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Abstract: With the continuous optimization of energy structures, wind power generation has become
the dominant new energy source. The strong random fluctuation of natural wind will bring challenges
to power system dispatching, so it is necessary to predict wind power. In order to improve the
short-term prediction accuracy of regional wind power, this paper proposes a new combination
prediction model based on convolutional neural network (CNN) and similar days analysis. Firstly,
the least square fitting and batch normalization (BN) are used to preprocess the data, and then the
recent historical wind power data set for CNN is established. Secondly, the Pearson correlation
coefficient and cosine similarity combination method are utilized to find similar days in the long-term
data set, and the prediction model based on similar days is constructed by the weighting method.
Finally, based on the particle swarm optimization (PSO) method, a combined forecasting model is
established. The results show that the combined model can accurately predict the future short-term
wind power curve, and the prediction accuracy is improved to different extents compared to a
single method.

Keywords: wind power prediction; combination model; convolutional neural network; similar days;
optimization algorithm

1. Introduction

In recent years, the new energy input, dominated by wind power generation, is increasing rapidly.
The strong volatility and randomness of natural wind make it difficult to accurately predict wind power,
which brings new problems for the safe and stable operation of power grids [1,2]. More and more
researchers have been committed to investigating the best model to predict the wind power. Generally
speaking, model complexity is an index to measure the quality of the model and the simple one is
preferred. Traditional methods [3,4], such as the autoregressive moving average model (ARMA) and
grey model, cannot dig deeper into the law, which leads to low prediction accuracy. Thus, the common
way for high accuracy is to increase the complexity of the model. With the continuous development
of artificial intelligence technology, wind power prediction based on machine learning [5–8] and
deep learning [9–13] has become a hot topic, compared to the traditional physical and statistical
methods, and the prediction accuracy has been greatly improved. Due to the complexity of the
structures, the models have the ability to process a large number of data and to better reflect the
non-linear and non-stationary nature of wind power. The work in Reference [5] used the Markov
model divided residual error into several different states, the residual values were further forecasted
through calculating the probability distribution of each state, the residual errors were used to correct
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the predicted values to improve the accuracy of wind speeds, and the results showed that the Markov
model can improve the short-term forecasting accuracy of wind power effectively. The work in
Reference [6] used the K-nearest neighbor (KNN) algorithm to select historical wind speed points and
built an SVR model to obtain the fusion wind speed, which improves the accuracy of the wind speed
prediction. A prediction model based on the Long short-term memory network (LSTM) was proposed
in Reference [9], which used NWP prediction data for prediction. The prediction accuracy has some
advantages over the traditional network, but depends on the accuracy of numerical weather prediction
(NWP) itself. Two hidden layers in the Gated Recurrent Unit network were used in Reference [10] to
forecast the wind power, and the results show that the proposed model has higher prediction accuracy
than the Autoregressive moving average (ARMA) model and the LSTM model. Even though the above
research can meet the basic goal of wind power prediction, it is still easy to fall into the limitations of
the model itself, which can be supplemented by the optimization algorithm or other models to further
improve the prediction effect.

Therefore, the method of multi model combination was introduced to overcome the limitations of
the single model [14–21]. The work in Reference [14] proposed a combination model of the support
vector regression model and grey model, and the result showed that the combination model can
improve the prediction accuracy. The work in Reference [15] used CNN to extract information from
input data and integrated the Light Gradient Boosting Machine (LightGBM) algorithm, and the
combination model has better performance in terms of the accuracy and efficiency of the single
model. A prediction method of combining empirical mode decomposition (EMD) and D-LSTM
was introduced in Reference [16], which used EMD to decompose wind power curve and weighted
combination after component prediction of D-LSTM; the results show that the combined model has
better prediction ability. The work in Reference [17] verified that the ensemble learning method had
better prediction performance than the traditional independent method; ensemble learning reduced
the overall prediction error and has the capacity to merge various models. The above research shows
that the multi model combination better than the single one due to the complementary advantages.
However, there are still some shortcomings of combination weight subjectivity and multi model
learning time dimension overlap.

