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Abstract: Ambient vibration energy is widely being harnessed as a source of electrical energy to drive
low-power devices. The vibration energy harvester (VEH) of interest employs an electromagnetic
transduction mechanism, whereby ambient mechanical vibration is converted to electrical energy.
The limitations affecting the performance of VEHs, with an electromagnetic transduction structure,
include its operational bandwidth as well as the enclosure-size constraint. In this study, an analysis
and design of a nonlinear VEH system is conducted using the Output Frequency Response Function
(OFRF) representations of the actual system model. However, the OFRF representations are deter-
mined from the Generalised Associated Linear Equation (GALE) decompositions of the system of
interest. The effect of both nonlinear damping and stiffness characteristics, to, respectively, extend
the average power and operational bandwidth of the VEH device, is demonstrated.

Keywords: nonlinear systems; vibration energy harvester (VEH); Output Frequency Response
Function (OFRF); Generalised Associated Linear Equations (GALEs); frequency domain

1. Introduction

Several studies have been conducted towards broadening the operational bandwidth
of a vibration energy harvester (VEH) beyond the resonant region [1–7]. To extend the
operational bandwidth of a VEH system, the authors in [1] investigated a broadband
energy harvester whose function is based on a combination of nonlinear stiffening effect
and multimodal energy harvesting in order to attain a high bandwidth over a broad range of
excitations (0.1–2.0 g). In [2], the author extended some previous studies on using movable
masses to extend the bandwidth of VEHs. The author demonstrated a novel method that
involved embedding liquid in the system’s mass, used to extend the bandwidth of the VEH
or tune the frequency without a significant reduction in the power output. Ramlan et al.,
in [3], demonstrated the potential benefits of nonlinear stiffness characteristics in energy
harvesters. Two implementations of nonlinear stiffness characteristics were considered
in the study. For the first implementation, using a bi-stable snap-through mechanism, it
was shown that more electrical power was harvested, compared to a tuned linear device,
for a given input excitation. Likewise, for the second implementation, using a hardening
spring, it was also demonstrated that the bandwidth could also be extended, in comparison
with an equivalent linear device. It should be noted that an equivalent linear VEH device
provides the same maximum throw, at resonance, as the nonlinear VEH device of interest.
Meanwhile, the maximum throw is dependent on the size of the VEH system (typically the
electromagnetic type) and is defined as the maximum distance that the mass of the VEH
system can travel. This constitutes a mass-displacement constraint for electromagnetic-type
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energy harvesters. Wang et al., in [4], presented a novel automated method that tracks the
resonant frequency of a VEH. The authors achieved this by employing a pair of cylindrical
movable magnetic sliders on a cantilever beam, which increased the bandwidth of the
VEH, as the slider could track the resonant frequency on the cantilever beam without
manual involvement or external energy input. In [5], the authors suggested tuning the
resonant frequency of a VEH system to align with that of the excitation frequency and set
the electrical damping to be equal to the parasitic damping. The system was implemented
using power electronics circuits, which enabled the adjustment of both the damping
characteristics and the resonant frequency, thus improving its efficiency. Studies in [6,7]
focused on the comparison of the bandwidth provided by a Duffing-type energy harvester
with that of an equivalent linear harvester. The results obtained also demonstrated that a
nonlinear harvester provided a larger bandwidth compared to the linear equivalent. Most
of the published works have compared the Duffing-type VEH with its equivalent linear
device. In addition, several parameter optimisations have been suggested to achieve similar
results. Such parameter optimisations include the use of a mechanical damping [6], the
integration of an optimum electrical load [7,8], and the application of multi-stage harvester
models [9,10].

