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Abstract: Since tool wear accumulates in the cutting process, the condition of the cutting tool shows a
degradation trend, which ultimately affects the surface quality. Tool wear monitoring and prediction
are of significant importance in intelligent manufacturing. The cutting signal shows short-term
randomness due to non-uniform materials in the workpiece, making it difficult to accurately monitor
tool condition by relying on instantaneous signals. To reduce the impact of transient fluctuations, this
paper proposes a novel network based on deep learning to monitor and predict tool wear. Firstly, a
CNN model based on residual connection was designed to extract deep features from multi-sensor
signals. After that, a temporal model based on an encoder and decoder was built for short-term
monitoring and long-term prediction. It captured the instantaneous features and long-term trend
features by mining the temporal dependence of the signals. In addition, an encoder and decoder-
based temporal model is proposed for smoothing correction to improve the estimation accuracy of
the temporal model. To validate the performance of the proposed model, the PHM dataset was used
for wear monitoring and prediction and compared with other deep learning models. In addition,
CFRP milling experiments were conducted to verify the stability and generalization of the model
under different machining conditions. The experimental results show that the model outperformed
other deep learning models in terms of MAE, MAPE, and RMSE.

Keywords: tool wear monitoring; multi-step predicting; deep learning; temporal model

1. Introduction

Traditional manufacturing is undergoing a transformation towards intelligent man-
ufacturing with the development of information technology, demanding intelligent and
automated upgrades in machining [1]. In the machining process, tool wear is inevitable,
which directly affects the tool surface integrity and machining accuracy, and may even
damage the machine tool [2–4]. Relevant studies have shown that 10–40% of machine tool
downtime is caused by abnormal tool conditions [5] and the service life of tools is only
50–80% of the recommended service life [6]. Therefore, tool condition monitoring (TCM)
offers advantages in cutting costs and enhancing production efficiency and product quality,
and holds significance for smart manufacturing.

Two methods are commonly applied in TCM, namely, direct and indirect methods. For
the direct method, the tool wear is directly measured with an optical microscope or a CCD
camera based on computer vision methods [7]. In the indirect method, models of TCM are
established based on signals collected by sensors, such as cutting force [8], vibration [9],
acoustic emission [10], and spindle power [11]. Compared with direct methods that require
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machine tools to be shut down for measuring, indirect methods allow in situ estimates of
tool condition based on sensor data. Consequently, indirect methods are considered to be
more suitable for in situ tool condition monitoring.

Many models have been proposed for indirect TCM, including physical models, data-
driven models, and hybrid models. Most physical models consider only the dominant
factors related to tool wear, which have the advantages of low complexity and physical
interpretability, but require expert domain knowledge to construct [12]. Hybrid models
combine physical knowledge with data-driven models, easing the lack of sample data and
improving its generalization ability [13,14]. However, the applied physical knowledge
mainly relies on prior information about tool wear and lacks deep embedding of tool
wear mechanisms. In addition, these methods require large-scale tool wear labels for
model training, which make it difficult to meet the needs of online prediction. Data-
driven models use accurate mapping between features and wear to solve tool condition
monitoring problem. Liao et al. [15] proposed a method based on acoustic emission
signals using wavelet packet decomposition to extract energy features; a support vector
machine (SVM) model was established for TCM. Li et al. [16] proposed a time varying
and condition adaptive hidden Markov model for capturing tool wear time dependence.
Chen et al. [17] proposed an artificial neural network-based in-process tool wear prediction
(ANN-ITWP) model, estimating the tool wear values by cutting parameters and average
peak force in the y direction. Cheng et al. [18] used a support vector regression (SVR)
model to estimate tool flank wear, with a grid search algorithm (GS), a genetic algorithm
(GA), and particle swarm optimization used for parameter optimization. The prediction
accuracy of the proposed method was 97.32% and 96.72% under GA-SVR and GS-SVR
prediction models, respectively. The abovementioned machine learning models have
achieved considerable success in TCM. However, they require a lot of feature engineering
work in feature extraction and screening [19,20].

Deep learning has a strong ability to extract features automatically compared with
traditional machine learning methods, with no necessity to perform feature engineering.
Therefore, many deep learning models have been proposed for TCM in recent studies.
CNN can extract spatial relationship from the feature map through the combination of
convolution layers and pooling layers. Xu et al. [21] proposed a multi-scale feature fusion
implemented by the developed parallel convolutional neural networks. The channel
attention mechanism combined with the residual connection was developed to enhance
the performance of the model. Duan et al. [22] enlarged samples and applied a three-layer
wavelet package decomposition. A multi-frequency-band feature extraction structure
based on a deep convolution neural network structure was introduced to predict tool wear
conditions. Yong et al. [23] proposed a one-dimensional convolutional neural network
(1D-CNN) and deep generalized canonical correlation analysis (DGCCA). In particular,
1D-CNN was used to extract features from 1D raw data, whereas DGCCA with attention
mechanism was used to fuse the feature output from each 1D-CNN. Shah et al. [24] extracted
image quality parameters from scalograms constructed from Morlet wavelets, and built
several LSTM models for tool wear prediction. Wu et al. [25] applied a feature extraction
method based on singular value decomposition (SVD) and used a BiLSTM model to predict
tool wear. Zhang et al. [26] used 1D-CNN to automatically extract features, and then used
BLSTM model to mine time-dependency of features and monitor tool wear. Xu et al. [27]
proposed an integrated model based on deep learning and multi-sensory feature fusion; the
proposed parallel convolutional neural network (PCNN) achieved multi-sensory feature
fusion. The prediction results were generated by a fully connected neural network.