In addition, according to the actual situation of power grid operation, the wind power prediction
of a single wind farm cannot meet the dispatching needs, and the importance of regional wind power
prediction is gradually reflected. Regional wind power prediction refers to the prediction of the
total wind power of each wind farm in the same region as a whole. The regional prediction method
emphasizes the regularity of the total wind power in the prediction process, which effectively reduces
the amount of information needed and the interference of local random factors of individual wind
farms. It is of great practical significance for the power sector to optimize the power system dispatching,
and reduces the rotating reserve capacity and the operating cost of the power system. Physical methods
are no longer applicable because it is difficult to obtain all physical parameters in the whole region.
Moreover, the statistical method and the traditional artificial intelligence method cannot dig out the
rule of historical wind power, so the prediction effect is not good. Therefore, the problem of the regional
wind power prediction has not been effectively solved yet.

This paper further studies the influence of combined weights on multi model prediction methods,
and proposes a combined optimization prediction model of regional wind power based on CNN and
similar days. First, the recent data after preprocessing is used as the input of CNN model, which is
able to discover the short-term rule existing in the historical data. Second, the Pearson correlation
coefficient and cosine similarity are used to select the most similar days and search for the long-term
rule in all historical data. Finally, the optimal combination weight is selected by the PSO algorithm to
obtain the predicted results, which are analyzed by examples.



Machines 2020, 8, 80 3 of 12

2. Short-Term Law Prediction Based on CNN

The prediction goal is to achieve the prediction of xt+1 to xt+σ in advance at the time of t, The time
length of the forecast interval is called the forecast period and the prediction period of short-term
prediction is generally in hours. In this paper, the sampling interval of regional wind power data is
15 min, and the prediction period is 4 h, which means that σ is taken as 16. The recent data used for CNN
model prediction is defined as

[
xt−a2+1, xt−a2+2 · · · xt

]
, where a is the side length of the input matrix.

2.1. Data Process

Interference points exist in the wind power curve because the natural wind has the characteristics
of fluctuation and intermittence, and the total output of multiple wind farms will introduce the
phenomenon of offsetting or aggravating the fluctuation. In order to eliminate abnormal fluctuation
points, the K-order least square curve fitting method is used to smooth the wind power curve and
eliminate certain noise in recent data sets. The fitting objective function can be defined as follows:

min
m∑

i=1

∣∣∣p(xi) − yi
∣∣∣

K = deg[p(x)]
(1)

where m is the number of fitting continuous time points, p(·) is the fitting polynomial function, yi is
actual wind power curve, and K is the degree of p(·).

On this basis, the fitting data are normalized and made into matrices to meet the input data
structure of the CNN model. Normalization can unify the wind power value into (0, 1) for calculation
and also help to find the global optimal solution through gradient descent when the error propagates in
the back direction. The common normalization methods are linear normalization, Z-score normalization
and sigmoid normalization in order to avoid constraining the distribution of data and weakening the
expression ability of the network. This paper utilizes the batch normalization (BN) [22] algorithm
proposed by Google in 2015. The input data is transformed into new data, satisfying normal distribution,
and the parameters of translation and scaling that can be learned are added. The conduction process
formula is defined as follows:

µB ←
1
n

n∑
i=1

xi

σ2
B ←

1
n

n∑
i=1

(xi − µB)
2

x̂i ←
xi−µB√
σ2

B+ε

yi ← γx̂i + β , BNγ,β(xi)

(2)

where B = {x1, x2 · · · xn}, µB and σB are average value and standard deviation of set B, which contains
n elements, x̂i is the normalized value (mean value is 0, variance is 1), ε is a small positive number, γ and
β are scaling parameters and translation parameters, respectively, and yi is the final normalized result.

