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Abstract: Wet friction clutch is the key functional component of the high-speed helicopter variable-
speed transmission system, which is used to change the power transmission path. In the engagement
process of wet friction clutch, the driving/driven disc will produce drag torque under the shearing
of lubricating oil, which reduces the transmission efficiency. This unnecessary drag torque reduces
efficiency and increases clutch temperature. The temperature increase promotes the wear of gears
and bearings and the aging deformation of friction plates, which leads to local wear and reduces
the service life of the clutch. From the principle of wet friction clutch, the oil groove structure is
directly related to the drag torque and the temperature rise of friction disc. It is very important for
the long-distance flight and service life of high-speed helicopters to obtain the groove structure with
low drag torque and low temperature rise. In order to solve this problem, taking the wet friction
clutch of a high-speed helicopter as the research object, based on the radial and annular compound
groove, the thermal-fluid-solid coupling simulation model of the wet friction clutch is established
to obtained the flow characteristics and temperature field distribution of the lubricating oil in the
friction disc oil groove, and to analyze the influence law of the oil groove structure parameters on the
drag torque and temperature field. In order to improve the transmission efficiency and the service
life of friction disc, Taguchi experiment and non-dominated neighborhood immune algorithm were
used to optimize the structural parameters of the oil grooves. The comparison results show that the
optimized structural can effectively reduce the drag torque and the temperature rise. This work can
provide a theoretical reference for the structure design of a wet friction clutch.

Keywords: wet friction clutch; high speed helicopter; thermal-fluid-solid coupling simulation; oil
groove structure optimization

1. Introduction

High-speed helicopters occupy an important position in the field of modern air
weapons and equipment by the virtue of their high mobility, wide range of operations,
and strong close air support capability. The transmission system of high-speed helicopter
changes the power transmission path by engaging and disengaging the wet friction clutch,
which is an important means of high mobility. The engagement process of the wet friction
clutch can be divided into three operating states: full engagement, sliding, and disengage-
ment. The friction disc and the separator disc on disengagement stage are in a complete
separation state, but the speed difference of discs is large. Due to the shear action of
lubricating oil, there will be greater resistance torque between discs, which is useless torque
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to reduce transmission efficiency. According to the working principle of the wet friction
clutch, the oil groove structure of the friction disc is directly related to the drag torque and
temperature rise. Therefore, it is very important to obtain the oil groove structure with a
small drag torque and low temperature rise for a wet friction clutch.

Regarding the design of a wet friction clutch oil groove structure, scholars at home
and abroad have carried out a lot of research work. Scholars have explored this process
from different perspectives. Kong et al. [1] applied CFD to simulate the heat flow coupling
process of wet friction clutch, constructed different oil groove structures, and analyzed the
frictional heat, convective cooling characteristics, and temperature distribution under the
modes. However, there is a lack of research on thermal deformation behavior and energy
loss. Zhang et al. [2] and Wu et al. [3] analyzed the mechanism of friction and impact at
high speeds, established a fluid-solid coupling model considering the coupling motion of
friction disc and separate disc, and analyzed the influence of lubricating oil flow rates on
drag torque combined with the impact of friction disc. Hu et al. [4] studied the resistance
moment generated by mechanical contact at high speed by establishing rigid body collision
model from the perspective of mechanical contact between friction plate and separation
plate at high speed. This is a new perspective in clutch research. However, most scholars
conduct research on oil film movement behavior.

For the simulation method of wet friction clutch, most scholars use the description
of complex multiphase flow form. Hu et al. [5] showed through experimental studies
that the gradual decrease in oil film coverage area with the increase in rotational speed
was a major reason affecting the drag torque, but no theoretical calculation model was
established for this process. Yuan et al. [6] considered the surface tension of the oil film
and believed that the drag torque was reduced due to air entering the clearance. A two-
phase flow model was used to demonstrate the aeration process of the clutch at different
speeds, and the phenomenon of the entire oil film breaking from the outer diameter to the
inner diameter was clarified. Zhou et al. [7], in the analysis of two-speed dual clutches,
improved the drag torque model of wet clutch by Yuan et al., and proposed a new method
considering the equivalent radius of oil film contraction phenomenon. Li et al. [8], based
on the relationship between inlet and outlet oil flow rate and volume, obtained a new
equation for calculating the equivalent radius of oil film. In particular, the peak torque and
the corresponding critical speed are also taken as two evaluation indexes. Iqbal et al. [9,10]
regarded the drag torque as the sum of torques of oil film and atomized oil, and deduced
the calculation model of drag torque on the basis of N-S equation and verified the reliability
of the model through experiments. Meanwhile, the relationship between the relevant
parameters of friction disc and the change in drag torque was studied. Leister et al. [11]
used the method of dimensionless analysis to analyze the governing equation of fluid and
proposed a modeling method for hydraulic diameter, which provided a prediction method
for resistance and torque. Cui et al. [12,13] used the iterative method to solve the fluid drag
torque and showed that when the rotational speed reached a certain value, centrifugal force
played an important role in fluid distribution. Most scholars believe that drag torque is
mainly affected by oil film morphology.