Existing deep learning models studies mostly focus on tool condition monitoring,
with less attention on tool wear prediction. The significance of tool wear prediction lies
in achieving early warning of tool condition and reducing the probability of outliers. In
this paper, a novel method for tool wear monitoring and prediction is proposed based on a
residual convolutional network and seq-to-seq structure. The contributions of this work
are as follows:
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(1) A deep convolutional network based on a residual structure is proposed to achieve
multi-scale feature fusion of multi-source information and alleviate the problems of
gradient disappearance and performance degradation. In addition, the introduction
of BN and dropout layers improves the generalization ability of the model and
avoids overfitting.

(2) An encoder–decoder network for short-term monitoring and long-term prediction
was built based on the attention mechanism. It can capture the time dependence of
depth features, as well as the instantaneous features and long-term trends of time
series features.

(3) The encoder and decoder-based temporal model can be used for in-process smoothing
to reduce local fluctuations in wear values, which improves monitoring and prediction
accuracy compared to traditional smoothing methods.

The rest of paper is organized as follows. Section 2 introduces the theoretical back-
ground of CNN and temporal model. In Section 3, the proposed model for tool condition
monitoring and prediction are introduced. Then, the experiment is presented and the
results are discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Theoretical Framework
2.1. Residual Convolutional Network
2.1.1. Convolutional Neural Network

A CNN is a type of feedforward network, which is among the representative models
of deep learning [28]. Widely employed in image recognition, video classification and
more [29], CNNs show a powerful capability of representation learning, allowing them
to perform feature extraction and reduce spatial dimensionality of feature maps through
convolution and pooling. As shown in Figure 1, the structure of a CNN includes an input
layer, a convolutional layer, a pooling layer, activation function, and a fully connected layer.
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Figure 1. The architecture of a convolutional neural network.

Convolutional layers contain kernels that can extract features from input data, with
each kernel having a set of weight and bias that can be learned. Parameters of the model
are optimized through learning, aiming to learn feature representation of the inputs. A
convolutional layer can be expressed as follows:

xj
l = f

(
∑

i∈M

(
wij

l ·x
i
l−1

)
+ bl

j

)
(1)

where xl−1 is the (l − 1)th feature map of the input, xl is the lth feature map, wl is the kernel
of the lth layer, M represents the size of input, bl is bias of the lth layer, and f represents the
activation function.
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A pooling layer is used to decrease the dimensions of feature maps and minimize the
number of parameters, reducing the required computations and alleviating the issue of
overfitting. Pooling methods include maximum pooling and average pooling. The former
is used in this paper, which can be expressed as follows:

P = max
Xl∈S

xl (2)

where xl is the input feature map of the lth layer and S represents the pooling window size.
After convolutional and pooling layers, fully connected layers are adopted to apply a

linear transformation to the input vector, and a nonlinear transformation is then performed
through an activation function to obtain the output. The output layer can be expressed
as follows:

yj = σ
(
∑i=1 wij·xi + bj

)
(3)

where w is the weight between the lth and l – 1th layer, x is the output value of the ith
neuron in the l – 1th layer, b is the bias of the jth neuron in the lth layer, and σ represents
the activation function.

2.1.2. Residual Structure

A residual neural network (ResNet) is a deep learning model proposed by He et al. [30]
to alleviate the gradient vanishing and network degradation when the layers increase. A
ResNet applies residual joins to map features to layer inputs and merges them with outputs
by addition, as shown in Figure 2.
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Figure 2. The architecture of a residual network block.

