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Abstract: Many rivers are polluted by trash and garbage that can affect the environment. Riverbank
inspection usually relies on workers of the environmental protection office, but sometimes the places
are unreachable. This study applies unmanned aerial vehicles (UAVs) to perform the inspection task,
which can significantly relieve labor work. Two UAVs are used to cover a wide area of riverside and
capture riverbank images. The images from different UAVs are stitched using the scale-invariant
feature transform (SIFT) algorithm. Static and dynamic image stitching are tested. Different you only
look once (YOLO) algorithms are applied to identify riverbank garbage. Modified YOLO algorithms
improve the accuracy of riverine waste identification, while the SIFT algorithm stitches the images
obtained from the UAV cameras. Then, the stitching results and garbage data are sent to a video
streaming server, allowing government officials to check waste information from the real-time multi-
camera stitching images. The UAVs utilize 4G communication to transmit the video stream to the
server. The transmission distance is long enough for this study, and the reliability is excellent in
the test fields that are covered by the 4G communication network. In the automatic reconnection
mechanism, we set the timeout to 1.8 s. The UAVs will automatically reconnect to the video streaming
server if the disconnection time exceeds the timeout. Based on the energy provided by the onboard
battery, the UAV can be operated for 20 min in a mission. The UAV inspection distance along a
preplanned path is about 1 km at a speed of 1 m/s. The proposed UAV system can replace inspection
labor, successfully identify riverside garbage, and transmit the related information and location on
the map to the ground control center in real time.

Keywords: UAV; deep learning; objection detection; image stitching

1. Introduction

With the progress of science and technology, artificial intelligence, autonomous vehi-
cles, and the internet of things are becoming ingrained in our daily lives. In recent years,
many applications have utilized unmanned aerial vehicles (UAVs) to perform specific tasks,
such as water pollution detection, object detection, livestock monitoring, crop monitoring,
and building appearance inspection. Untreated trash has always been ubiquitous, espe-
cially on riversides and coastlines, significantly affecting many species’ natural habitats and
quality of life. The first significant civilizations originated from riversides. Rivers transport
things and provide fresh water for crops and people near the river. However, many rivers
are now polluted by trash and untreated garbage, affecting the environment.

To improve the quality of life and protect the species from trash pollution, we de-
veloped a trash detection system based on UAVs that detects garbage and sends trash
information to government officials. The proposed system can help officials monitor the
riverine efficiently. In particular, this study assembles UAVs for riverine garbage detection.
We built an exclusive garbage detector, and the images obtained from the UAVs’ cameras
were stitched and sent to a video streaming server, allowing government officials to check
waste information efficiently from the real-time multi-camera stitching images.
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In [1], the authors collected data from TrashNet [2], the trash annotations in context
(TACO) dataset [3], the drinking waste classification dataset [4], and other photos from the
internet. The object detection system detected trash successfully in complex backgrounds
using a simple background dataset. In [5], the authors created the HAIDA (nickname of
the National Taiwan Ocean University) dataset [6], which includes the TACO dataset and
the simple aerial trash dataset with 1834 images. They developed a UAV trash detector
and a real-time monitoring system for sea coast and beach usage, successfully detecting
trash in several scenarios. In [7], the authors proposed an effective data augmentation
method called “circulate shift for convolutional neural networks”, which can deal with a
data limit. In [8], the authors proposed the you only look once version 5s (YOLOv5s) model
and built a trash detector. The model successfully detected five categories: battery, orange
peel, waste paper, paper cups, and bottles. In [9], the authors proposed an unsupervised
depth image stitching framework, including unsupervised coarse image alignment and
image reconstruction. This framework successfully stitched the images and performed
well. In [10], the authors proposed an edge-based weight minimum error seam method to
overcome the limitations caused by parallax and video stitching. In addition, they used
a trigonometric-ratio-based image match algorithm to reduce computational complexity.
In [11], to prevent the optimization from being affected by poor feature matches, the authors
proposed a method to distinguish between correct and false matches and encapsulate the
false match elimination scheme and their optimization into a loop. The main component
of their method is a unified video stitching and stabilization optimization that computes
stitching and stabilization simultaneously rather than performing each individually. In [12],
the authors combined the scale-invariant feature transform (SIFT) [13] and the speed-up
robust features (SURF) [14] algorithms for better image stitching results. Adapting the
above concepts, we developed a UAV riverine detector and achieved dynamic image
stitching from UAV cameras.

In this study, we built an intelligent system of UAVs and collected images for our
riverine waste dataset, the riverine waste dataset. A riverine waste detector based on the
YOLO object detection algorithms was proposed. We compared various algorithms, tuned
the parameters, and evaluated the model to obtain the best performance and lowest error.
Dynamic image stitching from UAV cameras based on the SIFT algorithm was applied.
We utilized Kafka to receive and transmit data and used MongoDB to store the data [5].
A video streaming server was used to obtain the images from the UAVs. An exclusive
website was built to present the aerial photographs, while a UAV control station was built
for emergencies.

2. System Description

There are ten parts in the real-time UAV riverine waste monitoring system, as shown
in Figure 1. The UAV systems are divided into the quadcopter aircraft controller, octocopter
aircraft controller, and power system. The intelligent quadcopter and octocopter aircraft
controllers utilize Pixhawk [15] to achieve flight stability. The intelligent octocopter aircraft
controller assembles the gimbal to achieve image stitching stability and uses real-time
kinematic positioning (RTK) to achieve precise positioning. The power system supplies
the power to the UAVs and gimbal. Figure 2 shows the architecture of the octocopter
aircraft system.

The slave of the octocopter aircraft controller assembles an extra gimbal to achieve
high-quality images and replaces the global positioning system (GPS) module with RTK
to achieve precise positioning. The masters of the quadcopter and octocopter aircraft
controllers perform high-level control, including detecting riverine waste and sending
flight commands to the slave. The quadcopter (Figure 3) and the octocopter (Figure 4)
aircraft controllers utilize the Pixhawk flight controller. The quadcopter aircraft controller
is equipped with the Ublox M8N GPS [16] module to achieve flight stability. In contrast, the
octocopter aircraft controller is equipped with the Holybro F9P RTK [17] module to achieve
higher flight stability and precise positioning. The position error of the Holybro F9P RTK
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module is 0.3 m, and the error of the Ublox M8N GPS module is about 3 to 5 m. The PID
controller of the quadcopter and the octocopter aircraft are auto-tuned. The limitation of
the wind force scale for the proposed UAV system is 4. The maximum wind speed that the
UAV can be operated is 8 m/s.
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The quadcopter and octocopter aircraft controllers are equipped with the embedded
NVIDIA system Jetson Xavier NX [18] as the UAV onboard computers, that can perform
high-level computational detection. This study needs to make the UAV system perform
image processing, control, and monitoring of various information of the UAV that requires
many calculations. The NVIDIA Jetson Xavier NX has many advantages, including its
small size, being lightweight, and fast computing speed, and can provide up to 21 trillion
operations, achieving excellent performance in real-time computation. Combined with
peripheral equipment, drone automation can be realized. The quadcopter and octocopter
aircraft controllers are equipped with the SJCAM 5000x [19] webcam and the Huawei
E8372 4G dongle [20], respectively. The webcam is attached to the Tarot T2-2D gimbal [21].
The camera’s field of view (FOV) is 120◦, and the frames per second (FPS) of 1080 p
video is 60. The camera has built-in Wi-Fi and anti-shake digital stabilization, and the
ground sample distance (GSD) is 2 mm/px at a 5 m height. For the UAVs’ riverine waste
detection mission, we need to measure the coordinates and set the waypoints for the UAVs
in advance. Consequently, the UAVs can detect the riverine waste along the riverbank.
Figure 5 shows the flowchart of a UAV’s waste detection process. A preplanned path
with waypoint coordinates is uploaded to the UAV onboard computer. The UAV flies to
the waypoint and captures an image. The image is then sent to the deep learning neural
networks for object identification. The classified image with labels is checked by its AP
value. If there is garbage, the trash area is calculated and the result is sent to the ground
control center. Finally, the UAV’s position is checked; if it is the ending point, the mission
is accomplished; otherwise, it moves to the next waypoint and repeats the steps until it
reaches the ending position.