In order to find the influence of radial groove depth and radial groove number on
disk performance under fixed clearance, Thomas et al. [14] and Zhang et al. [15] applied
CFD simulation model and experiments, showing that groove number has a greater impact
on drag torque, while groove depth has a smaller impact. Zhang et al. [15] analyzed the
change rule of drag torque from three aspects of lubrication oil flow, density, and viscosity
of wet single-disc friction clutch, and also emphasized the influence of heat dissipation
performance on friction clutch. These studies emphasize that the rationality of oil groove
structure has great influence on clutch performance.

The structure parameters of the oil groove directly affect the drag torque and friction
temperature rise. However, the research fields of wet friction clutch at home and abroad are
mostly vehicles, ships, and mining machinery. There is less research work on high-speed
and heavy-duty clutch in the field of aviation. Moreover, most scholars only have a single
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target optimization with torque or friction disc temperature rise that less research on taking
into account both. The drag torque and temperature distribution of friction clutch are im-
portant indexes to measure the performance of friction clutch. Therefore, the optimization
of both can improve the working efficiency and service life of wet friction clutch.

This paper takes the wet friction clutch used in a high-speed helicopter transmission
system as the research object. In order to reduce the temperature rising and drag torque as
the optimization goal, a thermal-fluid-solid coupling simulation model based on radial-
annular compound oil groove is established and orthogonal experiment is designed by
Taguchi method. The influence of oil groove structure parameters on clutch working
conditions is analyzed comprehensively; the multi-objective optimization algorithm of drag
torque and maximum temperature is carried out by using non-dominant neighborhood
immune algorithm (NNIA) to obtain the friction groove structure with small drag torque
and low temperature rise.

2. Thermal-Fluid-Solid Coupling Modeling and Simulation
2.1. Working Principle of Wet Clutch

The variable speed transmission system of a high-speed helicopter is shown in the
Figure 1a, and the transmission system consists of a multi-stage gear drive system and a
wet friction clutch. System power is input by solar wheel b1 and transmitted to Planetary
Shelf X by gear variable speed at all levels. As an important part of the helicopter variable
speed transmission system, the wet friction clutch needs to be greased in order to function
properly. When the variable speed transmission system switches from high-speed to low-
speed, the hydraulic system controls the friction disc and the pair disc pressing to complete
the engagement, and relies on the friction between the two to secure the ring, the shift
process, the completion of the speed control of the high-speed helicopter.
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Figure 1. High-speed helicopter transmission system. (a) structure diagram (b) 3D model.

As shown in Figure 1b, the friction clutch consists of friction discs, dual discs, piston,
input shaft and output shaft. When the friction begins to engage, pressure will be applied
to the piston, which is then transferred to the friction disks and dual disks. Due to the
engagement pressure, friction discs and dual discs begin to move closer to each other.
When they come into contact, torque is transmitted through friction.

2.2. Drag Torque Mathematical Model

The surface appearance of wet clutch friction disc is too complex and diverse to
analyze directly, but the main working part of the clutch is the friction pair. Therefore, the
main working part of the friction disc and the pair can be simplified, as shown in Figure 2.

In Figure 2, the pair is driven at a speed n and the friction disc is stationary. The wet
clutch friction pair is regarded as two relative moving discs with a distance of δ, since the
δ is generally small enough, the fluid between them can be assumed as a stratospheric
flow [16], and the speed of the fluid between the two discs can be considered as a linear
change. The lubricant between the two forms shear stresses due to the relative motion
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of the dual and friction disc. Where, n is the rotation speed of drive disc. v is the speed
difference between drive disc and driven disc.
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The structure of wet friction clutch is complicated, but the main working part is
composed of several friction pairs. Based on the analysis of a single friction pair, the
simplified model of the friction pair is shown in Figure 2. The torque produced by shear
action in lubricating oil reservoir is called drag torque. When the wet clutch is idling, the
friction plate and the dual plate separation is not complete and there will be friction or
sliding, of which the shear effect is more serious, resulting in not completely separated.
There is also a loss of energy. The clearance of friction pair is different in practice. The
clearance in the middle is larger, while the clearance on both sides is smaller. The average
clearance of the total length is taken as the calculation parameter in this model.

In Figure 2, the pair is driven at a speed n and the friction disc is stationary. The wet
clutch friction pair is regarded as two relative moving discs with a distance of δ, since
the δ is generally small enough, Relative moving discs with a distance of δ, since the δ is
generally small enough, the fluid between them can be regarded as a stratospheric flow,
and the speed of the fluid between the two discs can be considered as a linear change. The
lubricant between the two forms shear stresses due to the relative motion of the dual and
friction disc.

