005, Santiago de
Compostela, Spain, 21–23 March 2005; Proceedings 27; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/M2VIP.2017.8211513
http://dx.doi.org/10.1115/IMECE2017-71935
http://dx.doi.org/10.1109/ICEAA.2019.8879272
http://dx.doi.org/10.1109/EIConRus.2017.7910849
http://dx.doi.org/10.3390/s18020378
http://dx.doi.org/10.1109/TUFFC.2020.3045847
http://dx.doi.org/10.3390/ma13245755
http://dx.doi.org/10.4236/jsip.2013.43B031
http://dx.doi.org/10.1016/j.ndteint.2022.102752
http://machinelearningmastery.com/logistic-regression-for-machine-learning/
http://dx.doi.org/10.1007/BF00994006

	Introduction
	Metallic Materials for 3D Printing
	Non-Destructive Testing Methods for Defect Detection in Additive Manufacturing
	The Integration of Machine Learning in Defect Classification

	Materials and Methods
	Test Bench Setup
	Defect Localization
	Defect Severity
	Principal Component Analysis
	ML Classification Methods


	Results
	Defect Localization
	Defect Severity
	Feature Reduction
	Models' Training and Testing
	Results of ML Models' Assessment


	Discussion
	Conclusions
	References