The input is x, and the residual is defined as F(x), which is the difference between
features Y(x) learned from convolution layers and input. The residual F(x) is learned
during training with expectation of convergence to 0, resulting in an identity mapping
Y(x) = x. Residual connection not only retains the advantages of a shallow network, but
also alleviates network degradation and enables building of deeper networks. The residual
connection can be represented as follows:

Y(x) = x + F(x) (4)

2.2. Temporal Model
2.2.1. Gated Recurrent Unit

A gate recurrent unit (GRU) is an improved version of a recurrent neural network
(RNN) [31], with a gating mechanism introduced to modulate the flow of information, as
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shown in Figure 3. Compared with the original RNN, the superiority of a GRU lies in two
gate control units: a reset gate and an update gate. Its expression is as follows:

zt = σ(Wzxt + Vzht−1 + bz)
rt = σ(Wrxt + Vrht−1 + br)
ht = tanh(Wcxt + Vc(rt ⊗ ht−1))
st = (1 − zt)⊗ ht−1 + zt ⊗ ht

(5)

where xt is the input of the t-th moment, ht−1 is the hidden state of the t – 1th moment. The
update gate zt determines how much historical information needs to be retained for the
current state, controlling information that flows into memory. The reset gate rt decides how
much of the previous state to forget, controlling the information that flows out of memory.
With the gating mechanism, a GRU handles long-term time-dependency more effectively
than the original RNN, which alleviates the problem of vanishing gradient.

Machines 2024, 12, x FOR PEER REVIEW 5 of 23 
 
 

x. Residual connection not only retains the advantages of a shallow network, but also al-
leviates network degradation and enables building of deeper networks. The residual con-
nection can be represented as follows: 

( ) ( )Y x x F x= +  (4)

2.2. Temporal Model 
2.2.1. Gated Recurrent Unit 

A gate recurrent unit (GRU) is an improved version of a recurrent neural network 
(RNN) [31], with a gating mechanism introduced to modulate the flow of information, as 
shown in Figure 3. Compared with the original RNN, the superiority of a GRU lies in two 
gate control units: a reset gate and an update gate. Its expression is as follows: 

( )
( )

( )( )
( )

1

1

1

11

σ

σ
−

−

−

−

 = + +

 = + +


= + ⊗


= − ⊗ + ⊗

z z
t t t z

r r
t t t r

c c
t t t t

t t t t t

z W x V h b

r W x V h b

h tanh W x V r h

s z h z h

 (5)

where 
tx  is the input of the t-th moment, 

1−th  is the hidden state of the t – 1 th moment. 

The update gate zt  determines how much historical information needs to be retained for 

the current state, controlling information that flows into memory. The reset gate tr  de-
cides how much of the previous state to forget, controlling the information that flows out 
of memory. With the gating mechanism, a GRU handles long-term time-dependency more 
effectively than the original RNN, which alleviates the problem of vanishing gradient. 

 
Figure 3. The architecture of a GRU unit. 

2.2.2. Encoder–Decoder 
A sequence-to-sequence model is a deep learning technique widely applied in ma-

chine translation and speech recognition [32]. It is an encoder- and decoder-based model 
that maps an input sequence to an output sequence. The model consists of two main com-
ponents: an encoder and a decoder, as shown in Figure 4. The encoder and decoder are 
typically implemented by a RNN or improved versions such as LSTM and GRU. 

Figure 3. The architecture of a GRU unit.

2.2.2. Encoder–Decoder

A sequence-to-sequence model is a deep learning technique widely applied in ma-
chine translation and speech recognition [32]. It is an encoder- and decoder-based model
that maps an input sequence to an output sequence. The model consists of two main
components: an encoder and a decoder, as shown in Figure 4. The encoder and decoder are
typically implemented by a RNN or improved versions such as LSTM and GRU.
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The encoder is used to summarize information from input sequences and convert
inputs to vectors of fixed length. The inputs of the encoder can be vectors or a sequence
of words with variable length. A hidden state vector is generated by the encoder, which
represents the context of the input sequence. The final hidden state of the encoder, namely
the semantic vector, is then passed to the decoder as an input.

The decoder, used in conjunction with the encoder, works similarly to the encoder. It
takes the semantic vector generated by the encoder and current hidden states as inputs. At
each time step, the input vectors are fed into decoder and the next hidden state is output
until the end of the output sequence.

2.2.3. Encoder–Decoder with Attention

An attention mechanism is an artificial intelligence technique that enables networks
to focus on a subset of features by learning the weight and improving the performance of
networks in processing sequence data [33].

There exist limitations, though encoders and decoders have been widely used for
sequence processing tasks. Encoders and decoders are associated with a semantic vector,
which is expected to represent the information of the entire sequence. Since they have a
limited memory capacity and inability to preserve early historical information, semantic
vectors cannot reflect the whole sequence, reducing the accuracy of decoder outputs.

To address these issues, the encoder and decoder modules introduce an attention
mechanism. At each moment, the attention layer generates a semantic vector based on the
information of the input sequence. Each intermediate vector contains different degrees
of long-term and short-term information, the degree of which depend on the amount of
weight given by the attention mechanism. The decoder generates an output vector based
on the semantic vector. The attention mechanism is less dependent on the whole sequence,
which improves the generalization ability and interpretability of the network. The attention
mechanism of the encoder–decoder model can be expressed as follows:

eij = score
(
hi, sj−1

)
aij =

exp(eij)
∑n

k=1 exp(ejk)

cj =
n
∑

i=1
aijhi

(6)

where hi is the ith hidden layer of the encoder, and sj−1 is the (j − 1)th hidden layer of the
decoder. eij is Euclidean distance between hi and sj−1. aij is the weight of the ith hidden
layer of the encoder, and cj is the semantic vector.