Some grooves, including radial grooves and circumferential grooves, are designed on
the surface of the friction plate of the wet friction clutch to ensure the flow of the lubricating
oil film. It is necessary to consider the factor of groove to reveal the pressure distribution of
friction pair clearance. Based on a single friction pair, the influence of radial groove and
circumferential groove should be considered in the parametric model.

It is assumed that the lubricating oil between the friction plates is an incompressible
fluid, the viscosity is constant, and the oil film is in an isothermal field. According to the
theory of hydrodynamic lubrication, hydrodynamic and oil film shear forces are generated
between the clutch plates. The complete analytical Laplace equation of these forces is:

∂2 p
∂r2 +

1
r2

∂2 p
∂θ2 +

1
r

∂p
∂r

= 0 (1)

where p is the fluid pressure, r is the radius of curvature, and θ is the position angle.
The radial grooves and annular grooves of the friction disks are both rectangular

grooves. As shown in Figure 3, in order to simplify the calculation, it is approximately
considered that the radial rectangular groove is a fan-shaped groove with an angle of
θ1, the thickness of the oil layer is δ1, and the angle of the non-radial oil groove area is
approximated. θ2, in which the thickness of the oil layer in the non-oil groove area is δ2, the
thickness of the oil layer in the annular groove area is δ3. According to the incompressibility
and continuity of the lubricating oil, the pressure distribution in the θ1 and θ2 regions can
be obtained as: {

pθ1 = p0 +
p1
θ1

θ

pθ2 = p0 +
p2
θ2

θ
(2)

p1 =
6µr2ω(δ1 − δ2)

K1
(3)
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p2 =
6µr2ω(δ1 − δ3)

K2
(4)

K1 =
δ3

1
θ1

+
δ3

2
θ2

(5)

K2 =
δ3

1
θ1

+
δ3

3
θ2

(6)

where p1 is the highest pressure at the boundary line of the non-oil groove area of θ1 and
θ2; p2 is the highest pressure at the boundary line of the annular groove area of θ1 and θ2;
p0 is determined by boundary conditions; µ is the dynamic viscosity of lubricating oil; ω is
the rotational speed of the dual plate.
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Take the micro-units dz, dr, and rdθ in the area θ1, carry out the circumferential force
analysis on the micro-unit body, and establish the equilibrium equation:

dpθ1 dzdr −
(

pθ1 + dpθ1

)
dzdr − τrdθdr + (τ + dτ)rdθdr = 0 (7)

Due to the small thickness of the oil layer, the pressure of the oil layer in the z direction
is considered to be constant. According to Newton’s law of internal friction, the internal
friction force τ = −µ(dv/dz), where dv/dz is the velocity gradient. The known boundary
conditions are the following: the rotational speed of the dual plate is ω, and the rotational
speed of the friction plate is 0 (z = 0, v = 0; z = δ1, v = rω). Therefore:

v = − 1
2µr

dpθ1

dθ
z2 +

(
δ1

2µr
dpθ1

dθ
− rω

δ1

)
z (8)

The oil layer shear stress is:

τ = −µ
dv
dz

=
3δ1µrω(δ1 − δ2)

K1θ1
+

µrω

δ1
(9)

The drag torque due to shear stress is:

dTd1 = τr2dθdr =
(

3δ1µrω(δ1 − δ2)

K1θ1
+

µrω

δ1

)
r2dθdr (10)

The drag torque in the region θ1 is

Td1 =
∫ r2

r1

∫ θ1

0

(
3δ1µrω(δ1 − δ2)

K1θ1
+

µrω

δ1

)
r2 dθdr =

3δ1µω(δ1 − δ2)

4K1
+

µθ1ω
(
r4

2 − r4
1
)

4δ1
(11)

The drag torque transmitted by the shearing of the oil layer at the θ2 non-oil groove
area r is:

dTd2 F =

(
3δ2µrω(δ1 − δ2)

K1θ2
+

µrω

δ2

)
r2dθdr (12)
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The drag torque in this annular area is:

Td2 F =
∫ ra2

ra1

∫ θ2

0

(
3δ2µrω(δ1 − δ2)

K1θ2
+

µrω

δ2

)
r2 dθdr =

3δ2µω(δ1 − δ2)
(
r4

a2 − r4
a1
)

4K1
+

µθ2ω
(
r4

a2 − r4
a1
)

4δ2
(13)

where ra1 and ra2 are the inner and outer diameters of each annular region in the non-oil
groove area of θ2. Therefore, the drag torque in the non-oil groove area of θ2 is:

Td2 = ∑ Td2 F = ∑
(

3δ2µω(δ1 − δ2)
(
r4

a2 − r4
a1
)