For the UAVs’ dynamic image stitching mission, we set the UAVs’ flight speed to
1 m/s; the UAVs were separated by 4 m. We can calculate the riverine waste pollution area
using Equations (1) to (4), where α and β are the camera’s horizontal and vertical angle
of view; H is the UAV’s height; L and W are the lengths of the camera’s horizontal and
vertical view; Wi and Li are the width and height of the camera’s image; and Wo and Lo
are the width and height of the detected riverine waste in the picture, respectively; Ao is
the detected riverine waste’s area in the image; and Ag is the area of the detected riverine
waste in the real world, as shown in Figure 6.

L = 2 × H × tan
(α

2

)
(1)

W = 2 × H × tan
(

β

2

)
(2)

Ao = Wo × Lo (3)
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Ag = Ao ×
(

L
Wi

)
×
(

W
Li

)
(4)

Machines 2023, 11, x FOR PEER REVIEW 5 of 31 
 

 

detected riverine waste’s area in the image; and Ag is the area of the detected riverine waste 
in the real world, as shown in Figure 6. 

𝐿𝐿 = 2 × 𝐻𝐻 × 𝑡𝑡𝑡𝑡𝑡𝑡 �
𝛼𝛼
2�

 (1) 

𝑊𝑊 = 2 × 𝐻𝐻 × 𝑡𝑡𝑡𝑡𝑡𝑡 �
𝛽𝛽
2
� (2) 

𝐴𝐴𝑜𝑜 =  𝑊𝑊𝑜𝑜 × 𝐿𝐿𝑜𝑜 (3) 

𝐴𝐴𝑔𝑔 = 𝐴𝐴𝑜𝑜 × �
𝐿𝐿
𝑊𝑊𝑖𝑖
� × �

𝑊𝑊
𝐿𝐿𝑖𝑖
� (4) 

 
Figure 5. Flowchart of the UAV riverine waste detection process. Figure 5. Flowchart of the UAV riverine waste detection process.

Machines 2023, 11, x FOR PEER REVIEW 6 of 31 
 

 

 
Figure 6. Area calculation of the detected riverine waste, the grey color is the UAV and the blue 
color is the camera [5]. 

In the riverine waste monitoring system, the detector detects the riverine waste and 
calculates the riverine waste pollution area; then, the image is transmitted to the server. 
This process produces several streaming data. Therefore, we need to set up a suitable in-
formation-fusing system for streaming, analyzing, and storing data. Four methods are in-
tegrated to build a compelling message queuing system: file transfer, shared database, 
remote procedure invocation, and messaging. The file transfer is performed through the 
processor to monitor a folder; if the source produces a file in a folder, the processor cap-
tures this file from that folder. Given that the file transfer method has high latency, the file 
transfer method does not fit our information-fusing system. In the shared database 
method, applications can use the exact synchronized storage location concurrently. The 
shared database performs poorly due to the difficulty in defining the boundaries between 
the same data. For the remote procedure invocation method, a client addresses the de-
mand while the server replies. The disadvantage of this procedure lies in all applications 
being coupled and the difficulty in integration. The messaging method is asynchronous, 
which can deal with tightly coupled applications. In this method, the transmitter does not 
need to wait for a receiver. Further, an application can be developed efficiently in a real-
time riverine waste inspection system. 

There are several message queuing (MQ) systems, such as Kafka [22], RabbitMQ [23], 
RocketMQ [24], ActiveMQ [25], and Pulsar [26]. In [27], the authors compared the perfor-
mance of these systems and tested the throughput in three scenarios, including the num-
bers of partitions, producers and consumers, and message size. The throughput refers to 
the number of bytes per time transmitted through the queueing system. Kafka achieved 
the highest throughput among these queuing systems. Therefore, we selected Kafka as the 
message queuing system and utilized a Kafka broker to deal with messages from the 
UAVs. The UAVs’ flight data stream is collected; each UAV produces one partition with 
one replica. Riverine waste data—detected by the UAVs—is collected, and all the UAVs 
send the data to the same partition. The UAVs’ real-time maps consume the collected data 
to monitor the status of each UAV and the area polluted by the riverine waste. The Kafka 
configuration in the UAV riverine waste monitoring system can be found in our previous 
work [5]. 

In different operating systems, a web service is the best way to exchange data be-
tween applications. Therefore, we utilized the Python 3.10 web framework Django [28], 
using the hypertext transfer protocol in the UAVs’ riverine waste inspection system to 
develop a website running on a computer to facilitate client queries. A real-time UAV riv-
erine waste map was created using a JavaScript library Leaflet [29] for interactive maps 
with the Django website and Kafka broker to develop a riverine waste pollution monitor-
ing system. Consumers can access information from Kafka via the web service. The river-
ine waste data (e.g., the position of the UAVs and the area of the riverine waste, which the 
UAVs obtain) are shown in the riverine waste map. 

Figure 6. Area calculation of the detected riverine waste, the grey color is the UAV and the blue color
is the camera [5].



Machines 2023, 11, 876 6 of 30

In the riverine waste monitoring system, the detector detects the riverine waste and
calculates the riverine waste pollution area; then, the image is transmitted to the server.
This process produces several streaming data. Therefore, we need to set up a suitable
information-fusing system for streaming, analyzing, and storing data. Four methods are
integrated to build a compelling message queuing system: file transfer, shared database,
remote procedure invocation, and messaging. The file transfer is performed through the
processor to monitor a folder; if the source produces a file in a folder, the processor captures
this file from that folder. Given that the file transfer method has high latency, the file
transfer method does not fit our information-fusing system. In the shared database method,
applications can use the exact synchronized storage location concurrently. The shared
database performs poorly due to the difficulty in defining the boundaries between the same
data. For the remote procedure invocation method, a client addresses the demand while
the server replies. The disadvantage of this procedure lies in all applications being coupled
and the difficulty in integration. The messaging method is asynchronous, which can deal
with tightly coupled applications. In this method, the transmitter does not need to wait for
a receiver. Further, an application can be developed efficiently in a real-time riverine waste
inspection system.

There are several message queuing (MQ) systems, such as Kafka [22], RabbitMQ [23],
RocketMQ [24], ActiveMQ [25], and Pulsar [26]. In [27], the authors compared the per-
formance of these systems and tested the throughput in three scenarios, including the
numbers of partitions, producers and consumers, and message size. The throughput refers
to the number of bytes per time transmitted through the queueing system. Kafka achieved
the highest throughput among these queuing systems. Therefore, we selected Kafka as
the message queuing system and utilized a Kafka broker to deal with messages from the
UAVs. The UAVs’ flight data stream is collected; each UAV produces one partition with
one replica. Riverine waste data—detected by the UAVs—is collected, and all the UAVs
send the data to the same partition. The UAVs’ real-time maps consume the collected data
to monitor the status of each UAV and the area polluted by the riverine waste. The Kafka
configuration in the UAV riverine waste monitoring system can be found in our previous
work [5].

In different operating systems, a web service is the best way to exchange data between
applications. Therefore, we utilized the Python 3.10 web framework Django [28], using
the hypertext transfer protocol in the UAVs’ riverine waste inspection system to develop
a website running on a computer to facilitate client queries. A real-time UAV riverine
waste map was created using a JavaScript library Leaflet [29] for interactive maps with the
Django website and Kafka broker to develop a riverine waste pollution monitoring system.
Consumers can access information from Kafka via the web service. The riverine waste data
(e.g., the position of the UAVs and the area of the riverine waste, which the UAVs obtain)
are shown in the riverine waste map.