It has been evidently established in the literature [11–15] that nonlinear stiffness be-
haviour, as depicted in Figure 1, can be implemented using several geometric arrangements
of permanent magnets, whose lines of flux cut across defined arrangements of copper coils.
In [11], a nonlinear dual-function multi-modal energy harvester and vibration absorber
(EHVA) for harvesting energy and suppressing vibration in the low–medium frequency
band, was presented. Two different methods were employed to extend the operating
bandwidth of the system. These include the design of the multi-modal shapes of the EHVA
as well as the hysteresis property of nonlinear softening springs, implemented by a novel
permanent magnet structure. The authors in [12] investigated the steady-state response of
a specific VEH system under the condition of external and internal resonance, with a focus
on the double jump phenomenon. The frequency response curve shows the existence of
resonance peaks tilting to the left and right of the natural frequency of the system. Wang
and Zhu in [13] coupled a magnetic multi-stable device to a pendulum VEH in order to
expand its bandwidth, specifically in low-frequency operation. In [14], an experimental
and theoretical study for designing a nonlinear electromagnetic converter-based magnetic
spring was conducted. In this study, a special emphasis was given to the magnetic force
acting on the moving magnet, based on two parameters—the volume of the magnets
and the geometry of the two fixed magnets (i.e., disc or ring). Meanwhile, the authors
in [15] numerically analysed a magnetic-spring-based electromagnetic energy harvester
with piecewise nonlinear stiffness. It was demonstrated that the piecewise nonlinear stiff-
ness behaviour, developed due to the interactions of the moving magnet’s flux on the coil,
facilitated the response of the system in a wider frequency range, enabling it to generate
more electrical energy.
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Similarly, system damping characteristics have been employed in optimising the en-
ergy harvested by vibration energy harvesters [16–24]. In [16], the authors presented an
unconventional way of achieving a tuneable resonant frequency (from high frequency to
ultralow frequency) and extending both the bandwidth and peak of the energy harvested,
simultaneously, by utilising a distinct structurally supported displacement-dependent
nonlinear damping property. This work was further extended by the authors in [17], where
a scissor-like energy harvesting system, with equivalent nonlinear damping and linear stiff-
ness characteristics, was developed. It was demonstrated that the scissor structure provided
beneficial nonlinear damping effects, thereby significantly improving the magnitude of the
power harvested, as well as the bandwidth over which it was harvested. The beneficial
effect of antisymmetric nonlinear damping on energy harvesters was demonstrated by the
authors in [18], when the system was subject to ambient random vibrations. Meanwhile,
in [19], a VEH which employs a complementary metal–oxide-semiconductor-compatible
3D micro-electromechanical system coils and a ferromagnetic core was presented. In order
to describe the nonlinear electromagnetic damping coefficient and nonlinear attraction
between the magnet and the ferromagnetic core, a systematic model was proposed. There-
after, a vibration model was developed by considering nonlinear stiffness and damping
coefficient to derive the dynamic characteristics and output performance of the system. The
authors in [20] proposed a novel H-bridge circuit-based electromagnetic damper which
enables a bi-directional flow of electrical energy between the electromagnetic damper and
the energy storage. It was also demonstrated that this process enables the realisation of
diverse damping behaviour with salient self-powered feature.

The authors in [21,22] also employed nonlinear damping in extending the energy
harvested by a vibration energy harvester. Based on the findings in [21,22], an analysis,
design, and optimisation of a nonlinear VEH system was conducted in [23,24]. While no
mass-displacement constraint was considered in [23], this was considered in [24]. In these
studies, an optimum cubic damping parameter was designed for a desired power level
using the Output Frequency Response Function (OFRF) method. The OFRF of a nonlinear
system is determined based on the class of nonlinear differential equation (NDE) the system
belongs to and it shows the relationship between the output spectrum of the system and
its nonlinear parameters [25,26]. It, thus, describes the system characteristics. The OFRF
representations of the systems studied in [25–28] were determined using the Least-Squares
(LS) approach. However, this method requires several numerical simulations, using a
(training) set of values of the system design parameters, to obtain the respective system
output responses [29].

Feijoo et al., in [30], based on the characteristics of the nth-order Volterra operator
being a multi-linear function of a combination of input signals, modelled the behaviour of
the Volterra operators using their Associated Linear Equation (ALE) decompositions. These
ALE decompositions, as discussed in [30,31], can be used as an analytical tool for analysing
the Volterra class of nonlinear systems such as the Duffing equation. Based on this, it was
further revealed in [32,33] that the ALE decompositions, for a Volterra class of nonlinear
systems, can be used to determine a more accurate OFRF representation of the system,
using a significantly lower number of numerical simulations, compared to the LS approach.
These methods were further extended in [34] to the Generalised Associated Linear Equation
(GALE) decompositions, which considered a general class of nonlinear damping.