4K1

)
+ ∑

(
µθ2ω

(
r4

a2 − r4
a1
)

4δ2

)
(14)

The drag torque transmitted by the shearing of the oil layer at the annular groove
region r of θ2 is:

dTd3F =

(
3δ3µrω(δ1 − δ3)

K2θ2
+

µrω

δ3

)
r2dθdr (15)

Then the drag torque in the circumferential groove is:

Td3F =
∫ rb2

rb1

∫ θ2

0

(
3δ3µrω(δ1 − δ3)

K2θ2
+

µrω

δ3

)
r2dθdr =

3δ3µω(δ1 − δ3)
(
r4

b2 − r4
b1
)

4K2
+

µθ2ω
(
r4

b2 − r4
b1
)

4δ3
(16)

where rb1 and rb2 are the inner and outer diameters of each annular groove in the area of θ2.
Then, the drag torque in the annular groove area of θ2 can be obtained as:

Td3 = ∑ Td3 F = ∑

3δ3µω(δ1 − δ2)
(

r4
b,2 − r4

b,

)
4K2

+ ∑
(

µθ2ω
(
r4

b2 − r4
b1
)

4δ3

)
(17)

The drag torque transmitted by the clutch is totally:

Td =
2π

θ1 + θ2
(Td1 + Td2 + Td3) (18)

2.3. Thermal-Fluid-Solid Coupling Simulation of Compound Oil Groove

At present, there are different types of oil grooves on the friction disc surface of wet
friction clutch, among which single radial groove, annular groove, arc groove, and waffle
groove are more common. The research shows that compared with the single oil groove,
the radial-annular compound oil groove has lower temperature rise and stronger heat
dissipation; compared with the double circular arc oil groove and waffle groove, the radial-
annular compound oil groove can maintain the circumferential high-speed flow of oil, the
maximum flow rate changes little, and the comprehensive performance is better [14].

Figure 4 shows the structure of the friction disc that is radial-annular compound oil
groove. In addition, the radial-annular compound oil groove has the advantages of good
oil supply on the friction surface, good cooling effect, and large friction coefficient.
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Oil feeding flow rate Q [kg/s] 0.1 
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Table 2. Working parameters of lubricating oil. 
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Density ρ 880 kg/m3 
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Thermal conductivity λ 0.144 W/(m·℃) 

Figure 4. Structure of friction disc.
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Table 1 shows the relevant working parameters of wet friction clutch. According to the
heat flow coupling modeling theory of wet friction clutch, a single oil film is taken as the
research object, and the geometric model of oil film is established according to the design
parameters; the parameters of oil film in air loss stage can be obtained by establishing
high quality grid for the model and combining the post-processing function of FLUENT
ANSYS software 18.0; Software for Technical Computation; ANSYS: Pennsylvania, USA
2019. Table 2 shows the working parameters of lubricating oil.

Table 1. Relevant working parameters of wet friction clutch.

Parameters Data

Working speed n [rpm] 2450
Diameter of the inlet d0 [mm] 182

Diameter of the outlet d1 [mm] 245
Clearance δ [mm] 0.5

Oil feeding flow rate Q [kg/s] 0.1
Lubricating oil temperature T0 [◦C] 58

Wall temperature T1 [◦C] 50
Convective heat transfer coefficient of separator disc

h2 [W/(m2·◦C)] 1890

Convective heat transfer coefficient of friction disc
h1 [W/(m2·◦C)] 380

Table 2. Working parameters of lubricating oil.

Parameter of Lubricating Oil Value Unit

Density ρ 880 kg/m3

Dynamic viscosity µ 96.8 mPa·s
Specific heat volume C 1900 J/(kg·◦C)
Thermal conductivity λ 0.144 W/(m·◦C)

Figure 5 shows the simulation model meshing. The mesh of friction plate simulation
model is divided in the form of unstructured mesh, and Poly-Hexcore volume mesh gener-
ation method is adopted. This mesh is superior to tetrahedron in simulation calculations. It
is characterized by the unique hexahedral mesh and polyhedral mesh to achieve common
node connection, and can increase the number of hexahedral mesh to achieve the purpose
of improving the efficiency and accuracy of solving. The angle and the tip are refined.
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Figure 5. Simulation model meshing.

As shown in the Figure 6, the inlet boundary condition is mass inflow, with flow rate
of 0.1 kg/s, and the outlet boundary condition is outflow. The oil layer surface is set as
the wall surface, where the oil layer surface close to the active surface is the moving wall
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surface rotating at the working speed. The form of heat transfer between the oil layer,
friction disc, and dual disc is convection.
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Figure 6. Model boundary condition.