In the design of the video streaming server, the UAV utilizes 4G communication to
transmit the video stream to the server and then release it. Multiple users can subscribe to a
video streaming server at 30 FPS (frames per second) through a website. The UAVs first fly
to the waypoint and subsequently use the onboard camera’s current altitude and FOV (field
of view) to calculate where the UAVs should detect garbage and avoid double detection. Fi-
nally, the UAVs send the image back to the server. In addition, the UAVs continuously send
real-time video streams to the server while the server simultaneously receives images from
the drone’s camera and stitches them together. ZeroMQ [30] is a socket-based concurrency
framework featuring intra-process, inter-process, and transmission control protocol (TCP)
communication. On the other hand, ImageZMQ [31] is a Python application programming
interface (API) for video streaming built on top of the ZeroMQ framework. We leverage
the ImageZMQ API with automatic image resizing methods, an automatic reconnection
mechanism, and JPEG compression [32] to adapt to varying network conditions.

In the automatic reconnection mechanism, we set the timeout to 1.8 s. This value
is determined by trial and error, depending on the network conditions of the server and
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the UAVs. The UAVs will automatically reconnect to the video streaming server if the
disconnection time exceeds the timeout. Through trial and error, the UAVs record the
number of timeouts that occur and use this to automatically resize the appropriate image
size, with more timeouts resulting in a smaller image size, before sending the video stream
to the server. In the waste detection mission, the UAVs continuously receive messages from
Kafka topics to check for commands from the control station. Each UAV uses a partition in
the topic. If the UAV encounters an emergency, we can issue commands through the UAV
control station, allowing the UAV to perform landing or RTL or other actions.

In [33], a performance comparison of seven databases, three SQL (Oracle, MySQL,
MsSQL) and four NoSQL (Mongo, Redis, GraphQL, Cassandra), was performed. In experi-
ments, NoSQL databases are faster than SQL databases, among which Mongo performs
best. Therefore, we selected Mongo as our database for its excellent performance and
schema-free data storage. In Mongo, a collection is created to store the documents. The
trash document sent by the UAV contains the identity of the UAV, the time that riverine
waste is detected, the latitude position of the riverine litter, and the area of the riverine
waste. We used Kafka as the data streaming platform in the waste monitoring system. It
must be noted that the data must be accessed and stored in the database. Further, we built
the Kafka connector that consumes the data with batch processing from Kafka and transfers
the data into the database. The Kafka configuration in the UAV riverine waste monitoring
system can be found in our previous work [5].

3. Image Classification

There are a variety of algorithms for image classification, including the backpropa-
gation neural network (BPNN) [34], support vector machine (SVM) [35], and Hopfield
neural network [36]. In 2012, an extensive deep convolutional neural network (CNN)
called AlexNet [37] showed excellent performance on the ImageNet [38] large-scale vi-
sual recognition challenge (ILSVRC), marking the start of the broad use and development
of CNN models such as VGGNet [39], GoogLeNet [40], ResNet [41], and DenseNet [42].
In [43], the authors compared the classification accuracy and speed of the four classification
algorithms, including k-nearest neighbors (KNN) [44], SVM, BPNN, and CNN. CNN has
the best classification accuracy for handwriting digit recognition. In the past few years,
deep learning has been proven to be a significantly powerful tool because of its ability
to process large amounts of data used for image recognition, video recognition, imagery
analysis, and classification. One of the most popular neural networks in image classification
is CNN. CNN can design some weights based on the different objects in the image and
then distinguish them from each other. CNN requires very little pre-processing of data
compared to other deep learning algorithms. The CNN algorithm is based on various steps
structured in a specific workflow, including input image, convolutional layer, pooling layer,
and fully connected layer for classification.

The convolutional layer is the first layer in the CNN, responsible for the feature
extraction of the input images. Convolution is an operation comprising two steps: sliding
and inner product. The image obtained after convolution is called a feature map, which
uses a filter to slide on the input image and continue to perform the matrix inner product. A
pooling layer is usually applied after a convolutional layer, and is responsible for reducing
the size of the convolved feature map to reduce computational expense. There are three
types of pooling: average pooling, max pooling, and sum pooling. We mainly utilized
max pooling, where the filter selects the largest element from the region of the feature
map. After extracting features and reducing the image parameters from the convolution
layer and max pooling, the feature information will be passed to the fully connected layer.
The fully connected layers in a neural network are those where all the inputs from one
layer are connected to every activation unit of the next layer; each connection has its own
independent and different weight. Consequently, it will result in the fully connected layer
taking in a variety of computations.
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3.1. Image Recognition Algorithm

In recent years, artificial intelligence has been applied to many tasks. Object detection
is also the most popular part of deep learning. It can be used in various aspects, such
as license plate recognition, autonomous driving, product defect detection, and medical
image recognition. There are many tasks related to image recognition. Accordingly, the
target detection framework is divided into two-stage and one-stage methods.

1. Two-stage: In object detection, the general method involves first selecting objects;
the process of selecting objects is called region proposal. The chosen objects’ sizes
may differ, so the object detection may only be classified or include feature extraction
and classification. The two-stage method needs to find the region proposal first
before performing detection. The classic two-stage method is the faster region-based
convolutional neural network (Fast R-CNN).

2. One-stage: A common problem with the two-stage method is that too many objects are
selected for real-time computing. The one-stage method operates the object position
detection and recognition in one step. The neural network can detect the object’s
position and recognize the object simultaneously. While the one-stage method is
faster than the two-stage method, its recognition accuracy is not on a par with the
latter. Recognition accuracy is still within an acceptable range in the one-stage method.
Therefore, the one-stage method is currently more developed and used on mobile
devices. The classic one-stage methods are YOLO and single-shot detector (SSD).

In this study, we selected the YOLO algorithm as the waste detecting algorithm. In July
2021, YOLOR-D6 ranked first in the real-time object detection benchmark on the common
objects in context (COCO) dataset. A better tradeoff can be found based on speed and
accuracy [45]. In YOLOv4 [46], the authors proposed two neural networks, named cross-
stage partial (CSP) Darknet53 and CSPResNeXt50, as a backbone to operate quickly and
compute optimizations in parallel. The authors found that the CSPResNeXt50 is suitable
for classification, while the CSPDarknet53 is suitable for object detection. In YOLOv4,
the authors proposed the path aggregation network (PANet) and spatial pyramid pooling
(SPP) as the neck instead of the feature pyramid network (FPN). The PANet is modified by
the FPN, which adds one more layer that can accurately store spatial information. It can
correctly locate pixel points and form masks. On the other hand, there are more channels
where the amount of calculations will increase. The SPP extracts features and connects
them for deeper depth features.

In [47], the authors compared various activation functions, including rectified linear
unit (ReLU), swish, and mish. The mish activation function outperforms all the other
activations. Mish is bounded below and unbounded above; its range is in [−0.31, ∞).
It avoids saturation, which generally causes training to slow down drastically due to
near-zero gradients, resulting in strong regulation effects and reduced overfitting.

Mish = x ∗ tanh(ln(1 + ex)) (5)

The intersection over union (IoU) loss [48] was proposed for the bounding box regres-
sion loss function in 2016. The authors proposed GIoU loss [49] in 2019, and DIoU loss [50]
and CIoU loss [51] in 2020. The CIoU loss considers the overlap area, point distance, and
aspect ratio, making its convergence accuracy higher than GIoU. In GIoU, the DIoU can
be used instead of IoU in the NMS algorithm, which is DIoU-NMS. The NMS has four
bounding boxes, and the DIoU-NMS has five in the same scenario. Therefore, the authors
utilized CIoU loss and DIoU-NMS in YOLOv4. The formula for DIoU-NMS is shown in
Equation (6). Si is the classification confidence, ε is the threshold of the DIoU-NMS, and
M is the bounding box with the highest confidence. Compared to the IoU loss, GIoU loss,
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DIoU loss, CIoU loss, and CIoU loss, the DIoU—NMS in YOLOv3, CIoU loss with the
DIoU—NMS can improve the average precision.