In this study, an analysis and design of a nonlinear VEH system is conducted using
the OFRF representations of the system output spectra, which are determined from the
GALE decompositions of the nonlinear VEH model. In addition to using a nonlinear
damping component to extend the average power of the VEH, a stiffness nonlinearity is
also integrated to widen the operational frequency range of the harvesting device. It should
be noted that the current study is an extension of the initial work by the authors in [33].
To the best of the authors’ knowledge, this is the first time the OFRF method, derived
using the GALE decompositions, is employed in the design and optimisation of a nonlinear
vibration energy harvester. Using the OFRF model, derived from the GALE decompositions,
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simplifies the design process since a polynomial of the system’s performance metrics is
derived in terms of the design parameters. A sequel study involving an experimental
validation of the design is currently ongoing.

Subsequent sections of this paper are organised as follows—Section 2 presents the
model formulation of the system of interest. In Section 3, the OFRF method is introduced,
while Section 4 describes the determination of the OFRF structure. Section 5 discusses the
evaluation of the GALE decompositions and in Section 6, the determination of the OFRF
model using the decomposed GALE contributions is demonstrated. Section 7 provides
the results obtained and their corresponding discussions while the research findings are
concluded in Section 8.

2. Model Formulation

A single-degree-of-freedom (SDOF) vibration-based energy harvester, as illustrated in
Figure 2, having a suspended mass, m, and an oscillating support base with displacement,
y(t), is given. The mass is separated from the base using an isolation system modelled as a
nonlinear damping system connected parallel to a nonlinear spring. The damping system
comprises a mechanical viscous damping, c1, and an electrical damping, c3. The electrical
damping arises from the electromagnetic force generated by virtue of the non-Ohmic load
resistance connected across the EM damper. The linear and cubic stiffness coefficients are
k1 and k3, respectively.
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The model of the SDOF VEH is a class of NDE and the equation of motion of the mass
with respect to the relative displacement, z = x − y, is given as

m
..
z + c1

.
z + c3

.
z3

+ k1z + k3z3 = −m
..
y (1)

For a harmonic base displacement with amplitude, Y, frequency, ω, and zero phase
shift, the base displacement is given as y = Y sin(ωt). Therefore, Equation (1) becomes

m
..
z + c1

.
z + c3

.
z3

+ k1z + k3z3 = mω2Y sin(ωt) (2)

The nonlinear damping device absorbs an instantaneous power equal to the product
of the instantaneous damper force and relative velocity of the VEH. Therefore, it yields an
average power given as

Pav =
1
T

T∫
0

(
c3

.
z3
)
· .

zdt (3)

For a single-frequency harmonic oscillation, where z = Z sin(ωt), yields

Pav =
3
8

c3ω4Z4 (4)



Machines 2024, 12, 30 5 of 21

In addition, it can be deduced that the output frequency response, Z, of system (2), is a
function of ω, as well as the nonlinear parameters c3 and k3. This implies that Pav, derived
in Equation (4), is also a function of c3, k3, and ω. Note that the resonant frequency is the
frequency of interest, as the maximum power is extracted at this frequency.

3. The Output Frequency Response Function (OFRF)

Equation (2) describes the dynamic model of the VEH system, which is a typical
base-excited Duffing equation, with an integrated nonlinear damping. A similar system
has been studied using methods such as the harmonic balance method [35] and multiple
scales [36]. However, the aforementioned methods only facilitate the analytical study of
nonlinear systems. On the other hand, the OFRF, which is employed in this study, does not
only facilitate the analytical study of nonlinear systems but also enables the design and
optimisation of such systems. However, for the OFRF method to perform appropriately,
the system of interest must operate within a stable regime. The main benefit of the OFRF
method is that it can provide an explicit analytical relationship between the design objective
and the system nonlinear parameters. This can significantly facilitate the system’s design
and optimisation process. A comprehensive explanation of the OFRF concept can be found
in [25–29].

Let us examine the differential equation in Equation (5), which describes a class of
Volterra systems

M

∑
m=1

m

∑
p=0

K

∑
k1,···km=0

cp,m−p(k1, · · · km)
p

∏
i=1

dki z(t)
dtki

m

∏
i=p+1

dki y(t)
dtki

= 0 (5)

where M is the maximum degree of nonlinearity, in terms of the system’s input, y(t), and
output, z(t), and K is the order of the derivative. According to the OFRF method, as
described in [26], the output frequency response of Equation (5) can be described by a
polynomial function in terms of the system nonlinear parameters as