The divided high-quality mesh was imported into FLUENT for calculation. The
pressure—based solver is selected for the heat—flow coupling simulation analysis. The sim-
ulation focuses more on the result and adopts the steady-state calculation. The calculation
model is SST k-ωmodel, which is used to predict the propagation rate of free shear flow,
so it can be applied to wall bound flow and free shear flow. Complete pressure-velocity
coupling can be achieved using the Coupled coupling algorithm. A heat flow coupling
simulation model is established under viscous heating, incompressible heat dissipation,
and convection heat dissipation.

Table 3 shows the drag torque and maximum temperature of group A and group B,
which have different oil groove structure parameters. m is the number of radial grooves, b1
and b2 are the width of radial and annular grooves, respectively, l is the spacing between
two annular grooves. The simulation results show that the drag torque of group A is smaller,
but the temperature rise is higher. In group B, the number of oil grooves is increased, so
the heat dissipation capacity is stronger, and the drag torque is larger.

Table 3. Simulation results of thermal-fluid-solid coupling simulation model.

No. m b1/mm b2/mm l/mm M/(N·m) Tm/◦C

A 8 8 2.5 2.0 12.08 75.20
B 12 8 1.5 2.5 12.50 74.03

Figure 7 illustrates the pressure distribution and temperature distribution of thermal-
fluid-solid coupling simulation. Temperature distribution: the temperature of oil film in
Figure 3 shows concentric circular distribution, and with the increase in radius, the larger
the line speed, the more heating of oil film, the higher the temperature; the temperature in
the outer ring area is higher, and the heat dissipation effect is not good at this time, and the
area where high temperature wear is most likely to occur.

Pressure distribution: it can be seen in Figure 8 that the oil film is divided into several
fan-shaped areas by radial groove, and the pressure is distributed symmetrically. The high-
pressure area is mainly distributed in the outer ring; when the friction disc rotates in the
anti-clockwise direction, the oil pressure in the sector area decreases in the anti-clockwise
direction due to the strong oil scraping ability of the radial oil groove.
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Figure 7. Temperature simulation results. (a): temperature distribution of No.A in Table 3, (b): tem-
perature distribution of No.B in Table 3, (c): temperature curve along radius of No.A in Table 3,
(d): temperature curve along radius of No.B in Table 3.
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Figure 8. Pressure simulation results. (a): pressure distribution of No.A in Table 3, (b): pressure
distribution of No.B in Table 3, (c): pressure curve along radius of No.A in Table 3, (d): pressure curve
along radius of No.B in Table 3.
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3. Taguchi Experiment Design and Simulation Results Analysis
3.1. Design of Simulation Experiments by Taguchi Method

Taguchi method is an effective robust optimization experiment design method. Com-
pared with the traditional full factor design method, Taguchi method provides a more
effective method to adjust the uncertain factors. It can greatly reduce the number of simula-
tion cases or experiments and obtain robust and reliable experimental results with strong
anti-interference ability and stable performance. Many researchers have obtained better
experimental results by applying MINITAB to analyze the Taguchi experiment with the
main effect of mean or signal-to-noise(S/N) ratio as an indicator [17–23]. Based on the
response analysis of signal-to-noise ratio, the influence of oil groove structure parameters
on drag torque and friction disc temperature rise is analyzed.

The working performance of the clutch mainly depends on the material property of
the friction disc, the type of oil groove and the effective friction area. Complex grooves
composed of radial grooves and annular grooves. Among these factors, the effective friction
area depends on the number, width, spacing, and other factors (such as surface roughness
and waviness) of oil groove. According to the research, when the effective friction area
S is 70~80% of the total area, the normal working performance of the friction disc can be
guaranteed [18].

Under the condition that the working performance is basically the same, the design
range of the structural parameters of the friction disc oil groove is shown in Table 4.

Table 4. Design value of structural parameters of friction disc oil groove.

Parameters Value

Number of radial grooves m 6 8 10 12
Radial groove width [mm] b1 2 4 6 8

Annular groove width [mm] b2 1.5 2 2.5 3
Annular groove spacing [mm] l 1.5 2 2.5 3

3.2. Simulation Results and Analysis of Taguchi Experiment
3.2.1. Simulation Results of Taguchi Method

Through the post-processing of FLUENT, the drag torque M and the maximum tem-
perature Tm of each group of experiments could be obtained, and the results are shown
in Table 4. Taguchi method takes signal-to-noise ratio (S/N) as the evaluation index to
measure the target parameters. The maximum signal-to-noise ratio is the optimal target
parameter under the given conditions, and the influence degree of each parameter can
be reflected by its numerical value. The flow chart of oil groove structure parameter
optimization for wet friction clutch is as shown in Figure 9.