3. Methodology

In this paper, a hybrid model based on 1D-CNN and Resnet (DResnet-1d) is proposed
for tool condition monitoring, on the basis of which tool condition prediction is carried out
by a time-series model to achieve early warning of tool condition, as shown in Figure 5.
The sensor signals collected during machining and the corresponding tool wear values
are put into the proposed model. Model training determines the optimal parameters of
the proposed model. The initial estimates are transferred to a multi-step predictive time-
series model. Through smoothing corrections, tool wear monitoring and prediction can
be achieved.
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3.1. Deep Feature Extraction for Tool Wear

A deep network is supposed to have an excellent capability of feature extraction by
assembling elementary features in shallow layers into advanced features in deep layers.
For this paper, a DResNet-1d model was established to estimate tool wear values, as shown
in Figure 6. The convolutional unit at the beginning was used to fuse multi-sensor data and
transform the number of channels of the feature map. ResBlock represents a residual block,
the structure of which refers to the pre-activation residual block [34] shown in Figure 7.
Conv is the convolution layer, BN represents the BatchNorm layer, dropout represents the
dropout layer, and the activation function is ReLU. The number of convolution kernels
in the residual block is 64 and 128, with strides of 1 and 2, and the kernel size is 3. In
this paper, the ResBlock was set to repeat 20 times to form a deep network. FC is the full
connection layer, which is used to nonlinearly map the features into tool wear values.

ŷt = D(x1, x2, · · · , xn) (7)

The inputs and outputs of the model can be represented as Equation (7). The input
of the model is (x1, x2, . . . , xn), where n is the number of sensor signal channels, x1 to xn
is the signal collected by sensor, D represents the model, and the output ŷt is the tool
wear estimation.
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3.2. Multi-Step Prediction Model for Tool Wear

Tool wear is a continuous process, and there exists a temporal correlation between
adjacent tool wear values. Considering the ability of a RNN to capture time dependency,
an encoder- and decoder-based temporal model was established to achieve long-term and
short-term predictions with historical information.

The encoder- and decoder-based temporal model, which is shown in Figure 8a, adopts
a GRU based encoder–decoder structure and applies the attention mechanism. The inputs
of the encoder are the tool wear values of past moments, and the semantic vector is
output by the encoder. The attention layer assigns a weight to the semantic vector at each
respective moment, which is fed into the decoder as the initial hidden state, and then tool
wear prediction of future moments is output, as shown in Figure 8b.{

(ŷt+1, ŷt+2, · · · , ŷt+n) = F
(
y′t−m+1, y′t−m+2, · · · , y′t

)
y′t = G(Xt) = G

(
x1

t , x2
t , . . . , xi

t
) (8)

Machines 2024, 12, x FOR PEER REVIEW 9 of 23 
 
 

features tX  to obtain the historical wear values '
ty , G represents the monitoring model, 

and the temporal model takes the tool wear values of past m consecutive moments as 
inputs of the encoder, denoted as ( )1 2

' ' '
t m t m ty , y , , y− + − +   , and F represents the temporal 

model. The outputs of the decoder are the tool wear predictions of the next n moments, 

denoted as   ( )1 2t t t ny , y , , y+ + + . The process is shown as Figure 9. 

 
(a) 

(b) 

Figure 8. Multi-step prediction model. (a) The structure of an encoder- and decoder-based tem-
poral model. (b) Inputs and outputs of the temporal model. 

  
Figure 9. Comprehensive multi-step model for tool wear prediction. 

3.3. Smoothing of Estimation 
The DResNet-1d model achieves multi-sensor signal fusion that reduces the impact 

of signal fluctuations on tool wear estimation. However, there is a lack of temporal corre-
lation between the estimation of adjacent moments, which results in inevitable outliers. 
To address these shortcomings and inspired by the temporal model, smoothing correction 
was applied in this paper to reduce the probability of outliers and improve the accuracy 
of the estimation, as shown in Figure 10. 

VB values
Past m moments

GRU Encoder
Layer:2 Unit:32

VB values
Future n moments

GRU Decoder
Layer:2 Unit:32

Attention
Layer

1t my − + 2t my − + 1ty − ty

1t mh − + 2t mh − + 1th −
……

th 1ts + 2ts + 1t ns + −
……

ns

1ty + 2ty + 1t ny + − t ny +

1tc + 2tc + 1t nc + − t nc +

Encoder Decoder

Attention Layer

Figure 8. Multi-step prediction model. (a) The structure of an encoder- and decoder-based temporal
model. (b) Inputs and outputs of the temporal model.