Z(jω) =
n1

∑
δ1=0

· · ·
nSN

∑
δSN=0

Ψ(δ1,...,δSN )(jω)κδ1
1 . . . κ

δSN
SN

(6)

where ni is the maximum order of κi for i = 1, . . . , SN in the polynomial expression
of the output spectrum, Z(jω), of Equation (6). The OFRF coefficients, Ψ(δ1,...,δSN )(jω),
are frequency functions with complex values. They are also dependent on the system
linear parameters and system input, where δi = 0, . . . , ni and i = 1, . . . , SN . In addition,

κδ1
1 . . . κ

δSN
SN

is known as the OFRF structure. They are a set of monomials in terms of the
system nonlinear characteristic parameters. If the set of monomials in the OFRF polynomial,
of the nth-order output spectrum, is denoted as M and the vector of the frequency function
is denoted as Θ(jω), the OFRF can be then be described as

Z(jω) = M · Θ(jω)T (7)

where
M =

sN∪
n=1

En (8)

Here, SN is the maximum order of nonlinearity considered for this study and the set
of monomials En can be derived using the method in [15] as

En =

[
K
∪

k1,...,kn=0
[c0,n(k1, . . . , kn)]

]
∪
[

n−1
∪

m−p=1

n−(m−p)
∪

p=1

K
∪

k1,...,kn=0

([
cp,(m−p)(k1, . . . , km)

]
⊗ En−(m−p),p

)]
∪
[

n
∪

p=2

K
∪

k1,...,kn=0

([
cp,0(k1, . . . , km)

]
⊗ En ,p

)] (9)
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Note that the character ‘⊗’ is the Kronecker product and given by

En,p =
n−p+1
∪

i=1

(
Ei ⊗ En−i,p−1

)
, En,1 = En, E1 = [1] (10)

Then, the set of monomials can be obtained as M =
sN∪

n=1
En.

4. Determination of the OFRF Structure

Firstly, the OFRF representations of the output spectrum of system (2), Z(jω), and
the harvestable average power of Equation (4), Pav, are obtained in terms of the design
parameters, c3 and k3. It is observed that Equation (2) belongs to the class of the Volterra
system of Equation (5) in [25], with M = 3 and K = 2. The system parameters are obtained
as c10(2) = m, c10(1) = c1, c10(0) = k1, c30(000) = k3, c30(111) = c3, and c01(0) = −mω2Y.

If the set of monomials in the OFRF representation of the nth-order output spectrum
of system (2) is denoted by M, and the complex-valued OFRF coefficients are denoted by
Θ(jω), then the OFRF representation can be written as

Z(jω) = M · Θ(jω) (11)

Applying the algorithm, as presented in [37], to obtain the OFRF monomials, M, up to
the 7th order, yields

E1 = [1]
E3 = [c3 k3]
E5 = [c2

3 c3k3 k2
3]

E7 = [c3
3 c2

3k3 c3k2
3 k3

3]

(12)

Therefore, M =
sN∪

n=1
En = [1, c3, k3, c2

3, c3k3, k2
3, c3

3, c2
3k3, c3k2

3, k3
3].

It should be noted that for improved accuracy, higher orders can be considered.
Furthermore, the OFRF representation, as presented in Equation (11), which comprises the
monomials obtained, as presented in Equation (12), and its respective OFRF coefficients,
Θn|r(jω) (yet to be determined), can be represented in the form

ZOFRF(jω) =
SN

∑
n=1

En|r · Θn|r(jω) (13)

where, r = 0, 2, . . . , h and h is the maximum number of elements in En. Rewriting
Equation (13) yields

ZOFRF(jω) = Θ1|0(jω) + c3 · Θ3|1(jω) + k3 · Θ3|2(jω)

+ c2
3 · Θ5|1(jω) + c3k3 · Θ5|2(jω) + k2

3 · Θ5|3(jω) + c3
3 · Θ7|1(jω)

+c2
3k3 · Θ7|2(jω) + c3k2

3 · Θ7|3(jω) + k3
3 · Θ7|4(jω)

(14)

Thus, to determine the OFRF coefficients, Θn|r(jω), the GALE decompositions of
system (2) are first computed up to the 7th order. In the next section, the evaluation of the
GALE decompositions for the NDE system of interest is demonstrated.