3.2.2. Influence of Oil Groove Structure Parameters on Drag Torque

The signal-to-noise ratio response of oil groove structure parameters to drag torque is
shown in Table 5. MINITAB allocates rank based on DELTA value, and rank 1 is the most
influential. That is, the descending order of the influence of the structural parameters of
the oil groove on the drag torque is as follows: the number of radial grooves, the width of
the annular groove, the spacing between the annular grooves, and the width of the radial
groove. The main effect of the signal-to-noise ratio of the drag torque is shown in Figure 10.
It shows that the optimal combination is when the number of radial grooves is 10, the
width of radial groove is 6 mm, the width of annular groove is 2.5 mm, and the spacing of
annular groove is 2 mm.
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Table 5. SNR value of drag torque (Smaller-the-Better).

Parameters m b1 b2 l

1 21.97 21.84 21.95 21.81
2 21.95 21.91 21.90 21.68
3 21.47 21.73 21.66 21.90
4 21.84 21.75 21.73 21.84

Delta 0.49 0.19 0.29 0.22
Rank 1 4 2 3
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3.2.3. Influence of Oil Groove Structure Parameters on Maximum Temperature

For the temperature field of clutch, the maximum temperature is taken as the main
index to measure the influence of the structure parameters of the oil groove. The S/N
response to the highest temperature is shown in Table 6. The descending order of the
influence of the structural parameters on the drag torque is as follows: the spacing between
the annular grooves, the number of radial grooves, the width of the annular groove, and the
width of the radial groove. The main effect of the signal-to-noise ratio of the drag torque is
shown in Figure 11. It shows that the optimal combination is when the number of radial
grooves is 6, the width of radial groove is 8 mm, the width of annular groove is 2.5 mm,
and the spacing of annular groove is 2 mm.

Table 6. SNR value of highest temperature (smaller-the-better).

Parameters m b1 b2 l

1 −37.44 −37.50 −37.48 −37.55
2 −37.51 −37.51 −37.53 −37.46
3 −37.53 −37.51 −37.47 −37.47
4 −37.52 −37.49 −37.52 −37.53

Delta 0.09 0.03 0.06 0.09
Rank 2 4 3 1

Machines 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

Rank 2 4 3 1 

   
Figure 11. Main effect of SNR of maximum temperature. 

The parameter combinations are shown in Table 7. For the drag torque and maxi-
mum temperature, the optimal combination results obtained by the signal-to-noise ratio 
analysis of Taguchi experiment are different. Further analysis is needed to optimize the 
two at the same time. The optimization problem has more than one optimization objec-
tive and needs to be dealt with at the same time, so it becomes a multi-objective optimi-
zation problem. 

Table 7. Optimal parameters of Taguchi experiment. 

 m b1/mm b2/mm l/mm 
M 10 6 2.5 2 
Tm 6 8 2.5 2 

4. Multi-Objective Optimization Algorithm and Verified Simulation 
4.1. Non-Dominated Neighborhood Immune Algorithm 

Based on the experimental data obtained from the simulation experiment, the mul-
ti-objective optimization algorithm is applied to optimize the structural parameters of the 
oil groove for M and Tm. 

Non-dominated neighborhood immune algorithm (NNIA) is an immune algorithm 
that simulates natural immune function and is used for multi-objective optimization [18]. 
Inspired by immunology, the algorithm simulates the coexistence of diverse antibodies 
and the activation of a small number of antibodies in the process of immunization, and 
takes a small number of relatively independent non-dominant individuals as active an-
tibodies. The proportion of active antibodies was cloned, recombined, and hypermutated 
based on the selection of non-dominated fields and the measurement of crowding degree 
[20]. NNIA is a multi-objective optimization algorithm based on Pareto optimal solution. 
Its focus on low congestion area has great advantages in high-dimensional mul-
ti-objective optimization problems. Figure 12 represents the flow chart, and the main 
steps are as follows [18–20]: 

Figure 11. Main effect of SNR of maximum temperature.

The parameter combinations are shown in Table 7. For the drag torque and maximum
temperature, the optimal combination results obtained by the signal-to-noise ratio analysis
of Taguchi experiment are different. Further analysis is needed to optimize the two at the
same time. The optimization problem has more than one optimization objective and needs
to be dealt with at the same time, so it becomes a multi-objective optimization problem.

Table 7. Optimal parameters of Taguchi experiment.

m b1/mm b2/mm l/mm

M 10 6 2.5 2
Tm 6 8 2.5 2

4. Multi-Objective Optimization Algorithm and Verified Simulation
4.1. Non-Dominated Neighborhood Immune Algorithm

Based on the experimental data obtained from the simulation experiment, the multi-
objective optimization algorithm is applied to optimize the structural parameters of the oil
groove for M and Tm.