Machines 2024, 12, 306 9 of 21

The integrated model for multi-step prediction of tool wear is used to construct an
intrinsic link between multi-domain features of multi-channel signals and multi-step wear
values. The continuous historical wear values obtained in the monitoring model are used as
inputs to the time-series model and the information in the historical wear values is extracted
by attention for the prediction of short-term and long-term wear values. The whole process
can be expressed as Equation (8). The monitoring model reads the multichannel features
Xt to obtain the historical wear values y′t, G represents the monitoring model, and the
temporal model takes the tool wear values of past m consecutive moments as inputs of the
encoder, denoted as

(
y′t−m+1, y′t−m+2, · · · , y′t

)
, and F represents the temporal model. The

outputs of the decoder are the tool wear predictions of the next n moments, denoted as
(ŷt+1, ŷt+2, · · · , ŷt+n). The process is shown as Figure 9.
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3.3. Smoothing of Estimation

The DResNet-1d model achieves multi-sensor signal fusion that reduces the impact of
signal fluctuations on tool wear estimation. However, there is a lack of temporal correlation
between the estimation of adjacent moments, which results in inevitable outliers. To
address these shortcomings and inspired by the temporal model, smoothing correction was
applied in this paper to reduce the probability of outliers and improve the accuracy of the
estimation, as shown in Figure 10.
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The smoothing correction model adopted in this section follows the aforementioned
encoder- and decoder-based temporal model. The historical tool wear values are fed into
the model and a short-term prediction is output. Multiple predicted tool wear values exist
at each moment, which can be denoted as

(
y′t,1, y′t,2, · · · , y′t,k

)
. The statistical characteristic

of available predicted tool wear values at each moment is selected to perform smoothing
correction. The smoothing correction can be expressed as follows:

yt = S
(

y′t,1, y′t,2, · · · , y′t,k
)

(9)

where S represents the function used to calculate statistical features.

4. Experiment
4.1. Description of Dataset

The PHM2010 dataset was used for model verification. The milling experiment was
conducted on the Roders Tech RFM760 high-speed CNC milling machine (Roders, Soltau,
German). A 6 mm three-flute carbide milling cutter was used in the experiment, and the
workpiece material was stainless steel (HRC52, USA). The cutting speed of the workpiece
was 196 m/min, and the feed speed in the X-axis direction was set to 1550 mm/min. The
cutting depth in the Y-axis direction and Z-axis direction were respectively set to 0.125 mm
and 0.2 mm. The tool cut from the upper edge to the lower edge of the workpiece surface
in a serrated manner. During the milling process, the cutting length of each tool was
about 0.1125 m × 315 = 35.44 m. To obtain tool wear data, the experiment platform was
equipped with three types of sensors to measure cutting force, vibration, and acoustic
emission signals during machining process. A Kistler three-component dynamometer was
installed between workpiece and milling machine to measure the cutting force signals in
the X, Y, and Z directions. Further, three Kistler acceleration sensors were installed on
the workpiece to measure vibration signals in the three directions, and a Kistler acoustic
emission sensor was used to measure the ultra-high frequency stress wave pulse signal
released during material deformation. The data obtained from the sensors were processed
by a Kistler 5019A multichannel charge amplifier. All measured signals were collected
using a data acquisition card (NI DAQ PCI 1200, Texas, USA) at a frequency of 50 kHz. The
experiment platform is displayed in Figure 11a. Finally, a total of seven channels of signals
were collected, namely the X-direction force (N), Y-direction force (N), Z-direction force (N),
X-direction vibration (g), Y-direction vibration, (g), Z-direction vibration (g), and acoustic
emission signal (V). In addition, the actual wear of the milling cutter was measured using a
LEICA MZ12 microscope (German) after each cutting.

A total of six datasets corresponding to the wear data of six identical tools were
collected under the same conditions as in the milling experiment, recorded as C1, C2, C3,
C4, C5, C6, and the number of the cutting time in each dataset was 315. In these datasets,
only C1, C4, and C6 measured actual tool wear values after each cutting, as shown in
Figure 11b. This paper focuses on a supervised learning model. The C1, C4, and C6 data
were used for validation experiments.
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4.2. Data Preprocessing

As the cutting number increases, tool wear will intensify, which results in increases in
the cutting force and changes in the amplitude of vibration. In addition, acoustic emission
signals can reflect the elastic energy of workpiece deformation during processing [35].
Consequently, all seven channels of signals were selected from the PHM2010 dataset for
model verification in this paper. Due to the complexity of the machining process and the
interference of the experiment environment, the collected signals were inevitably mixed
with invalid values, outliers, and noise, which reduced the signal quality. Therefore, the
original signals could not be directly fed into the model. To improve the effectiveness of
the signal, data preprocessing was applied to the signals before model verification.

