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Abstract: Polyvinyl Alcohol (PVA) is frequently applied as a support material in 3D printing, es-
pecially in the crafting of intricate designs and projecting elements. It functions as a water-soluble
filament, often paired with materials like ABS or PLA. PVA serves as a momentary scaffold, support-
ing the jutting segments of a 3D model throughout the printing process. Subsequent to printing, the
primary component can be effortlessly isolated by dissolving the PVA support using water. PVA,
being a pliable and eco-friendly polymer, is susceptible to moisture. Its aqueous solubility renders it a
prime selection for bolstering 3D print structures. In this investigation, equivalent-sized samples were
3D printed utilizing an Ultimaker 3D printer to assess the potency of PVA-generated specimens. Ten-
sile examinations were executed on each sample employing a testing apparatus. The durability of the
specimens was notably impacted by the input parameters, specifically the stratum width and stratum
thickness. Strength dwindled as stratum width increased, whereas it rose with augmented stratum
thickness. A few specimens with heightened stratum width and compromised quality displayed
subpar performance during the tensile assessment. The findings unveiled a peak tensile strength of
17.515 MPa and a maximum load of 1600 N. Attaining an optimal degree of material utilization led
to a decrease in filament consumption by 8.87 g, all the while upholding a MTS (maximum tensile
strength) of 10.078 MPa.

Keywords: Fused Filament Fabrication (FFF); Polyvinyl Alcohol (PVA); layer thickness; width
thickness; 3D printing; tensile test

1. Introduction

Three-dimensional printing, also known as additive manufacturing (AM), involves the
construction of three-dimensional objects from digital models by depositing, connecting,
or solidifying material under computer control [1–3]. Unlike traditional manufacturing
methods that involve material removal, 3D printing builds objects by layering materi-
als [4–7]. The printing process involved dual extrusion and fused filament fabrication
techniques. The quality and precision of the printed object were found to be influenced
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by factors such as temperature management, material viscosity, layer adhesion, and the
mechanical, thermal, and optical properties of the material [8–10]. Three-dimensional
printing has revolutionized manufacturing by enabling rapid prototyping, shorter lead
times, and the production of customized products. It has found applications in various
industries, including healthcare, aerospace, defense, automotive, and education, facilitating
innovation, efficiency, and experiential learning opportunities [11–14].

Sikidar et al. [15] investigated the effects of layer thickness on the mechanical charac-
teristics of 3D-printed ABS polymer samples. They utilized a fused deposition modelling
(FDM) 3D printing device to produce samples with varying layer thicknesses and compared
them to a sample made through conventional injection molding. The results indicated
that the samples produced via injection molding exhibited the highest values of tensile
strength, impact strength, and hardness. Chaudhery et al. [16] comprehensively explored
the 3D printing process, including methodology, materials, feed, technology, and appli-
cations. They introduced 3D/4D printing technologies and highlighted the use of PVA
as a feedstock. The authors emphasized that traditional methods lacked the ability to
produce complex structures, whereas 3D printing technologies, such as light-, droplet-,
and extrusion-based systems, enabled their creation. The study also investigated the tem-
perature response of PVA. Terranova et al. [17] investigated the synthesis of PVA-based
nanocomposites using diamond nanograins as fillers and their application in 3D printing
through additive manufacturing. They explored the use of PVA and detonation nanodia-
mond dispersions as innovative inks for layer-by-layer additive manufacturing of variously
shaped objects. The researchers developed 3D printing technology and methods to shape
hybrid materials while fabricating nanocomposites, utilizing PVA-DND inks as a test sys-
tem. They emphasized the importance of aligning the chemical and physical properties of
the materials with the 3D printer to enhance the quality of the final printed products. The
study demonstrated that well-defined and shaped structures of PVA-DND nanocomposites
can be successfully printed, offering potential applications across various fields. Dwiyati
et al. [18] conducted research on the axial and lateral tensile characteristics of Acrylonitrile
Butadiene Styrene (ABS) material for 3D printing. Specimens were printed with varying
layer thicknesses of 0.1, 0.2, and 0.3 mm, following ASTM D 632-02 standards [19]. Ten-
sile tests were performed using the Zwick Roell Series Z 021 machine, and SEM testing
was used to analyze the fracture surface. The study concluded that the axial direction of
3D-printed specimens exhibited higher maximum force and tensile strength compared to
the lateral direction, with thicker layers more likely to exhibit greater maximum force and
tensile strength. Yu et al. [20] investigated the mechanical behavior of 3D preforms and their
composites produced via additive manufacturing, focusing on the influence of printing
direction. The compressive behavior of 3D braid preforms, and composites was analyzed
for three different printing orientations (0◦, 45◦, and Z-direction). Pores induced by the
fabrication process were observed in sections printed at 0◦ and 45◦ orientations. Solid cube
specimens were then created and injected with a silicone matrix. Performs printed in the
45◦ direction exhibited improved inter-yarn adhesion, leading to enhanced initial modulus.
However, Z-direction specimens displayed greater structural ductility due to inter-yarn
slippage. Paul et al. [21] explored the application of novel biomaterials and advanced 3D
printing techniques in bioprinting. The study highlights recent advancements in 3D print-
ing technology and new materials, emphasizing their superiority over traditional methods,
particularly in the field of biomedicine. Key considerations discussed include printing
speed, feasibility of cell growth, and the ability to achieve complex shapes in bioprinting
applications. Several studies have been conducted to investigate the mechanical properties
of 3D-printed samples made from polyvinyl alcohol (PVA) and establish a correlation
between printer parameters and mechanical characteristics [22–27]. These research efforts
aim to understand how variations in printer settings, such as layer thickness, infill density,
and printing speed, affect the resulting mechanical properties of PVA-based 3D-printed
objects [28–32]. By identifying these relationships, researchers can optimize printer param-
eters to achieve desired mechanical properties in PVA 3D-printed samples [33–36]. AM,
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particularly Material Extrusion (MEX), refers to a swift and convenient manufacturing tech-
nique that employs raw materials in filament structure. It holds the potential to effectively
utilize recycled plastics and fibers sourced from industrial waste and household recycling,
making it a viable approach for sustainability [37,38].