2.2. CNN Model Structure and Applicability Analysis

CNN is a powerful feedforward neural network, which is good at extracting features from matrix
data and has strong data mining ability. The structure diagram is shown in Figure 1, which includes
input layer, convolution layer, pooling layer, fully connection layer and output layer. The convolution
layer can be regarded as the process of extracting features from data sources, which generally requires
multiple convolution structures to work together. Due to data after the convolution layer having larger
dimensions, we use the pool layer to segment the feature, so as to reduce the size of the feature graph.
Finally, the full connection layer combines the local features into the global features.
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The operation of the model is divided into training process, verification process and test process,
which correspond to the training set, verification set and test set, respectively. The total data set
consisted of wind power data in the last two years. The training process is divided into two stages:
the forward propagation of data and the backward propagation error. By calculating the error between
the output value and the real one, the model parameters will be continuously modified based on the
gradient descent method and the training process ends after certain iterations. The verification process
is accompanied by the training process. After each iteration, the model calculates the accuracy of the
verification set according to the current network parameters, and saves the best ones as the optimal
model. In order to guarantee the validity of the experiment, the intersection between the test set and
the first two sets is not allowed. In the prediction process, the test set data is imported into the optimal
model and its output is the prediction value of the CNN model.

In this paper, the CNN model is a single output structure, using the recursive prediction method
to achieve 16 points of continuous prediction. It means that the predicted value is inserted into
the last part of the input matrix, and the data points in the front of the input matrix are removed,
and the prediction xn+1 to xn+16 can be achieved. After a prediction period is completed, real value
[xn+1, xn+2 · · · xn+τ] can be introduced after the rolling step τ, and the input data of the model can be
updated. The method of intraday prediction by introducing the real value through the rolling step is
called rolling prediction.

In addition, model hyperparameter optimization is also an important step to establish the network.
An effective hyperparameter adjustment algorithm can not only improve the prediction accuracy,
but also save the operation cost. In all, the input matrix data source has a great influence on the accuracy
of the algorithm, as well as the combination of the convolution layer and pooling layer. Therefore,
this paper focuses on data preprocessing and network structure determination when CNN is applied.

3. Long-Term Law Prediction Based on Similar Days

All data sets in CNN are wind power matrices arranged in chronological order and the time span
of input data should not be too large, which implies that the long-term law cannot be captured. In this
paper, the generalized similar day long-term forecast is proposed to make up for this shortcoming,
and all the historical data are deepened, so as to effectively capture the law of historical similar data.
Divide all data set {x1, x2 · · · xt} into {D1, D2 · · ·Dn}, Dn =

[
xt−nd+1, xt−nd+2 · · · xt−(n−1)d

]
, where d = 96

is the total number of sampling points in a day. Then, the grouped and divided data are defined as the
long-term data set, which are used to search for the generalized similar days. The rolling prediction
method is also used in multi-step prediction.

3.1. Similar Day Search

The goal of looking for similar days is to find out the data closest to the trend of wind power on
the day (base day) before the forecast day in all historical wind power data, and to use the trend of the
next day to revise the forecast results, so as to improve the forecast accuracy. The similarity criteria are
as follows:
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Pearson correlation coefficient:

ρ(X,Y) =
cov(X, Y)
σXσY

=
E[(X − µX)(Y − µY)]

σXσY
(3)

Cosine similarity:

cos(X, Y) =

n∑
i=1

Xi ×Yi√
n∑

i=1
(Xi)

2
×

√
n∑

i=1
(Yi)

2

(4)

Combination similarity:
S(X,Y) = ρ(X,Y) + cos(X, Y) (5)

where X and Y are the comparison day data and base day data, respectively.
On the basis of the single method, considering that the Pearson correlation coefficient (PCCs) and

cosine similarity value interval are the same, we put these two methods together as the combination
similarity day selection method. In the actual case, it is necessary to carry out multiple groups of
comparative experiments on large-scale data, and the best calculation method can be determined to
predict the test set to avoid data leakage.

3.2. Applicability Analysis of Similar Days

Similar days mainly take meteorological similarity into account, which means that there is still a
certain correlation between the follow-up trends of similar data in the two historical periods. The trend
comparison of similar days selected by Formula (5) on a base day is shown in Figure 2.
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figure. It can be seen that the wind power of the next day in similar days tends to converge in the 
time interval of downhill (a), climbing (b) and stable period, and the trends have a high degree of 
correlation. While there are differences in the small peaks (c) and troughs (d), it can still be an effective 
aid for prediction. 