Si =

{
Si, IoU − RDIoU(M, Bi) < ε
0, IoU − RDIoU(M, Bi) ≥ ε

(6)

YOLOV4-tiny [46] is the compressed version of YOLOv4. The CSPOSANet is modified
by CSPNet and VoVNet [52]. VoVNet consists of a one-shot aggregation (OSA) module
that aggregates all the layers before the last layer. In YOLOv4-tiny, the network structure is
less complicated than in YOLOv4, and the parameters are reduced so that the training and
detection are faster than in YOLOv4. The inference time in YOLOv4-tiny can reach 371 FPS
(frames per second). On the other hand, YOLOv4-tiny-3l utilizes three YOLO heads to
detect large objects, medium objects, and small objects. YOLOv4-tiny-3l can reach a higher
accuracy and precision than YOLOv4-tiny on the COCO dataset.

In 2021, the BottleneckCSP module was proposed to extract the features on the fea-
ture maps in YOLOv5 [53]. It can reduce the repetition of gradient information in the
optimization process of CNNs. The authors of [53] adjusted the width and depth of
BottleneckCSP and developed four models called YOLOv5s, YOLOv5m, YOLOv5L, and
YOLOv5x. YOLOv5s has the smallest size and model parameters of the four structures.
Conversely, YOLOv5x has the biggest size and model parameters of the four structures.
The focus module was proposed, which slices the image before the image input enters
the backbone. It can extract four times as many features as without the focus module in
exchange for four times the amount of computation. For example, our input image size is
864 × 864 × 3; using the focus module, the output size becomes 432 × 432 × 12, as shown
in Figure 7. Comparison of the modern YOLO includes YOLOv3, YOLOv4, and YOLOv5.
Regarding average precision, YOLOv4 achieves the best performance on the COCO dataset
in the experiment. In terms of inference time, YOLOv5s is better than YOLOv4. When the
batch size is adjusted to 36, the inference time can reach 140 FPS.
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3.2. Dataset

We need to collect data in advance to train the model for riverine waste detection. In
data mining, we utilize the TACO dataset, drinking waste classification dataset, TrashNet,
HAIDA trash dataset, and the images collected by the UAVs. We collected 2595 images and
divided them into one class (11,318 garbage objects) and 876 negative samples. We also split
the data into two categories (7488 garbage objects and 3830 bottle objects) for classification.
The data we used and collected is called the riverine waste dataset. The TACO dataset
is a dataset of waste from beaches and streets, but the trash is small. The drinking waste
classification dataset is full of drinking waste and is divided into four classes (cans, plastic
bottles, glass bottles, and milk bottles). We utilized TrashNet, which comprises 2527 images
and is divided into six categories (glass, paper, cardboard, plastic, metal, and trash). UAVs
collected the HAIDA trash dataset at different heights, and the data are divided into two
classes (garbage and bottles). We also downloaded some riverine waste images from the
internet, no matter whether the waste was large or small. Most of the data were taken from
different places such as Kibera, Indonesia, Manila, etc. We also collected riverine waste
images using UAVs; negative samples were also collected.

Data augmentation is a method that increases the amount of data. Many data aug-
mentation algorithms have been proposed, such as mixup [54], cutmix [55], cutout [56],
mosaic [46], attentive cutmix [57], random erasing [58], dropout [59], and DropBlock [59].
The first data augmentation method used for YOLOv4 is mosaic. The mosaic data augmen-
tation method merges four images into one. This method allows the mode to learn how
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to recognize smaller objects and increase batch size in training, as shown in Figure 8. The
bounding boxes in Figure 8 are the objects to be learned by the neural networks.
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not classified.

The circular shift method [7] cuts the original image proportionally, shifts the last
image to the first position, and transforms all the images into a new one. With different
networks, including VGG16, ResNet, SqueezeNet, and DenseNet, utilizing the original and
circular shift datasets can achieve higher performance in VGG16, ResNet, and DenseNet.
The operation steps include the original dataset, circular shift, and the combination of crop,
rotation, and flip. These steps will repeat until the image transforms into the original image,
as shown in Figure 9.
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Regularization is used to reduce the error and over-complexity of machine learning,
commonly known as generalization error. In the training process, the model produces
many parameters that may cause overfitting. Therefore, there are various regularization
methods to avoid model overfitting and help the model reduce the parameters to promote
generalization. Regularization methods include dropout, DropBlock, L1 regularization [60],
and L2 regularization [61]. In the model we trained, if the model has too many parameters
and too few training data, it is easy for the model to have overfitting. Therefore, dropout
can ignore a feature randomly to reduce the parameters that can make the model utilize its
generalization. It only depends a little on some local features, bringing out overfitting. The
DropBlock method is a form of structured dropout where the features in a contiguous region
of the feature map are dropped together. Dropout is widely utilized in fully connected
layers and performs well. However, it is not suitable for convolutional layers because
the features are spatially related to each other. DropBlock can address the features being
spatially associated with each other and reduce the dependence on features.

After collecting the data, we need to evaluate the model and verify the generalization
ability of the model to independent test data. If we reuse the test set, which means the
test set is part of the training set, it can easily lead to overfitting. Several methods can be
used to split the data and verify the model, including the hold-out method [62], k-fold
cross-validation, nested k-fold cross-validation, repeated k-fold validation, stratified k-fold
validation, and group k-fold validation [63]. The hold-out method splits the dataset into
training and test sets, and the training set splits again and produces a validation set. The
training set is used to fit the different models, while the validation set is used for the model
evaluation. The test set is used for estimating the generalization ability of the model. A
diagram of the hold-out method is shown in Figure 10.
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The k-fold cross-validation method splits the data into k equal parts, meaning the same
model is trained k times. The k-1 fold is the training set for the training, and the remaining
fold is used for validation. Finally, the loss of the k times is summed up and averaged,
which is considered the final result. The nested k-fold cross-validation method is modified
by k-fold cross-validation and is divided into two parts: the outer loop and the inner loop.
The inner loop tunes the hyperparameters and chooses the best parameters. Then, the
model is trained with the best hyperparameters, and the generalization ability is estimated
in the outer loop. Repeated k-fold cross-validation means to repeat n times. Every time it
is repeated, it splits the data. Then, the k-fold cross-validation is performed, and the best
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performance is selected. Each fold is split in proportion to the category. In this study, we
divided the data into two classes. The proportion is about 1:2, so the ratio of the two classes
in each fold must also be 1:2. This method, useful for unbalanced data, is modified from
the stratified k-fold cross-validation method. It prevents continuous data from resulting in
overfitting. When the data are split in this method, it selects each block from the data and
is randomly set as validation. The cross-validation methods are accurate and can prevent
model overfitting. On the other hand, the computation time is more than for the hold-out
method. Compared to the methods we mentioned, the hold-out method has a simple way
to split the data and prevent model overfitting. In this study, the training set accounts for
70 percent of the collected data, the validation set accounts for 20 percent, and the test set
accounts for 10 percent.

3.3. Training

There are several learning rate decay methods, including poly, random, and steps. The
poly method adjusts the learning rate with every training step, as shown in Equation (7).
The random method gives the learning rate randomly for every training step, as shown in
Equation (8). The steps method decays the learning at specified steps. For example, we
set the specified step to 8000 and 9000, the decay ratio as 0.01, and the initial learning rate
as 0.05. In the step set at 8000, the learning rate was adjusted to 0.005, while in the step at
9000, the learning rate was adjusted to 0.0005.

poly = lr ∗
(

1 − current iteration
max_batches

)4
(7)

random = lr ∗
(

rand_uni f orm(0, 1)4
)

(8)

A comparison of the state-of-the-art (SOTA) object detection algorithms is shown in
Table 1. This study focuses on FPS and AP50 (Val). The YOLOv4-tiny-3l model can achieve
75.4% AP50 (Val). This performance is the best in this model, and its inference time of
175 FPS is good. YOLOv5m reaches 74.4% AP50 (Val), close to YOLOv5s. However, its
inference time is lower than YOLOv5s. Hence, this study compared the performance of
YOLOv4-tiny-3l and YOLOv5s on a test set.