The start and end of each cutting process corresponded to the process of tool feeding
and retracting. During the tool feeding and retracting, the milling cutter did not come
into normal contact with the workpiece, so the signals measured by the sensors may have
experienced temporarily invalid data. To eliminate this invalid data, 5% of the data at the
start and end part of signals was removed in this paper. This method is simple and had
little impact on the data, but effectively removed invalid values from the data.

Three acceleration sensors were used to collect vibration signals in X, Y, and Z direc-
tions since the vibration signals came directly from the cutting area with high sensitivity
and a short response time. However, due to the interference in the experiment environment
and the accuracy of the sensors, there inevitably existed a large amount of noise. Therefore,
it was necessary to perform denoising on the collected vibration signals. In signal pre-
processing, noise is usually considered Gaussian noise. In this paper, a wavelet threshold
denoising method was used for signal denoising [36].

The sampling frequency of the original signal was 50 kHz, resulting in the length of the
signal generated in each cutting being up to about 200,000. Additionally, the data collected
in each cut were not of uniform length. In order to reduce computational complexity and
storage space usage, this paper adopted the segmented aggregation approximation (PAA)
method to compress the time series data to a length of 5000. This reduced the data volume,
and unified the data length.

Feature selection is a data preprocessing technique to reduce the dimensions of the
inputs of the prediction model. The reduction of input features reduces the complexity
of the deep learning model, thus reducing the time for model training and testing and to
avoid having too few features in the training samples, resulting in insufficient fitting of the
prediction model. As shown in Figure 12, the force signals in three directions, vibration
signals in three directions, and acoustic emission signals are shown in different colors in
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the left side of the figure. 12 features were extracted from them and compared with the
correlation of tool wear. and compared with the correlation of tool wear. After correlation
analysis, 10 features were selected, as shown in Table 1.
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Table 1. List of extracted features.
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4.3. Model Training

The datasets C1, C4, and C6 were processed according to the chosen preprocessing
method and then randomly divided into training, testing, and validation sets. The model
was trained using the training set, while the testing and validation sets were used to
evaluate the model’s performance. Table 2 provides a detailed description of the experi-
mental datasets.

Table 2. Settings of training and testing sets.

Setup No. Training Set Testing Set Validating Set

C1 189 63 63
C4 189 63 63
C6 189 63 63
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The proposed model was trained on an RTX1060 GPU (NVDIA, Santa Clara, CA,
USA) with 6 GB memory. The optimizer was set as Adam, the training epochs were set
as 600 with batch size 20, and the initial learning rate was set as 0.001. The mean squared
error was used as the loss function and the Adam optimizer was selected to update the
model parameters. To avoid overfitting, this study applied L2 regularization during the
training process to improve the generalization ability of model. The loss function with
regularization was as follows:

xL(ω) =
1
n

n

∑
t=1

(ŷt − yt)
2 +

λ

2
∥ω∥2

2 (10)

where ŷt and yt are the predicted and the true wear at the t moment, respectively, λ

represents the weight of the regularization term 1
2∥ω∥2

2.

5. Results and Discussion
5.1. Evaluation Metrics

To evaluate the performance of the model, the mean absolute error (MAE), root mean
square error (RMSE) and mean absolute percentage error (MAPE) were employed for
evaluation. MAE describes the proximity between the estimation and actual tool wear
values, while RMSE magnifies actual errors to provide a clearer picture of predictive
accuracy. The expressions are as follows:

RMSE =

√√√√ 1
n

n

∑
i=1

(
∧
yi − yi)

2

(11)

MAE =
1
n

n

∑
i=1

∣∣∣∧yi − yi

∣∣∣ (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∧yi − yi

∣∣∣
yi

(13)

5.2. Performance of the DResNet-1d Model for Tool Condition Monitoring

To assess the effectiveness and superiority of the DResNet-1d model, some common
models were used to make a comparison using the same datasets. All models are listed
as follows:

SVR: traditional machine learning model based on support vector regression;
1D-CNN: deep learning model based on one-dimensional convolutional neural network;
BiLSTM: a variant of RNN, with two LSTMs in opposite directions;
BiGRU: a variant of parameter simplification of a LSTM network, with two GRUs in

opposite directions.
To make the comparison between the five models more fairly, the main parameters

were consistent, and a series of unified settings was adopted. For example, the optimizer
was Adam, the dropout rate was 0.5, and the loss function was MSE.

The validation results of C1 are presented in Figure 13. The evaluation metrics for
each model are listed in Table 3. Comparing the validation results of models, deep learning
models outperformed traditional machine learning models. Within the realm of deep
learning methods, the mean RMSE and MAE values of the DResNet-1d model were 3.09
and 2.28, respectively, which stand out in comparison to the results of other models. This
indicates the incorporation of residual connections in the CNN mitigates issues such as
gradient vanishing and network degradation. This allows for the efficient extraction of
specific features and simplification of spatial information within the signal and exhibits
remarkable feature extraction capabilities and abstract learning abilities.
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Table 3. Performance of different models for the PHM dataset.