5. Evaluation of the Generalised Associated Linear Equations (GALEs)

For a nonlinear system of the Volterra class given in system (2), the following substitu-
tions can be made:

z(t) =
∞

∑
n=1

zn(t) (15)
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Rewriting system (2) in a general form, by leaving all the linear elements on the LHS
and substituting Equation (15), yields

m
∞
∑

n=1

..
zn + c1

∞
∑

n=1

.
zn + k1

∞
∑

n=1
zn =

mω2Y sin(ωt)−
L
∑

j=3
cj

(
∞
∑

n=1

.
zn

)j
−

L
˜

∑
j
˜
=3

k j
˜

(
∞
∑

n=1
zn

)j
˜

(16)

The GALE decompositions of system (16) can be obtained for the nth order, for
n = 1, 2, . . . , SN , where SN is the maximum order of the system nonlinearity considered, as
demonstrated in [33,34]; thus,

m
SN
∑

n=1

..
zn + c1

SN
∑

n=1

.
zn + k1

SN
∑

n=1
zn =

mω2Y sin(ωt)

−
SN
∑

n=1

n=3
∑

j=3
cj

n−j+1

∑
j
1
=1

· · ·
n−l+i−j

1
−···j

i−1

∑
j
i
=1

· · ·
n−j

1
−···j

i
···−j

l−1

∑
j
l
=0

.
zj

1

.
zj

i
. . .

.
zj

l

−
SN
∑

n=1

n=3
∑

j
˜
=3

k j
˜

n−j
˜
+1

∑
j
˜1
=1

· · ·
n−j

˜
+i−j

˜1
−···j

˜i−1

∑
j
˜i
=1

· · ·
n−j

˜1
−···j

˜i
···−j

˜i−1

∑
j
˜l
=0

zj
˜1

zj
˜i

. . . zj
˜l

(17)

where the summation of all the sub-indices of
.
zj and zj

˜
on the RHS has to be equal to n,

i.e.,(j
1
+ . . . + j

l
= n) and (j

˜1
+ . . . + j

˜l
= n). In computing the GALE decompositions,

the low-order output responses contribute to the immediate higher-order responses up to
the maximum order considered. For an estimation of the total output responses up to the
SNth − order and its corresponding output spectrums,

z(t) =
SN
∑

n=1
zn(t)

Z(jω) =
SN
∑

n=1
Zn(jω)

(18)

For SN = 7, the following GALE decompositions are obtained:
m

..
z1 + c

.
z1 + kz1 = mω2Y sin(ωt)

m
..
z3 + c

.
z3 + kz3 = −k3z3

1 − c3
.
z3

1

m
..
z5 + c

.
z5 + kz5 = −3k3z2

1z3 − 3c3
.
z2

1
.
z3

m
..
z7 + c

.
z7 + kz7 = −3k3(z1z2

3 + z2
1z5)− 3c3(

.
z1

.
z2

3 +
.
z2

1
.
z5)

(19)

The continuous time output response of system (2) and its corresponding output
spectrum, where Zn(jω) = fft(zn(t)), are, respectively, expressed as{

z(t) = z1(t) + z3(t) + z5(t) + z7(t)
Z(jω) = Z1(jω) + Z3(jω) + Z5(jω) + Z7(jω)

(20)

The cumulative structure of the individual nth-order GALE contributions, up to the 7th
order, is presented in Figure 3. Similarly, Figure 4 shows the output spectrum for each nth-
order contribution of the GALE decompositions, up to the 7th order. It is observed that at
resonance there is a significant contribution by the individual decompositions. Meanwhile,
Figure 5 demonstrates the nth-order contributions of the GALE decompositions up to the
9th order for a range of nonlinear damping values.
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Figure 5. Nth-order GALE contributions for N = 3, 5, 7, and 9 at k3 = 200, and c3 = 0.300, 0.325, 0.350,
0.375, and 0.400.

6. Determination of the OFRF Model Using the GALE Contributions

Equation (20) shows the output spectrum of system (2) determined from the Fast
Fourier Transform of the GALE contributions obtained. The nth-order output spectrum of
each GALE contribution is equal to the corresponding nth-order component of the OFRF
representation; thus 

ZALEs(jω) = ZOFRF(jω)
SN
∑

n=1
Zn(jω) =

SN
∑

n=1
En|r · Θn|r(jω)

(21)

From Equation (21), it can be deduced that

Z1(jω) = Θ1|0(jω)

Z3(jω) = c3 · Θ3|1(jω) + k3 · Θ3|2(jω)

Z5(jω) = c2
3 · Θ5|1(jω) + c3k3 · Θ5|2(jω) + k2

3 · Θ5|3(jω)

Z7(jω) = c3
3 · Θ7|1(jω) + c2

3k3 · Θ7|2(jω) + c3k2
3 · Θ7|3(jω)

+ k3
3 · Θ7|4(jω)

(22)

Subsequent analysis in this study was conducted using the following system parameter
values presented in Table 1 with Ω = ω/ωn.
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Table 1. Model parameters used for the simulations.