Non-dominated neighborhood immune algorithm (NNIA) is an immune algorithm
that simulates natural immune function and is used for multi-objective optimization [18].
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Inspired by immunology, the algorithm simulates the coexistence of diverse antibodies and
the activation of a small number of antibodies in the process of immunization, and takes
a small number of relatively independent non-dominant individuals as active antibodies.
The proportion of active antibodies was cloned, recombined, and hypermutated based on
the selection of non-dominated fields and the measurement of crowding degree [20]. NNIA
is a multi-objective optimization algorithm based on Pareto optimal solution. Its focus on
low congestion area has great advantages in high-dimensional multi-objective optimization
problems. Figure 12 represents the flow chart, and the main steps are as follows [18–20]:
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(1) Initialization

Primary antibody group (B0), dominated antibody group, activity antibody group and
clone antibody group are generated in this procedure. Where, the size of primary antibody
group is nD.

(2) Update dominant groups

The dominant antibodies (Bt) are recognized in this procedure. All dominant antibod-
ies are copied to form the temporary dominant antibody group (DTt+1).

(3) Select based on nondominated neighbor

If DTt+1 is not more than nD, DTt+1 is set as Dt+1. Otherwise, the crowding distance
between the all individuals in the DTt+1 is calculated to arrange individuals in descending
order. The top-nD individuals in the first group form Dt+1 according to the crowding
distance in descending order. If Dt is not more than nA, At is set as Dt. Otherwise,
the top-nD individuals in the first group form At according to the crowding distance in
descending order.

(4) Proportional clone

Clone group (Ct) is obtained through applying proportional clone on At.

(5) Recombination and hypermutation

Clone group (Ct) is reorganized and hyper mutated. C is set as new clone group (Ct)
and go to step 2.

(6) End.
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The second order regression equation of drag torque as follow, which can be obtained
from the results of Taguchi method:

M = 15.55 − 1.024m − 0.432b1 + 0.88b2 + 1.40l + 0.0451m2 + 0.0199b2
1

+0.175b2
2 + 0.110l2 + 0.0221mb1 − 0.786lb2

(19)

The second order regression equation of the maximum temperature is shown as follows:

Tm = 80.85 + 0.62m − 0.34b1 − 1.2b2 − 6.96l − 0.0479m2 − 0.0368b2
1

+0.09b2
2 + 1.23l2 + 0.077mb1 + 0.642lb2

(20)

According to the design experience, the number of radial grooves is generally even
and more than 6, and its width depends on the diameter of the friction disc. The effective
friction area of the friction disc is determined by the spacing and width of the annular
groove, so the size of the annular groove is between 0.5 and 3 mm. Taking the drag torque
and temperature as the optimization objectives, a multi-objective optimization model is
established, as shown as follow:

Min M(m, b1, b2, l)
Min Tmax(m, b1, b2, l)

s.t


6 ≤ m ≤ 12
2 ≤ b1 ≤ 8

1.5 ≤ b2 ≤ 3
0.5 ≤ l ≤ 3

(21)

Table 8 lists the parameters in NNIA algorithm. Table 9 describes the partial solution
set of NNIA and Figure 13 shows the Pareto optimal solution of drag torque and maximum
temperature. Table 10 describes that when only a single optimization objective is considered,
the minimum drag torque can reach 11.56 Nm, and the minimum temperature can reach
72.57 ◦C. It means drag torque and the maximum temperature cannot be minimized at the
same time. However, the solution set can be used to design the structural parameters of
radial-annular compound oil groove according to different performance requirements.

Table 8. The parameters in NNIA algorithm.

Parameters

Gmax maximum number of generations 50
nD maximum size of dominant population 30
nA maximum size of active population 40
nC size of clone population 60
bu the upper boundary of variable [12,8,3,3]
bd the nether boundary of variable [6,2,1.5,1.5]

DGmax+1 final approximate Pareto-optimal set

Table 9. Results of Taguchi experiment.

No. m b1/mm b2/mm l/mm S/mm2 M/N·m Tm/◦C

1 6 2 1.5 1.5 12,807 12.84 75.70
2 6 4 2.0 2.0 12,592 12.53 73.78
3 6 6 2.5 2.5 12,086 12.54 74.02
4 6 8 3.0 3.0 12,020 12.26 74.54
5 8 2 2.0 2.5 12,804 12.70 74.78
6 8 4 1.5 3.0 14,357 13.13 75.10
7 8 6 3.0 1.5 12,180 12.19 75.10
8 8 8 2.5 2.0 11,566 12.08 75.20
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Table 9. Cont.

No. m b1/mm b2/mm l/mm S/mm2 M/N·m Tm/◦C

9 10 2 2.5 3.0 12,363 11.63 74.57
10 10 4 3.0 2.5 12,261 12.05 76.20
11 10 6 1.5 2.0 12,518 11.63 74.57
12 10 8 2.0 1.5 11,518 12.09 75.70
13 12 2 3.0 2.0 12,592 12.30 74.95
14 12 4 2.5 1.5 11,831 12.18 75.10
15 12 6 2.0 3.0 12,856 12.45 76.67
16 12 8 1.5 2.5 12,068 12.50 74.03
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Figure 13. Pareto optimal solution of drag torque and maximum temperature.