Model

Experiment

C1 C4 C6

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

SVR 9.98 11.29 0.094 14.75 18.49 0.165 12.05 14.62 0.098
1D-CNN 4.39 5.52 0.041 5.04 6.33 0.059 6.58 8.18 0.051
BiGRU [13] 6.48 8.81 0.054 9.77 11.46 0.102 5.79 6.99 0.042
BiLSTM 5.80 7.31 0.051 10.02 11.36 0.102 4.78 5.80 0.038
Proposed
model 2.70 3.47 0.027 2.39 2.93 0.027 1.76 2.89 0.014

5.3. Effectiveness of Smoothing Correction for Tool Condition Monitoring

It can be observed from the results of the monitoring that there were inevitably local
fluctuations and outliers in the wear curve of each model, which affected the total accuracy.
To improve the accuracy of estimation results, it is possible to improve the structure of the
model, or to correct the estimation to reduce local fluctuations in the curve.

Some traditional algorithms have been used for time-series smoothing, such as moving
average models, and autoregressive differential moving average models. Considering the
latency and performance of the model, triple exponential smoothing can be chosen [37].

The encoder- and decoder-based temporal model was used to perform smoothing
correction on the estimation. The comparison of evaluation results after correction using the
temporal model and the triple exponential smoothing algorithms are shown in Figure 14,
and the MAE and RMSE are listed in Table 4.
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Table 4. Performance of smoothing algorithm for the PHM dataset.

Model

Datasets

C1 C4 C6

MAE RMSE MAE RMSE MAE RMSE

Triple
exponential
smoothing

2.52 3.10 2.12 2.62 1.40 1.80

Temporal model 2.09 2.58 1.89 2.23 1.23 1.60

The experimental results demonstrated that both methods showed a good perfor-
mance, reducing local fluctuations in adjacent time step ranges while retaining the trend of
the wear curve, making the estimated tool wear values more stable. In contrast, although
the triple exponential smoothing method was relatively simple, its overall smoothing effect
was inferior to that of the encoder- and decoder-based temporal model.

5.4. Performance of Tool Wear Prediction Model on Multi-Step Prediction

Similar to the smoothing process, the tool wear prediction model took as inputs
multiple consecutive historical tool wear values estimated by the DResNet-1d model and
computed predicted future tool wear values. It established a mapping relationship between
historical tool wear information and future tool wear values. For this paper, short-term
and long-term predictions were performed and tool wear values were predicted for each
dataset at 5, 10, and 15 moments in the future, respectively. The results of the five-step
prediction are shown in Figure 15. To validate the performance of the proposed model, the
results were obtained by comparing them with those of standard deep learning models
(CNN and GRU) and advanced deep learning models (Transformer and SMAML). All the
results are shown in Table 5.

From the analysis of the experimental results listed in Table 5, the results of the
proposed prediction model outperformed the basic deep learning model and the advanced
deep learning model on multi-step prediction, which proved that the model can learn the
short-term features and long-term trends of time information. Meanwhile, the RMSE and
MAE of 5, 10, and 15 steps showed an increasing trend, indicating a higher accuracy in the
short-term prediction compared to the long-term prediction.
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Table 5. The prediction results of 5 steps, 10 steps, and 15 steps for the PHM dataset.

Datasets
5 Steps 10 Steps 15 Steps

MAE RMSE MAE RMSE MAE RMSE

C1
Proposed model 2.59 3.36 3.37 4.42 3.76 4.99
Transformer [38] 2.73 3.40 4.80 5.53 5.92 6.51
SMAML [39] 4.81 6.63 4.53 6.35 4.49 6.50
CNN 9.66 12.50 9.76 12.79 9.75 13.00
GRU 6.74 8.75 6.78 8.86 6.63 8.81
LSTM 7.00 99.62 7.27 9.98 7.60 10.32

C4
Proposed model 2.35 3.13 2.81 3.38 3.52 4.37
Transformer 4.68 6.03 7.11 8.17 8.13 9.09
SMAML 8.02 11.07 7.53 10.95 8.35 10.34
CNN 6.82 9.22 7.49 10.00 8.41 11.09
GRU 9.86 12.14 9.85 12.23 10.03 12.51
LSTM 10.28 11.89 10.62 12.32 11.28 13.02

C6
Proposed model 3.71 4.49 4.05 4.81 4.55 5.34
Transformer 3.65 4.59 6.13 7.07 7.07 7.97
SMAML 6.96 8.74 7.66 8.47 7.61 8.39
CNN 7.71 9.97 8.20 10.67 8.60 11.19
GRU 7.35 9.93 7.15 10.03 6.75 9.78
LSTM 6.20 8.21 6.16 8.15 6.06 7.79

5.5. Validation of Generalization Capability of the Tool Wear Prediction Model

The proposed tool wear prediction method was applied to the machining of carbon
fiber-reinforced polymer (CFRP) to test its generalization in a real machining environ-
ment. Side milling experiments were conducted on a three-axis vertical machining center
(VMC855) in a dry cutting environment. The workpiece material was CFRP, the size was
450 mm × 40 mm × 11 mm, and the milling cutter was equipped with one APMT1135 PCD
insert with a cutting diameter of 20 mm ( specific process parameters are shown in Table 6).
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Table 6. CFRP milling test parameters.