Parameters Notations Values

Mass (kg) m 1
Linear spring stiffness (N.m−1) k1 25

Linear damping coefficient (N.s.m−1) c1 2
Magnitude of base excitation (m) Y 0.05

Resonant frequency (rad.s−1) ωr 6.4
Natural frequency (rad.s−1) ωn 5

To obtain the OFRF coefficients up to the 7th order, five simulations are required using
five different values of c3(c3r) and k3(k3r), where r = 1, 2, 3, 4, 5, as given in Table 2.

Table 2. Simulation (training) values of model design parameters.

Model
Nonlinear
Parameter

Sim1 Value Sim2 Value Sim3 Value Sim4 Value Sim5 Value

c3 (N.s3.m−3) 0.300 0.325 0.350 0.375 0.400
k3 (N.m−3) 0 55 110 165 220

The OFRF coefficients can be determined for any frequency of interest using Equation (23),
given as

Θ1|0(jω) = Z1(jω)[
Θ3|1(jω)

Θ3|2(jω)

]
=

[
c31 k31
c32 k32

]−1[ Z31(jω)
Z32(jω)

]
 Θ5|1(jω)

Θ5|2(jω)

Θ5|3(jω)

 =

 c2
31 c31k31 k2

31
c2

32 c32k32 k2
32

c2
33 c33k33 k2

33

−1 Z51(jω)
Z52(jω)
Z53(jω)




Θ7|1(jω)

Θ7|2(jω)

Θ7|3(jω)

Θ7|4(jω)

 =


c3

31 c2
31k31 c31k2

31 k3
31

c3
32 c2

32k32 c32k2
32 k3

32
c3

33 c2
33k33 c33k2

33 k3
33

c3
34 c2

34k34 c34k2
34 k3

34


−1

Z71(jω)
Z72(jω)
Z73(jω)
Z74(jω)


(23)

Therefore, the GALE-generated OFRF representation of the output spectrum of system (2)
can be expressed as

Z(jω; c3, k3) = Θ1|0(jω) + c3 · Θ3|1(jω) + k3 · Θ3|2(jω) + c2
3 · Θ5|1(jω)

+c3k3 · Θ5|2(jω) + k2
3 · Θ5|3(jω) + c3

3 · Θ7|1(jω) + c2
3k3 · Θ7|2(jω)

+c3k2
3 · Θ7|3(jω) + k3

3 · Θ7|4(jω)
(24)

The OFRF coefficients of Equation (24) were determined using the GALE approach.
The benefit of using the GALE approach is that the number of numerical simulations
required to determine the OFRF of the system is significantly reduced [32]. To obtain
the respective OFRF representation of the average power harvestable by the VEH system
via the nonlinear damping system, the OFRF representation of the output spectrum in
Equation (24) is substituted in Equation (4) to yield

Pav(ω, c3, k3) =
3
8

c3ω4|Z(jω; c3, k3)|4 (25)
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The OFRF representation of the quartic magnitude of the output spectrum,
|Z(jω; c3, k3)|4, can also be derived and represented in a polynomial form [20] as

|Z(jω; c3, k3)|4 =
7

∑
n=0

n

∑
m=0

υm,n−m(ω)cm
3 kn−m

3 (26)

where N = 7 is the maximum nth-order nonlinearity while υm,n−m are functions of fre-
quency and represent the OFRF coefficients of |Z(jω; c3, k3)|4. Therefore, the average power
can be represented as

Pav(ω, c3, k3) =
3
8

ω4 ·
7

∑
n=0

n

∑
m=0

υm,n−m(ω)cm+1
3 kn−m

3 (27)

The OFRF-based results are obtained and compared with that determined using the
Runge–Kutta 4 algorithm (ODE45 in MATLAB) for both the output spectrum of system (2)
and the average power harvested by the VEH system. The comparisons were conducted
for different combinations of parameter values beyond the training set of the nonlinear
parameters c3 and k3. The results are presented in Figures 6 and 7 for the pair of param-
eters c3 = 0.45 Ns3m−3 and k3 = 250 Nm−3, and c3 = 0.25 Ns3m−3 and k3 = 270 Nm−3,
respectively. In the next section, the results obtained from the GALE-generated OFRF
representations, presented in Equations (24) and (27), are provided and their implications
discussed extensively.
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7. Results and Discussion