This study explores various methods employed in 3D printing technologies, specifi-
cally utilizing a dual extrusion print head and fused filament fabrication. The objective is to
investigate the influence of input parameters, including layer thickness and wall thickness,
on the strength of specimens. To conduct the experiment, shape samples were produced
using PVA as the material on an Ultimaker 3D printer, while adhering to the specified
input parameters. Subsequently, measurements were taken from the output samples and
subjected to a tensile test. Results were obtained through graphical analysis, providing
insights into material strength and force analysis. Furthermore, optimization and design of
experiments were applied, utilizing the response surface method to optimize the weight
and maximum tensile strength of the 3D-printed samples. The goal is to enhance the
weight efficiency and mechanical characteristics of PVA samples subsequent to the 3D
printing procedure.

2. Experimental Work

The experiment aimed to use an Ultimaker 5 3D printer to construct samples and
investigate the impact of layer thickness and width thickness on their mechanical prop-
erties. The process involved creating a 3D design using SolidWorks software (version
11) and converting it into a series of cross-sectional layers. Fused filament fabrication
(FFF) technology was employed, where a molten material was layered to build the items.
Thermoplastic polymers like ABS and Nylon were used, and a dual extrusion print head
with an auto nozzle lifting system was utilized. PVA material was prepared by being feed
into the printer’s filament spool and then into the print head, and the parameters were
defined based on the response surface method levels (Table 1). In this study, the selected
infill pattern was the honeycomb design. The specimens were fabricated following the
dimensions specified for the ISO 527-2 tensile test samples [39].

Table 1. Independent process parameters with design levels.

Variable Notation Unit −2 −1 0 1 2

Layer thickness LT [mm] 0.1 0.15 0.2 0.25 0.3
Width thickness WT [mm] 0.4 0.6 0.8 1 1.2

Table 2 provides the chemical properties of PVA. The printing process involved extrud-
ing PVA layer by layer to form the shape of the object. In some cases, support structures
were used and later removed. Once printing was completed, the product was removed
from the print bed and any remaining support structures were taken out. The samples
were then subjected to tensile testing to analyze their mechanical properties.

Table 2. Chemical properties of PVA.

Formula (C2H40) x

Melting Point 200 ◦C
Density 1.19 g/cm3

Boiling Point 228 ◦C
Solubility in Water

EPA DTXSID431930
Log P 0.26

After the completion of 3D printing, additional post-processing steps can be performed
to improve the surface quality of the object, including sanding or polishing. The removal
of PVA support material is achieved by submerging the printed object in water, causing
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the PVA to dissolve and leaving behind the primary 3D-printed component. Once dried,
the part may require further post-processing, such as sanding or finishing, to achieve
the desired outcome. The result is a 3D-printed object constructed by PVA materials.
This procedure was repeated to produce a total of eleven samples, and the final products
can be observed in Figure 1. Geometrical parameters, including weight, length, and
thickness, were measured for each sample (Table 3). Subsequently, all the 3D-printed
samples underwent tensile strength testing using an Instron 5567 Universal Testing Machine
(UTM). The nozzle temperature was set within the range of 180 to 280 degrees Celsius with
a nozzle diameter of 0.6 mm.
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Figure 1. (a) Final products (3D-printed object made with PVA material). (b) The samples during
and after tensile testing.

Table 3. Experimental layout and multi-performance results.