Table 1. The comparison of the SOTA object detection algorithm.

Model Input Size FPS3090ti AP50

YOLOv4-tiny-custom 864 × 864 92 73.9%
YOLOv4-tiny-3l 864 × 864 175 75.4%

YOLOv5s 864 × 864 216 74.2%
YOLOv5m 864 × 864 192 74.4%

MOBILENETv2 864 × 864 101 61.2%

The results show that the confidence scores of YOLOv4-tiny-3l are higher than those
of YOLOv5s in the same frame, as shown in Figures 11 and 12. While both did not miss
trash, only YOLOv4-tiny has false detection, as shown in Figures 13 and 14. Therefore, this
study selected YOLOv5s as the riverine waste detection algorithm and proposed improving
YOLOv5s for better performance.
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Figure 14. The detection of YOLOv5s.

For the hyperparameter tuning for YOLOv5s, we adjusted the input size, filter size,
iterations, learning rate, activation function, mosaic, learning rate decay, and dropout
method. When the input size is 864 × 864, the number of iterations is 13,000, the learning
rate is 0.005, and the decay steps are at 8000 and 9000, with the mish activation function and
without mosaic data augmentation, the AP50 (Val) can reach 78.2%. If we add a dropout
layer in YOLOV5s, when we use DropBlock and cover 50% of the features, the AP50 (Val)
drops to 74.5%. If it covers 30% of the features, the AP50 (Val) is 76.2%, as shown in Table 2.

After tuning the hyperparameters, we modified the structure of YOLOv5s to achieve
a higher performance in detecting riverine waste. Therefore, we proposed the improved
YOLOv5s-i, improved YOLOv5s-ii, and improved YOLOv5s-iii. The improved YOLOv5s-i
adds eleven additional convolutional layers in the neck, including four filters for 32 convo-
lutional layers, six for 64 convolutional layers, and one for 128 convolutional layers. The
AP50 (Val) improves by 78.6% in the improved YOLOv5s-I. Improved YOLOv5s-ii adds
fifteen additional convolutional layers in the neck, including four filters for 32 convolu-
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tional layers, ten for 64 convolutional layers, and one for 128 convolutional layers. The
AP50 (Val) improves by 79.3% in the improved YOLOv5s-ii. Improved YOLOv5-iii adds
22 additional layers in the neck, including five filters for 32 convolutional layers, fifteen for
64 convolutional layers, and two for 128 convolutional layers. The AP50 (Val) improves by
79.6% in the improved YOLOv5s-iii. Based on the improved YOLOv5s-ii and improved
YOLOv5s-iii, we found that adding more layers did not significantly improve the AP50
(Val). To verify this conjecture, we added 27 additional layers in the neck, including five
filters with 32 convolutional layers, fifteen filters with 64 convolutional layers, and four
filters with 128 convolutional layers. The AP50 (Val) drops to 78.1%.

Table 2. Hyperparameter tuning.

Hyperparameters Input Size Batch Size Iteration Learning Rate Learning Rate Decay Activation Function Mosaic DropBlock AP50 (Val)

1 416 × 416 64 13,000 0.00261 steps at 4000, 8000 mish yes no 70.50%
2 864 × 864 64 13,000 0.00261 steps at 8000, 9000 mish yes no 77.20%
3 864 × 864 64 13,000 0.00261 steps at 8000, 9000 mish yes no 77.60%
4 864 × 864 64 13,000 0.005 steps at 8000, 9000 mish yes no 76.50%
5 864 × 864 64 13,000 0.005 steps at 8000, 9000 mish no no 78.20%
6 960 × 960 64 13,000 0.00261 steps at 8000, 9000 mish no no 77.30%
7 960 × 960 64 13,000 0.005 steps at 8000, 9000 mish no no 77.30%
8 864 × 864 64 13,000 0.00261 steps at 8000, 9000 mish no no 77.80%
9 864 × 864 64 13,000 0.00261 steps at 4000, 8000 mish no no 77.30%
10 864 × 864 64 13,000 0.005 poly, power = 4 mish no no 77.20%
11 864 × 864 64 13,000 0.005 random mish no no 73.20%
12 864 × 864 64 13,000 0.005 poly, power = 2 mish no no 76.20%
13 864 × 864 64 13,000 0.005 steps at 8000, 9000 mish no yes, 50% 74.50%
14 864 × 864 64 13,000 0.005 steps at 8000, 9000 mish no yes, 30% 76.60%
15 864 × 864 32 10,000 0.005 steps at 8000, 9000 leaky yes no 74.20%

Finally, the improved YOLOv5s-iii was selected as the riverine waste detection algo-
rithm. The hold-out method was used to split the riverine waste dataset first. It split the
data into 70% for the training set, 20% for validation, and 10% for the test set. We used a
test set to verify the proposed structure. Notably, the improved YOLOv5s-iii performed
well. The confidence scores of the improved YOLOv5s-iii increased by 20% in the test set,
as shown in Figure 15.
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4. Image Stitching

Image stitching is performed when images have overlapping areas. Image stitching
methods can be classified into region-based and feature-based image stitching.

1. Region-based image stitching: This method is divided into two parts. One part of the
region-based image stitching method is applied in the space domain, and the other is
in the frequency domain. In the space domain, the method is used to select an area
in the overlapping areas as a template and search for the blocks of another image.
The most relevant areas are the matching areas. In the frequency domain, images are
transformed by discrete Fourier transform. Then, the correlation function of the space
domain is obtained by inverse Fourier transform, and the best matching areas to the
correlation function are calculated.

2. Feature-based image stitching: This method finds the features in the scale space by
the extrema value detection and then positions the features. The feature description
obtains the matching areas and stitches the images. Feature-based image stitching is a
commonly utilized method because its computational cost is lower than the region-
based image stitching method. Therefore, several algorithms have been proposed,
including the SIFT, SURF, and ORB.

In [64], the authors compared the three methods: SIFT, SURF, and ORB. According
to their tests, the stitching results of the three methods are similar. The most significant
difference lies in the computation: the SIFT algorithm takes the most computing time
because it extracts the most features. On the other hand, the ORB algorithm takes the
least amount of computing time. In this study, the SIFT algorithm is used as the image
stitching method. Although the SIFT algorithm spends more computing time for stitching,
it can extract more features to stitch images, and the computing time is acceptable for the
proposed system. There are four steps for feature detection in SIFT [13], including the
extrema value detection in scale space, keypoint localization, orientation assignment, and
keypoint description. An image in scale space is similar to the image people see in the real
world but is in the computer vision space. It presents far, near, clear, and blurred images
using the Laplace of Gaussian (LoG) function. In scale space, the difference of Gaussian
(DoG) function is used for determining the extrema value. Equation (9) is the Laplace of
Gaussian function, and Equation (10) is the difference of Gaussian function.