The OFRF representation of the output spectrum, Z, of system (2) was derived using
the GALE decompositions evaluated from the same system. The OFRF representation
of the output spectrum was subsequently used to estimate the average power generated
by the electromagnetic damper. This was performed for a pair of nonlinear parameter
values, c3 and k3, beyond the range over which the OFRF representation was determined,
i.e., c3 ∈ [0.3, 0.4] Ns3m−3 and k3 ∈ [0, 220] Nm−3. As observed in Figures 6 and 7, the
OFRF representation accurately represents the actual output spectrum and average power
of the VEH, respectively. These results clearly demonstrate a good match between the
OFRF representation and the more accurate results from direct numerical simulations.
This demonstrates the benefits of the OFRF methodology as it evidently describes the
system dynamics over the entire spectrum. Note that the wobbles observed around the
resonant regions in Figures 6 and 7 are due to the use of parameters beyond the design
(training) range. Using parameters further beyond the design range will cause the system
to approach instability.

In the implementation of such a nonlinear VEH system, the cubic damping nonlinear-
ity can be contributed by an electromagnetic damper whose characteristics are dependent
on that of the load resistance of the energy-harvesting circuit. The hardening stiffness
nonlinearity can be realised by the application of magnetic springs, wherein a mass of
permanent magnet is levitated between two stationary magnets [38]. However, such mag-
netic springs can also contribute a damping component typically referred to as magnetic
damping [39].



Machines 2024, 12, 30 14 of 21

7.1. Effect of a Hardening Spring and Cubic Damping on the VEH System

Nonlinearities contributed by a hardening-type spring stiffness is integrated into a
standard linear harvesting device to expand the bandwidth over which power can be
harvested. The bandwidth expansion is caused by a shift in the resonant frequency to
higher frequencies. To demonstrate the effect of integrating a hardening-type stiffness
characteristic into the dynamics of a VEH system with cubic damping nonlinearity, nu-
merical studies were conducted. The integration of a hardening spring effect can be
implemented by employing magnetic springs [38]. Using the OFRF representations pro-
vided in Equations (24) and (25), the effect of the stiffness parameter, k3 can be observed in
Figure 8. It is clearly seen to extend the operational bandwidth of the nonlinear VEH system
due to the shift in the resonant frequency of the output spectra. The operational bandwidth
of the VEH system, with and without a nonlinear stiffness characteristic, are denoted as
∆Ω2 = 0.636 Hz and ∆Ω1 = 0.516 Hz, respectively. In addition to this, an apparent 35.71%
increase in the dynamic range of the nonlinear VEH system can also be observed; that
is, from 0.021 mW to 0.0285 mW. This is logical as the average power of the nonlinear
VEH system, given in Equation (25), is a function of the excitation frequency, ω. Several
studies in the literature focused on increasing the bandwidth of linear VEH devices with
the integration of a hardening-type stiffness and compared the Duffing-type harvester
with a standard linear harvester. Figure 9 shows the effect of varying the nonlinear stiff-
ness characteristics on the output spectrum and average power of the nonlinear VEH
system. In Figure 9a, while the relative displacement of the VEH system remains relatively
constant as k3 increases, it is evident, in Figure 9b, that the average power of the VEH
device increases within the resonant region, Ω = 1.2, as k3 increases. However, the power
remains relatively constant within the low- and high-frequency regions, where Ω ≪ 1 and
Ω ≫ 1, respectively.

Furthermore, the effect of a variation in the nonlinear cubic damping, c3, on the VEH
system was also investigated. This was demonstrated by varying c3 while fixing k3, as
shown in Figure 10. It is revealed that while the maximum span of the VEH system reduces
by an insignificant amount, the average power harvested increases significantly around
and beyond the resonant region. It should be noted that to implement the nonlinear cubic
damping force characteristics, the current flowing through the nonlinear load (energy-
harvesting circuit) should be proportional to the cube of the voltage across it [21].

In the current study, a hardening-type stiffness is integrated in a VEH system with
cubic damping nonlinearity. However, a comparison of the VEH with damping and stiffness
nonlinearities against its linear equivalent has not been considered here. This is due to the
unavailability of a basis for such comparison to be made. Comparisons of this nature have
never been reported for electromagnetic-type VEH devices with damping and stiffness
nonlinearities to the best of the authors’ knowledge.