Table 10. The comparison of simulation data and the Pareto optimal solution sets.

No.
Simulation Data Pareto-Optimal Set Improvement

M/(N·m) Tm/◦C M/(N·m) Tm/◦C

1 12.18 75.10 12.13 73.64 −2.00% of Tm
2 12.84 75.70 12.79 72.57 −4.31% of Tm
3 12.45 76.67 12.54 72.74 −5.40% of Tm
4 12.50 74.04 11.98 74.06 −4.34% of M
5 12.84 75.70 11.56 75.64 −6.22% of M
6 13.13 75.10 11.70 75.08 −12.22% of M

Table 10 shows the comparison between simulation data and Pareto optimal solution
sets. It describes the improvement of NNIA: The drag torque of 1~3 groups of data are
very similar. The optimized temperature can be reduced in the range of 2.00~5.40%. The
maximum temperature of 4~6 groups of data are very similar, and the torque decreases
by 4.34–12.22%. The results show that the NNIA optimization algorithm can effectively
improve the working performance of radial annular compound oil groove friction clutch.

4.2. Verification of the Structure Parameters from the Multi-Objective Optimization

To verify the effectiveness of the optimization results of oil groove structure, two
verification simulations are carried out in Figure 14. Table 11 describes the comparison
results of verified simulation. It shows that the relative error between the predicted data
and the experimental data is between 0.30% and 1.93%, which is in good agreement with
the experimental data. These results are a further proof that the Pareto optimal solution set
obtained by NNIA has high accuracy and reliability.
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Figure 14. Verification simulations results.

Table 11. Verified simulation results table.

Parameters M/(Nm) Tm/◦C

No. m b1 b2 l S Simulation Predicted error Simulation Predicted error

1 6 3.59 2.40 1.67 12,829 12.85 12.68 1.38% 72.92 72.62 0.41%
2 12 4.10 2.40 2.81 12,182 12.10 11.87 1.93% 74.63 74.41 0.30%

5. Verification of the Thermal-Fluid-Solid Coupling Simulation of Compound
Oil Groove

In order to verify the correctness of the mathematical model and simulation method
of drag torque, experimental verification was carried out on a single-disc test rig with a
clutch disc which is shown in Figure 15.
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Figure 15. Test rig for drag torque [16]. À clutch disc, Á disc bracket, Â driving motor, Ã glass plate,
Ä precision thread, Å valve, Æ housing, Ç force sensor.

In the test rig, the clutch disc is rotated by the driving motor. A stationary glass plate
is used to represent the dual disc. The clearance is adjustable through the pre-stressed
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precision thread. When the driving motor start, the cooling oil is fed through the center of
the glass plate, and then the drag torque can be measured by the force sensor.

In the experiment, the rotating speed is set to increase with a linear speed gradient of
10 (r/min)/s. The used clutch disc is machined with oil grooves, and the number, width,
and depth are 6, 1.5 mm, and 0.6 mm, respectively. The parameters for simulation and
experiments are shown in Table 12.

Table 12. Parameters for experiments [16,23].

Parameters ρ (kg/m3) r1 (mm) r2 (mm) µ (Pa s) Q (L/min)

Values 870 70.6 84.25 0.053 1.0

In these experiments and simulations, the clearance between friction discs and dual
discs were set to 0.10 mm, 0.15 mm, 0.20 mm, and 0.25 mm, respectively. The experimental
results [16,23] and simulation results of drag torque are shown in Figure 16.
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Figure 16. Comparison of drag torque experiment results and simulation results [16].

As shown in Figure 13, the change trend of experiments results and simulation results
of the drag torque is consistent. Where the rotating speed is faster, the drag torque becomes
greater. On the other hand, drag torque became smaller while the clearance increased. The
experimental results are basically consistent with the simulation results, which verify the
correctness of the mathematical model and simulation method.

6. Conclusions

(1) Based on the Taguchi experiment, the effects of the number and width of radial
and annular groove on the drag torque and maximum temperature were studied. The
signal-to-noise ratio response shows that the number of radial grooves and the width of
annular grooves have a great influence on the strip row torque and temperature rise. It is
proved that there is a certain conflict between reducing the drag torque and reducing the
temperature rise.
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(2) A multi-objective optimization method based on NNIA optimization algorithm is
proposed, which decreases Tm by 2.00~5.40% and reduces M by 4.34–12.22%. Furthermore,
the Pareto optimal solution set of NNIA has high accuracy and strong reliability, and oil
groove parameters can be set for specific performance requirements.

(3) The experimental results are basically consistent with the simulation results, which
verifies the correctness of the mathematical model and simulation method.
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