L(x, y,σ) = G(x, y, σ) ∗ I(x, y) (9)

G(x, y,σ) =
1

2πσ2 e
x2+y2

2σ2

D(x, y,σ) = L(x, y, kσ)− L(x, y, σ) (10)

After using the difference of Gaussian function to determine the extrema value, the
value is not necessarily a true extrema value because it may be a discrete point. Therefore,
the Taylor series is used to find a real extrema value, named the keypoint, as shown
in Equation (11). It eliminates boundary responses that include low-contrast or poorly
positioned points using a Hessian matrix, as shown in Equation (12). The Hessian matrix is
used to calculate curvatures, as shown in Equation (13). α is the largest value, and β is the
smallest value. If the curvature is less than ten, the keypoints may be close to the boundary
and can be eliminated.
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∆x = −∂2D−1

∂x2
∂D(x)

∂x

H =

[
Dxx Dxy
Dxy Dyy

]
(12)

Tr(H) = Dxx + Dyy = α + β

Det(H) = DxxDyy −
(

Dxy
2
)
= αβ

Curavature =
Tr
(

H2)
Det(H)

=

(
α + β)2

αβ
(13)

To let the onboard computer obtain these keypoints, we need to provide keypoint
orientation, which means converting them to vectors. Equation (14) shows how the gradient
values of keypoints is calculated. Equation (15) shows how the orientation of keypoints
is calculated.

m(x, y) =
√[

L(x + 1, y)− L(x − 1, y)]2 +
[

L(x, y + 1)− L(x, y − 1)]2 (14)

θ(x, y) = arctan
L(x, y + 1)− L(x, y − 1)
L(x + 1, y)− L(x − 1, y)

(15)

Before this step, each keypoint can receive three messages, including position (x, y),
scale σ, and orientation θ. Then, the vectors in eight directions are counted, and the main
direction for the keypoint is determined. If several directions differ by less than 20%, the
main directions can be more than one direction. When the image is rotated, the main
direction is used to correct the right direction; the vectors will not change.

The SURF algorithm is a further optimization of the SIFT algorithm. SURF is faster than
SIFT and can achieve real-time implementation of applications. It utilizes a box filter instead
of a Laplace of Gaussian filter, which can reduce a significant amount of computation time;
hence, SURF is fast. SURF utilizes Hessian matrix determinant approximation instead of
the difference of Gaussian function calculation. In addition, it uses box filters to simplify
the Gaussian filters. SURF uses Harr wavelet features in the field of counted feature points
instead of gradient histograms. In a circle with a radius of 6s, s is the scale of the feature
point. The sum of the horizontal Harr wavelet and the vertical Harr wavelet features of all
points in the 60-degree sector is calculated. Then, it is rotated at 60 degrees until it turns a
circle. Finally, the maximum value is used as the main direction of the feature point. Before
this step, each keypoint can receive four messages, including the sum of the horizontal
values, the sum of the vertical values, the absolute value of the sum of horizontal values,
and the absolute value of the sum of vertical values.

In oriented FAST and rotated Brief (ORB) [65], FAST is used to detect the keypoints, and
Brief is used to describe the keypoints—both have good performance and low computation.
FAST gives a pixel ρ in an array, compares the brightness of ρ with a circle of 16 pixels
around it, and then classifies the pixels into three categories: brighter than ρ, darker than ρ,
and similar to ρ. If more than eight pixels are brighter or darker than ρ, ρ is selected as a
keypoint. The original FAST method cannot have orientation. Therefore, ORB assigns an
orientation to each keypoint depending on how the intensity level around the keypoint
changes. The Brief descriptor is used to describe the keypoints. It utilizes a bit string, a
binary intensity test set that describes the image patch. ORB uses rotation-aware Brief to
deal with Brief’s matching; its performance degrades dramatically for rotation beyond a
few degrees.

The image stitching results in static scenes are shown in Figures 16 and 17.
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5. Experiments and Results

The parameters used in this study are listed in Tables 3 and 4. Image stitching is a
complex problem when the object is moving, or the scene is changing. The light, image
quality, and many factors affect the image stitching result. Therefore, image stitching is
divided into static and dynamic scenes.

Table 3. The parameters used in Sections 2 and 3.

Parameter α β H W0 L0 Wi Li x ε lr

Value 900 340 5 m To be labeled To be labeled 1080 720 Input of neuron 0.3 0.01

Equations (1) (2) (1) (2) (3) (4) (3) (4) (4) (4) (5) (6) (7) (8)

Table 4. The parameters used in Section 4.

Parameter x y σ k

Value To be calculated (position of feature point) To be calculated (position of feature point) 1 2

Equations (9)–(15) (9)–(15) (9) (10)

1. Static scene: A static scene does not mean that the scene is not changing. It usually
refers to the cameras being sedentary. The background does not move; conventional
methods can find moving objects, and camera images can be stitched.

2. Dynamic scene: A dynamic scene means that the scene changes constantly, including
the background and the objects. It is difficult to stitch images from moving cameras.

In [66], the authors proposed that on each side of the seam line, only the image from
the camera’s image must be selected to address the failure rate and computing time of
dynamic scene stitching. For example, if two images are stitched, and the left camera’s
image of the right seam line does not move, the right camera’s image is selected for stitching.
If the overlapping area is enough, the images can be stitched. Therefore, we selected this
stitching method. The image on the left side does not change, and the right side image is
used for stitching, as shown in Figure 18. If the cameras’ positions are at the front and back,
the front side image does not change, and the back side image is selected for stitching, as
shown in Figure 19.
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Figure 19. Diagram of front–back stitching.

There are three scenes in our test environment: (1) the National Taiwan Ocean Univer-
sity (NTOU) campus; (2) the Tianliao River, based on the Keelung Bureau of Environmental
Protection and the Society of Wilderness’s suggestions; and (3) the Keelung River. We
utilized the embedded NVIDIA system NX on the UAVs to realize real-time detection
and sent the image from the UAVs’ cameras to the ground station server for stitching. In
the riverbank inspection mission, if the UAVs encountered an emergency, we could give
a command to let the UAVs land, return, or perform other operations through the UAV
control station.

5.1. Scene 1: NTOU Campus

In the riverbank inspection, the waste was divided into one class (garbage) and
two classes (garbage and bottle). First, we put some plastic bags and bottles on the
campus. We set the UAVs’ height to five meters and speed to 1 m/s. For one-class
detection, the confidence scores for garbage detection are high (54.81%, 90.31%, 95.1%, 98%,
98.86%), as shown in Figure 20a. For the two classes, the confidence scores for garbage
and bottles are still high (80.03%, 94.12%, 98.2%), as shown in Figure 20b. However, they
are slightly lower than the one-class case. In image stitching, UAVs hovered first and
then tried to find the maximum distance for effective stitching, as shown in Figure 20c–e.
When the distance between the UAVs exceeded six meters and the image overlap area
was less than 30%, the stitching results were bad. The real-time detection data and the
pollution area were indicated on the ground station monitor, as shown in Figure 20f,g. Each
blue dot in Figure 20f is the waypoint of the flight trajectory; it contains the coordinates
of the location and garbage information. Detailed information is shown in Figure 20g.
After analysis, the waste location is indicated on the heatmap, as shown in Figure 20h.
Garbage information can be successfully demonstrated at the ground station (control
center). Government officials can check pollution information from the real-time images
provided by our riverbank inspection system. The officials can move the cursor by using the
computer mouse and pointing at the blue dot on the computer screen. Then, the garbage
size and coordinates will appear on the screen, as shown in Figure 20f,g. In addition, the
areas of the detected debris are also shown in Figure 20a,b on the left side of the pictures;
they are indicated as “trash: 1.47 m2” and “trash: 1.43 m2”, respectively. The proposed
system can reduce labor spent on garbage inspection a lot.



Machines 2023, 11, 876 21 of 30Machines 2023, 11, x FOR PEER REVIEW 22 of 31 
 

 

 
(a) The result of one-class detection 

 
(b) The result of two-class detection 

 
(c) UAVs are separated by four meters 

Figure 20. Cont.



Machines 2023, 11, 876 22 of 30Machines 2023, 11, x FOR PEER REVIEW 23 of 31 
 

 

 
(d) UAVs are separated by five meters 

 
(e) UAVs are separated by six meters 

 
(f) Waste detection and pollution area 

Figure 20. Cont.