Machine
Tool Workpiece

Cutting
Speed
(m/min)

Feed Rate
(mm/min)

Radial
Cutting
Depth (mm)

Axial
Cutting
Depth (mm)

VMC855 CFRP 251.33 400 3 1

As shown in Figure 16, the force acquisition system collected the three-axis cutting
force signals Fx, Fy, Fz, and the Z-axis bending moment Mz, respectively. It consisted
of a wireless rotary dynamometer (Kistler-9170B), a wireless transmission module, and
display software (PTS App Type Z22059-900). The sampling frequency was 2.5 kHz. The
acceleration acquisition system consisted of a wireless rotation dynamometer (Kistler-
9170B) and a wireless transmission module with a sampling frequency of 2.5 kHz. The
acceleration acquisition system consisted of a self-developed ADXL356CEZ three-way
capacitive acceleration sensor, a wireless acquisition board, and visualization software
(self-developed) from Chongqing University. The accelerometer was attached to the surface
of the workpiece with adhesive and the sampling frequency was 10 kHz.
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Figure 16. The CFRP milling experiments setup.

Three single-tooth tools were used for multiple milling experiments of CFRP compo-
nents. Taking a wear value of 300 um as the criterion for tool failure, each tool was milled
approximately 80–100 times. Three datasets consisting of cutting signals and wear values
were obtained, i.e., T1, T2, and T3. In order to minimize the measurement errors, a digital
microscope (MV-HM2000GM) was used to collect the tool wear images after each cutting
experiment without disassembling the inserts, and the corresponding tool wear values
were measured. The tool life for one set of experiments is shown in Figure 17, where the
width of the flank wear increased significantly with the number of cuts.
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Figure 17. Tool wear of T1, T2, and T3.

Multi-domain feature extraction was performed on signals from six channels (cutting
force and cutting vibration in three vertical directions). Figure 18 illustrates the signal
features under three sets of experiments and differentiates the different features with colors.
Then, ten features described in Table 1 were selected from each experiment.
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Figure 18. Multi-domain sensor signal feature extraction results for tools T1, T2, and T3.

The extracted features were input into the monitoring and prediction model to verify
model accuracy. Figures 19 and 20 show the predicted results of flank wear in the three tool
experiments. Specific results are shown in Tables 7 and 8. The prediction results show that
the proposed model was able to accurately realize tool wear monitoring and prediction
during milling of CFRP workpieces, proving the generalization ability of the model to learn
other machining conditions.

Table 7. Performance of proposed models on tool wear estimation.

Model

Experiment

T1 T2 T3

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Proposed
model 3.45 4.86 0.014 3.04 4.31 0.015 2.07 2.59 0.012
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Table 8. The prediction results of 5 steps, 10 steps, and 15 steps.

Dtaset
5-steps 10-steps 15-steps
MAE RMSE MAE RMSE MAE RMSE

T1 2.78 3.84 3.87 5.06 4.53 6.01
T2 2.35 3.37 3.36 4.39 3.98 5.62
T3 1.71 2.49 3.05 4.02 3.25 4.34
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6. Conclusions

In this research, an integrated system that can be used for online tool wear monitoring
and prediction was designed, and its effectiveness was verified with a publicly available
dataset and experiments. The conclusions are summarized as follows:

(1) A DResNet-1d model based on 1d residual structure was proposed to extract deep fea-
tures of multi-source information in which gradient vanishing and model degradation
are alleviated. BN layers and dropout are used in the model to improve the general-
ization ability of the model and avoid overfitting. The model showed superiority in
various indicators.

(2) An encoder- and decoder-based temporal model was proposed to capture time de-
pendency, and an attention mechanism was introduced to improve the generalization
capacity of the model. To reduce the local fluctuation and outliers, the encoder and
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decoder-based temporal model was used to perform smoothing correction. The aver-
age RMSE of tool wear estimation was significantly reduced to 2.1 after correcting.

(3) To give early warning of tool conditions, the temporal model was used to predict tool
wear values in future moments. In our experiments, the next 5, 10, and 15 steps of tool
wear values were predicted, showing a good performance. This proved that the model
can learn the short-term features and long-term trends of temporal information.
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