Experiment No.
Input Variables Responses

LT
[mm]

WT
[mm]

MTS
(MPA)

Weight
(g)

1 0.2 1.2 8.892 8.34

2 0.25 0.6 13.878 9.26

3 0.2 0.4 17.515 9.40

4 0.2 0.8 12.708 9.58

5 0.2 0.8 14.175 9.68

6 0.1 0.8 13.431 9.46

7 0.3 0.8 14.507 9.47

8 0.15 0.6 17.925 9.68

9 0.15 1 10.458 8.83

10 0.2 0.8 14.587 9.40

11 0.25 1 4.417 7.95

3. Result and Discussion
3.1. Maximum Tensile Strength (MTS)

The ANOVA Table 4 presents the designed model for the MTS of the samples after 3D
printing. In this model, the effects of input parameters on the MTS are analyzed. Based
on the p-values and the significant model experiments, the effects of the parameters are
deemed significant. Referring to the ANOVA Table 4 and the coefficients Equation (1), it
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can be concluded that the effects of the WT parameter on the MTS are greater compared to
the effects of the LT parameter in the printed samples.

(MTS)2.26 = +1090.15231 − 560.87673 × LT − 768.57399 × WT (1)

Table 4. Analysis of variance (ANOVA) for MTS.

Source Sum of
Squares df Mean

Square
F

Value
p-Value
Prob > F

Model 2.930 × 105 2 1.465 × 105 13.39 0.0028
A-LT 9437.48 1 9437.48 0.86 0.3802
B-WT 2.835 × 105 1 2.835 × 105 25.91 0.0009

Residual 87530.92 8 10941.36
Lack of Fit 80375.07 6 13395.84 3.74 0.2258
Pure Error 7155.85 2 3577.93

Cor Total 3.805 × 105 10

In Figure 2, the output graphs generated by the “Design Expert” software for the
printed sample’s MTS are displayed. Figure 2a represents the normal plot of residuals
for the MTS, showing that the residuals align closely with the trend line, indicating the
conformity of the DOE for this output. Figure 2b, which is the perturbation plot for the
MTS, examines the simultaneous effects of two parameters, WT and LT, on the MTS of
the samples. Figure 2c presents the surface plot for the MTS of the samples. Based on
this plot and the 2D contour plot of the MTS (Figure 2d), it can be observed that the MTS
increases with a decrease in the WT of the printer. This is because reducing the WT results
in thinner printed layers, leading to better filament consolidation in the samples. Increased
consolidation of the printed layers requires more force to separate the samples, ultimately
resulting in an increase in the MTS. Furthermore, considering the red regions in Figure 2d,
the MTS of the samples is maximized when the WT parameter is set to a lower value for
the printer. This is because decreasing the WT increases the print density and filament
consumption, which leads to an increase in the MTS of the samples.

The tensile test results were obtained using a computer-controlled tensile testing
machine. The results were analyzed and presented in the form of graphs. In Figure 3a,
the load applied to sample 1 is plotted against the corresponding extension. It is evident
that the sample exhibits elastic behavior up to an extension of 1.75 mm with a force of
510 N. Beyond this point, the material deviates from its elastic state. The maximum load
observed is 760 N, achieved at a stretch of 3 mm. Subsequently, as the sample is stretched
further, a decrease in force is observed until fracture occurs at a 7 mm extension. Similarly,
in Figure 3b, the load applied to sample 2 is plotted against the extension. The graph
shows that the sample retains its elastic properties up to an extension of approximately
1.00 mm, with a force of around 500 N. Upon exceeding this limit, the material loses its
elastic behavior. The maximum load recorded is 1050 N at an extension of 2.5 mm. As
the sample is stretched beyond this point, a decrease in force is observed until the sample
fractures at an extension of over 7.25 mm. Comparing the results of sample 1 and sample
2, it is noteworthy that sample 2, which was printed with a layer thickness of 0.25 mm
and width thickness of 0.6 mm, exhibited a 36 percent increase in maximum load and a 56
percent increase in the MTS of Elasticity compared to sample 1. Furthermore, the width
thickness of sample 2 was reduced to half of that in sample 1.

3.2. Weight

In ANOVA, Table 5, the designed model for the weight of the samples after 3D printing
is presented. In this model, the effects of the input parameters on the weight of the samples,
as well as the second-order effects of WT, are analyzed. Based on the p-values, the effects
of the parameters and the experimental model are found to be significant. Considering
ANOVA, Table 5, and the coefficients Equation (2), it can be concluded that the effects of
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the WT parameter on the weight of the printed samples are greater compared to the effects
of the LT parameter.