Machines 2023, 11, 876 23 of 30Machines 2023, 11, x FOR PEER REVIEW 24 of 31 
 

 

 
(g) Enlarged map 

 
(h) The heatmap of waste on the NTOU campus: The non-English terms are the names of the locations; the mark 

with green color represents the amount of garbage and the red star represents its location. 

Figure 20. Experimental results in NTOU. 

5.2. Scene 2: Tianliao River 
At the Tianliao River, some garbage and bottles are stuck in stones. The UAVs’ height 

was about 5 m above the riverbank, the speed was about 1 m/s, and UAVs were separated 
by 4 m. In riverine waste detection, the detector could recognize two classes well when 
tested in NTOU. Therefore, we only tested two-class detection in the Tianliao River, as 
shown in Figure 21b, and all garbage was identified. On the day of the test, the wind speed 
reached 6 m/s to 8 m/s, and the UAVs’ heights differed, making the size of both cameras’ 
images different. Further, the gimbal and UAVs were unstable due to the strong wind. 
Although the result is not remarkable, the images could still be stitched, as shown in Fig-
ure 21c. The trajectories of the UAVs are shown in Figure 21d; each blue dot represents a 
location with garbage information on it. The heatmap of waste is shown in Figure 21e. The 
area of the detected debris is shown in Figure 21b on the left side of the picture; it is indi-
cated as “trash: 0.35 m2”. The confidence rates of the detected debris are shown in Figure 
21b (62.04%, 40.51%, 38.47%, 62.34%). 

Figure 20. Experimental results in NTOU.

5.2. Scene 2: Tianliao River

At the Tianliao River, some garbage and bottles are stuck in stones. The UAVs’ height
was about 5 m above the riverbank, the speed was about 1 m/s, and UAVs were separated
by 4 m. In riverine waste detection, the detector could recognize two classes well when
tested in NTOU. Therefore, we only tested two-class detection in the Tianliao River, as
shown in Figure 21b, and all garbage was identified. On the day of the test, the wind
speed reached 6 m/s to 8 m/s, and the UAVs’ heights differed, making the size of both
cameras’ images different. Further, the gimbal and UAVs were unstable due to the strong
wind. Although the result is not remarkable, the images could still be stitched, as shown in
Figure 21c. The trajectories of the UAVs are shown in Figure 21d; each blue dot represents
a location with garbage information on it. The heatmap of waste is shown in Figure 21e.
The area of the detected debris is shown in Figure 21b on the left side of the picture; it is
indicated as “trash: 0.35 m2”. The confidence rates of the detected debris are shown in
Figure 21b (62.04%, 40.51%, 38.47%, 62.34%).
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5.3. Scene 3: Keelung River

In the Keelung River test, we set the UAVs’ height to about 5 m above the riverbank,
the speed was about 1 m/s, and the UAVs were separated by 5 m. In riverine waste
detection, some small garbage could be detected. The confidence scores are high, as shown
in Figure 22b. For image stitching, we set the UAVs farther away from each other. Images
can be stitched, as shown in Figure 22c. The heatmap of waste is shown in Figure 22d.
The area of the detected debris is shown in Figure 22b on the left side of the picture; it is
indicated as “trash: 0.02 m2”. The confidence rates of the detected debris are shown in
Figure 22b (62.83%, 95.18%).

Table 5 demonstrates the effectiveness of the proposed trash inspection system by
summarizing the detected results from three different scenes. The experimental results
show that if the background of the test field is complex, there are undetected objects. To
overcome this problem, more training images are needed. The position accuracy is good in
the three scenes. This is because the RTK system is used in the proposed UAV system.
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Table 5. Summary of the detected results in three scenes.

Test Field Number of Correctly
Detected Objects

Number of Incorrectly
Detected Objects

Number of Undetected
Objects Positional Accuracy

Scene 1 4 0 0 Less than 1 m
Scene 2 4 0 1 Less than 1 m
Scene 3 2 0 1 Less than 1 m

6. Conclusions

In waste detection, we found that the improved YOLOv5s-iii is better than YOLOv5s
and YOLOv4-tiny-3l after tuning the hyperparameters and modifying the YOLOv5s model.
When we tested it on rivers, we also found that the confidence scores with one class were
better than the confidence scores with two classes. In the Tianliao River, the waste detector
could still detect two classes (garbage and bottles) in an unknown scene. The detector
sometimes misses a small amount of waste because the wind is too strong, making the
camera gimbal shake and become unstable. In this case, the captured image is blurred and
unable to be classified. Another reason is that the altitude of the UAV is too high, which
makes the object too small to be identified. To overcome these problems, low-altitude
flight is performed. The drawback is that the detection area is also reduced. Thus, this
study proposed multiple UAVs and image stitching to cover a wide area on the inspected
riversides. For better resolution and inspection of the captured garbage image, the UAV
must fly at a low altitude but this will reduce the cover area of the camera. In this study,
the UAV altitude is about 5 m, and the ground range of one image frame is about 10 m
wide. To make the inspection task more intelligent, we apply two UAVs in parallel flights
so that they can cover one side of the riverbank in a flight. Both UAVs can fly along the
preplanned path automatically. The images from the two UAVs are stitched and sent to
the ground control center in real time. The inspector at the control center can check the
image of one side of the river immediately. If we only use one UAV, the UAV needs to fly
two times on one side of the river; this is inconvenient for the UAV operator and makes
the inspection task less intelligent. In the Keelung River, some false detection occurred.
The waste detector misidentified reflective waves as garbage. In image stitching, the SIFT
algorithm’s computation is extensive. We utilized the seam line method to stitch the image,
which reduced the computation time and achieved real-time image stitching. Although
the cameras kept moving and several factors affected the image stitching results, including
the light, quality of image, the UAVs’ height and speed, and vibrations of the UAVs, image
stitching could still be performed for moving carriers. Information on garbage, location, and
area size could be successfully transmitted to the ground station via the message queuing
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system. Further, the heatmap of waste can be provided on a monitor in real time. Moreover,
the proposed UAV system is capable of performing riverbank inspection. Government
officials can check garbage information from the inspection system’s real-time images.
The proposed system can reduce the labor spent on garbage inspection a lot. In addition,
riverside pollution can be further controlled. In the future, we can modify the model to
detect more classes of riverine waste and utilize more UAVs to increase the detected areas
and efficiency. Furthermore, precise positioning and UAV formation flight are essential.
Precise positioning can help UAVs to relocate their position in a robust wind environment.
Better UAV formations can make the image stitching smoother and allow stitching of a
wide area of images captured by UAVs simultaneously. Dynamic image stitching is very
difficult in this study. Although we used the same type of camera, color differences exist in
the same object on two camera images. These differences make many feature points unable
to be matched. Further improvements will be made in upcoming studies. In addition, there
were objects undetected in the field tests. To overcome this problem, more training samples
are needed in future work.
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33. Čerešňák, R.; Kvet, M. ScienceDirect Comparison of Query Performance in Relational a Non-elation Databases. Transp. Res.

Procedia 2019, 40, 170–177. [CrossRef]
34. Nielsen, H. Theory of the Backpropagation Neural Network. In Proceedings of the International 1989 Joint Conference on Neural

Networks, Washington, DC, USA; 1989; pp. 593–605.
35. Schölkopf, B. SVMs—A Practical Consequence of Learning Theory. IEEE Intell. Syst. Their Appl. 1998, 13, 18–21.
36. Abe. Theories on the Hopfield Neural Networks. In Proceedings of the International 1989 Joint Conference on Neural Networks,

Washington, DC, USA, 1989; Volume 1, pp. 557–564.
37. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.