Furthermore, most studies in the literature considered the Duffing-type harvesters
that exhibit the jump phenomenon, and they were primarily designed to operate within
the larger stable branch. Nevertheless, it is imperative to note that if the VEH model
experiences a jump phenomenon, the sum of the GALE decompositions will not converge
to the actual output spectrum around the jump region. Therefore, the OFRF representations
will poorly describe the actual output spectra of the system and, consequently, will be an
inappropriate method to conduct the system analysis and design. However, this problem
is resolved here with the integration of both linear and nonlinear damping characteristics.
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7.2. Optimisation of an Unconstrained Nonlinear VEH System

Using the OFRF representation of the average power as determined in Equation (27),
an optimisation problem can be formulated as

max
[c3,k3]

Pav(ωr, c3, k3)

s.t.
{

0.2 ≤ c3 ≤ 0.5
0 ≤ k3 ≤ 400

(28)

The solution to the unconstrained optimisation problem is simple and can be deter-
mined using the MATLAB fminsearch or fmincon functions. Moreover, using the OFRF
representations of Equations (24) and (27), the relationships between the design parame-
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ters, c3, k3, the output spectrum, and the average power at the resonant frequency can be
established. These are presented using surface plots in Figures 11 and 12. It can be deduced
from Figure 12 that the average power is significantly sensitive to the nonlinear stiffness
characteristic, k3, but less sensitive to the nonlinear damping characteristic, c3, at lower
values of k3. However, at higher values of k3, the average power increases to an optimal
value as c3 increases to 0.46, then it starts to decline. It should be noted that this design is
only valid within the design range of the parameters of interest.
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In Figure 13, the output spectrum and average power of the VEH system, for a
variation in c3 and k3, are provided at Ω ≪ 1 and Ω ≫ 1, respectively.
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8. Conclusions

In this study, the analysis and design of a vibration energy harvester with damping
and stiffness nonlinearities were considered. Nonlinear stiffness was introduced into
the mechanical subsystem of the vibration energy harvester to extend the operational
bandwidth of the VEH system. In addition, the nonlinear damping, which is a function
of the nonlinear load in the energy harvesting circuit, is able to extend the average power
of the VEH system. It should be noted that the dynamic characteristics of the energy
harvesting circuit influence the damping characteristics of the nonlinear electromagnetic
damper, as shown in Figure 2.

The Output Frequency Response Function (OFRF) polynomial representation of the
actual system model (2) was determined using the Generalised Associated Linear Equation
(GALE) decompositions of the system. By using the GALE method, the number of numer-
ical simulations needed to determine the OFRF polynomial representation of the actual
system was considerably reduced. Subsequently, the GALE-generated OFRF representation
of the actual system was validated numerically to ensure it clearly described the system
output spectra.

The effect of a hardening stiffness nonlinearity, as well as a nonlinear cubic damping,
on the VEH system was investigated. The application of low-level excitations for this
study ensured no jump phenomenon was exhibited. This is because the GALE and OFRF
concepts are applicable only to a class of nonlinear systems stable at zero equilibrium and
which can be described by a Volterra series model. The exhibition of a jump by the system
model will nullify the suitability of the methods employed in this study.

The results obtained in this study show that the nonlinear stiffness characteristic
extended the operational bandwidth by 23.26%. In addition, the harvested power was also
increased by 35.71%, hence improving the performance of the VEH system. It was also
revealed that employing a nonlinear cubic damping characteristic, in the presence of a



Machines 2024, 12, 30 20 of 21

nonlinear stiffness characteristic, improved the performance of the VEH system. Using the
GALE-generated OFRF representation, optimal values of the VEH design parameters can
be determined for any desired power level within and beyond the design range. Future
studies will focus on the design of VEH systems with damping and stiffness nonlinearities
subject to mass-displacement constraints inherent in practical VEH systems.

A prototype of the proposed system model is currently being fabricated in order to
conduct some experimental studies. This is a follow-up to the current study and is expected
to be used to validate the method employed herein. While the nonlinear stiffness can be
realised using magnetic springs or geometrical nonlinear springs, the nonlinear damping
could be realised using an energy-harvesting circuit with a nonlinear characteristic load.
Such an energy-harvesting circuit will provide a current which varies proportionally with
the cubic power of the voltage. The proposed nonlinear load could be designed using
power electronics methods, such as a DC-DC switching converter.
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