(Weight)3 = +655.92146 − 489.41132 × LT + 1087.08498 × WT − 942.73992 × WT2 (2)
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In Figure 4, the output graphs of the Design Expert software (version 11)for the weight
of the printed samples are shown. In Figure 4a, the normal plot of residuals for weight
is displayed, indicating the residuals align closely to the diagonal line, indicating the
adequacy of the DOE for this output. In Figure 4b, the surface plot for weight is presented.
Based on this plot and the 2D contour plot of weight (Figure 4c), it can be observed that
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increasing the weight of the samples is directly related to an increase in LT. This is because
an increase in LT leads to thicker printed layers, resulting in higher filament consumption
and ultimately increasing the weight of the samples. Additionally, considering the red
regions in Figure 4c, the weight of the samples is minimized when the WT parameter is low
and the LT parameter is set on high for the printer, as reducing WT increases print density
and filament consumption, leading to an increase in sample weight.

Table 5. Analysis of variance (ANOVA) for Weight.

Source Sum of
Squares Df Mean

Square
F

Value
p-Value
Prob > F

Model 1.250 × 105 3 41,653.09 5.12 0.0348
A-LT 7185.70 1 7185.70 0.88 0.3787
B-WT 85,196.52 1 85,196.52 10.47 0.0143

B2 32,577.04 1 32,577.04 4.00 0.0855
Residual 56,966.61 7 8138.09

Lack of Fit 53,971.72 5 10,794.34 7.21 0.1263
Pure Error 2994.90 2 1497.45

Cor Total 1.819 × 105 10
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4. Optimization

In this section, the optimization of 3D-printed PVA samples using the FFF method is
addressed. In this optimization, two input parameters of the printer, namely WT and LT,
were optimized based on the optimization Table 6, where the parameter ranges for both
samples were evaluated, considering the upper and lower limits. Since the responses for
this study are MTS and Weight, a goal was set for each in the optimization analysis, aiming
to increase the MTS and decrease the Weight of the printed PVA samples. Furthermore,
according to Table 7, three optimized samples were shown for this experiment, and the
predicted values by the Design Expert software and the actual data from the tests were
reported for these three optimized samples. As evident, the error values for the samples are
below 15%, which is highly suitable for predicting the optimization of the samples based
on previous studies, and conducted research. Additionally, considering the overlay plot
in Figure 5, it demonstrates the optimized regions for the input parameters of the printer,
where selecting a parameter within the yellow regions will result in optimal responses.

Table 6. Constraints and criteria of input parameters and responses.

Name Goal Lower
Limit

Upper
Limit

Lower
Weight

Upper
Weight Importance

A: LT is in range 0.1 0.3 1 1 3
B: WT is in range 0.4 1.2 1 1 3

MTS maximize 4.41779 17.925 1 1 3
Weight minimize 7.95 9.68 1 1 3

Table 7. Predicted optimum results and experimental validation.

No. LT WT Desirability MTS
(MPa)

Weight
(g)

#1 0.3 0.85 1
Predicted 13.540 9.15

Actual 11.985 9.05

Error % 12.97 1.10

#2 0.25 0.85 0.953
Predicted 11.603 8.58

Actual 12.091 8.99

Error % 4.03 4.56

#3 0.25 0.95 0.947
Predicted 10.815 9.07

Actual 10.078 8.87

Error % 7.31 2.25
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5. Conclusions

The constraints and future potential of PVA 3D printing encompass its susceptibility
to moisture, causing degradation, print issues, and extruder clogs, necessitating proper
storage. Primarily used as support material in dual-extrusion 3D printing, PVAs limited
application excludes standalone objects due to properties and cost. Slower print speeds
increase project duration, deterring time-sensitive tasks. Higher cost hampers larger
projects and cost-effectiveness goals. Its biocompatibility is promising for temporary
medical implants. PVA finds utility in education and rapid prototyping due to easy support
removal. Anticipated technological advancements could alleviate limitations and expand
prospects as researchers strive to optimize PVA-based 3D printing for diverse applications.
Below are notable accomplishments from this research:

• Mechanical properties of printed samples were significantly influenced by the width
thickness parameter.

• Low layer thickness and high width thickness combo reduces tensile strength due to
poor layer adhesion in width direction.

• Using 0.25 mm layer thickness and 1 mm width thickness requires less material but
increases voids and lowers tensile strength.

• Sample 8: 0.15 mm layer thickness, 0.6 mm width thickness, MTS of 17.925 MPa.
• Sample 3: 0.2 mm layer thickness, 0.4 mm width thickness, MTS of 17.515 MPa,

maximum load 1600 N. Sample 3 maintains good MTS with a reduced filament
consumption of 8.87 g (10.078 MPa).
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and M.K. All authors have read and agreed to the published version of the manuscript.
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FFF Fused filament fabrication
DOE Design of Experiment
RSM Response Surface Methodology
PVA Polyvinyl Alcohol
ANOVA Analysis of Variance
ABS Acrylonitrile Butadiene Styrene
LT Layer thickness
WT Width thickness
UTM Universal Testing Machine
MTS Maximum Tensile Strength
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