Process. Syst. 2012, 2, 1097–1105. [CrossRef]
38. ImageNet. 2021. Available online: https://www.image-net.org/ (accessed on 21 November 2021).
39. Majib, M.S.; Rahman, M.M.; Sazzad, T.M.S.; Khan, N.I.; Dey, S.K. VGG-SCNet: A VGG Net-Based Deep Learning Framework for

Brain Tumor Detection on MRI Images. IEEE Access 2021, 9, 116942–116952. [CrossRef]
40. Aswathy, P.; Siddhartha; Mishra, D. Deep GoogLeNet Features for Visual Object Tracking. In Proceedings of the 2018 IEEE 13th

International Conference on Industrial and Information Systems, Rupnagar, India, 1–2 December 2018; pp. 60–66.
41. Wang, Y.; Zhou, X.; Zhou, H.; Chen, L.; Zheng, Z.; Zeng, Q.; Cai, S.; Wang, Q. Transmission Network Dynamic Planning Based on

a Double Deep-Q Network with Deep ResNet. IEEE Access 2021, 9, 76921–76937. [CrossRef]
42. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
43. Liu, W.; Wei, J.; Meng, Q. Comparisons on KNN, SVM, BP and the CNN for Handwritten Digit Recognition. In Proceedings of

the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, Dalian, China, 25–27
August 2020; pp. 587–590.

44. Huang, S.; Lyu, Y.; Peng, Y.; Huang, M. Analysis of Factors Influencing Rockfall Runout Distance and Prediction Model Based on
an Improved KNN Algorithm. IEEE Access 2019, 9, 66739–66752. [CrossRef]

45. Object Detection on COCO Test-Dev. Available online: https://paperswithcode.com/sota/object-detection-on-coco (accessed on
25 January 2022).

https://doi.org/10.1109/TII.2017.2764485
https://ardupilot.org/copter/docs/common-pixhawk-overview.html
https://ardupilot.org/copter/docs/common-pixhawk-overview.html
https://www.u-blox.com/en/product/neo-m8-series
http://www.holybro.com/product/h-rtk-f9p/
https://developer.nvidia.com/embedded/jetson-XAVIER-NX-developer-kit/
https://developer.nvidia.com/embedded/jetson-XAVIER-NX-developer-kit/
https://www.manualslib.com/manual/1217396/Sjcam-Sj5000x.html
https://consumer.huawei.com/en/routers/e8372/specs/
https://consumer.huawei.com/en/routers/e8372/specs/
https://ardupilot.org/copter/docs/common-tarot-gimbal.html
https://doi.org/10.1109/TPDS.2020.2978480
https://doi.org/10.1109/ACCESS.2020.3046503
https://www.djangoproject.com/
https://leafletjs.com/
https://zeromq.org/
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://doi.org/10.1109/LSP.2021.3090249
https://doi.org/10.1016/j.trpro.2019.07.027
https://doi.org/10.1145/3065386
https://www.image-net.org/
https://doi.org/10.1109/ACCESS.2021.3105874
https://doi.org/10.1109/ACCESS.2021.3083266
https://doi.org/10.1109/ACCESS.2019.2917868
https://paperswithcode.com/sota/object-detection-on-coco


Machines 2023, 11, 876 30 of 30

46. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

47. Bapat, K. Swish vs. Mish: Latest Activation Function. Available online: https://krutikabapat.github.io/Swish-Vs-Mish-Latest-
Activation-Functions/ (accessed on 25 January 2022).

48. Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; Yang, R. IoU Loss for 2D/3D Object Detection. In Proceedings of the 2019
International Conference on 3D Vision, Quebec City, QC, Canada, 16–19 September 2019; pp. 85–94.

49. Yao, L.; Qin, Y. Insulator Detection Dased on GIOU-YOLOv3. In Proceedings of the 2020 Chinese Automation Congress, Shanghai,
China, 6–8 November 2020; pp. 5066–5071.

50. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.
Proc. AAAI Conf. Artif. Intell. 2020, 34, 12993–13000. [CrossRef]

51. Li, Y.; Li, S.; Du, H.; Chen, L.; Zhang, D.; Li, Y. YOLO-ACN: Focusing on Small Target and Occluded Object Detection. IEEE Access
2020, 8, 227288–227303. [CrossRef]

52. Lee, Y.; Hwang, J.; Lee, S.; Bae, Y.; Park, J. An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object
Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern, Long Beach, CA, USA,
15–20 June 2019; pp. 752–760.

53. Ultralytics/Yolov5. Uniform Resource Locator. Available online: https://github.com/ultralytics/yolov5 (accessed on 21
November 2021).

54. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. In Proceedings of the 6th
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

55. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable
Features. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019; pp. 6022–6031.

56. DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. Aug. 2017. Available online:
http://arxiv.org/abs/1708.04552 (accessed on 21 November 2021).

57. Walawalkar, D.; Shen, Z.; Liu, Z.; Savvides, M. Attentive Cutmix: An Enhanced Data Augmentation Approach for Deep Learning
Based Image Classification. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing,
Barcelona, Spain, 4–8 May 2020; pp. 3642–3646.

58. Yang, Z.; Wang, Z.; Xu, W.; He, X.; Wang, Z.; Yin, Z. Region-aware Random Erasing. In Proceedings of the 2019 IEEE 19th
International Conference on Communication Technology, Xi’an, China, 16–19 October 2019; pp. 1699–1703.

59. Zeng, Y.; Dai, T.; Xia, S.-T. Corrdrop: Correlation Based Dropout for Convolutional Neural Networks. In Proceedings of the 2020
IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May 2020; pp. 3742–3746.

60. Nagpal, A. L1 and L2 Regularization Methods. Available online: https://towardsdatascience.com/l1-and-l2-regularization-
methods-ce25e7fc831c (accessed on 12 December 2021).

61. Young, R. The Principle of L1 and L2 Regularization. Available online: https://roger010620.medium.com/l1-l2-regularization-
%E5%8E%9F%E7%90%86-5beb1b68b955 (accessed on 12 December 2021).

62. Holdout Cross-Validation and K-fold Cross-Validation. Available online: https://www.796t.com/content/1545016867.html
(accessed on 12 December 2021).

63. Tsai, Y.L. K-Fold Cross Validation. Available online: https://andy6804tw.github.io/2021/07/09/k-fold-validation/ (accessed on
25 January 2022).

64. Wang, M.; Niu, S.; Yang, X. A Novel Panoramic Image Stitching Algorithm Based on ORB. In Proceedings of the 2017 International
Conference on Applied System Innovation, Sapporo, Japan, 13–17 May 2017; pp. 818–821.

65. Li, C.; Chen, T.; Chou, H.; Huang, Y.; Chen, C.; Lo, W.; Chen, T.; Lin, T.; Chen, S. An Improved Image Feature Detection Algorithm
Based on Oriented FAST and Rotated BRIEF for Nighttime Images. In Proceedings of the 2022 IEEE International Conference on
Consumer Electronics, Taipei, Taiwan, 6–8 July 2022.

66. Murodjon, A.; Whangbo, T. A Method for Manipulating Moving Objects in Panoramic Image Stitching. In Proceedings of the
2017 International Conference on Emerging Trends & Innovation in ICT, Pune, India, 3–5 February 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://krutikabapat.github.io/Swish-Vs-Mish-Latest-Activation-Functions/
https://krutikabapat.github.io/Swish-Vs-Mish-Latest-Activation-Functions/
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1109/ACCESS.2020.3046515
https://github.com/ultralytics/yolov5
http://arxiv.org/abs/1708.04552
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://roger010620.medium.com/l1-l2-regularization-%E5%8E%9F%E7%90%86-5beb1b68b955
https://roger010620.medium.com/l1-l2-regularization-%E5%8E%9F%E7%90%86-5beb1b68b955
https://www.796t.com/content/1545016867.html
https://andy6804tw.github.io/2021/07/09/k-fold-validation/

	Introduction 
	System Description 
	Image Classification 
	Image Recognition Algorithm 
	Dataset 
	Training 

	Image Stitching 
	Experiments and Results 
	Scene 1: NTOU Campus 
	Scene 2: Tianliao River 
	Scene 3: Keelung River 

	Conclusions 
	References