4. Long Short-Term Combined Optimization Prediction 

The operation principle of the short-term and long-term prediction model is described above, 
and the feasibility is analyzed. In some cases, the CNN model can predict well, but in other cases, the 

Figure 2. Trend comparison of similar days.

The solid line and dotted line on the left side of Figure 2 are the base day (2019-1-1) and similar
day (2019-2-3), respectively, and the trends of these two in the next day are on the right side of the
figure. It can be seen that the wind power of the next day in similar days tends to converge in the
time interval of downhill (a), climbing (b) and stable period, and the trends have a high degree of
correlation. While there are differences in the small peaks (c) and troughs (d), it can still be an effective
aid for prediction.
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4. Long Short-Term Combined Optimization Prediction

The operation principle of the short-term and long-term prediction model is described above,
and the feasibility is analyzed. In some cases, the CNN model can predict well, but in other cases,
the prediction accuracy of similar days is higher. In the actual prediction, we require the scientific
and rigorous combination method to make the total statistical index optimal in a long time, since we
cannot know the best combination weight in advance.

4.1. Select Combination Weighting Method

The combination weighting method can be divided into the subjective weighting method and
objective weighting one, where the subjective weighting method is represented by the analytic hierarchy
process (AHP). The weights are reasonably evaluated according to the decision-making problems and
their own experience. However, the decision-making results are subjective and arbitrary, which means
that it is difficult to provide effective and scientific weighting criteria in the wind power prediction
problem. Due to these great limitations, this paper focuses on the objective weighting method.

The objective weighting methods for wind power prediction include the equal weight average
method, time-varying weight method, entropy weight method, genetic algorithm and particle swarm
optimization (PSO). Among them, particle swarm optimization is a random search algorithm based
on group cooperation, which has strong global optimization search ability, fast convergence and
high accuracy, and can effectively avoid falling into local optimization. The optimization process
simulates the behavior of birds’ predation, where each particle is a possible solution of search space,
and the particle dynamically adjusts the speed and direction of flight according to its historical optimal
position and population optimal position. The optimal solution of a single particle search is called
the individual extremum, and the optimal one in the particle swarm is called the global extremum.
Through continuous iteration, the optimal solution satisfying the termination condition can be obtained.

In addition, the neural network is designed in several works for weight selection, which considerably
increases the model complexity and time cost. Considered synthetically, particle swarm optimization is
chosen in the experiment as the objective combination weighting method to avoid the subjectivity of
artificial weighting or AHP.

4.2. Total Prediction Structure

The general structure of the model is shown in Figure 3. On the left is the short-term law prediction
model based on CNN. By using the verification set data, the optimal network structure can be achieved
and then the base day data are input into the optimal CNN model, and the CNN predicted results
can be obtained through recursive prediction. On the right is the long-term law prediction model
of similar days. Similar to the CNN model, the optimal similar day selection algorithm is selected
according to the verification set, and the candidate similar days are determined by calculating the
similarity. Then, the PSO algorithm is used to determine the combination weight of the verification set,
which is used to get the final predicted results.

In the CNN prediction process, we use the recursive prediction method above to forecast the
data in the future period without introducing the true value, which belongs to multi-step prediction.
After the prediction, the evaluation indexes of root mean square error (RMSE), percent error (PE)
and qualified rate (QR) are used. The PE indicator is similar to RMSE, which evaluates the error
between the predicted value and the true value. The QR indicator is closely related to power quality,
because even if the average error is very low, a certain percentage of large errors will still threaten
the operation of the power grid. Parameters a and b in QR are determined according to the specific
requirements of the power grid. The difference among them is that RMSE reflects the absolute size of
the prediction error, PE reflects the relative value of the prediction error, and QR reflects the compliance
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degree of the prediction results. Therefore, the predicted results can be evaluated comprehensively.
The formulas for calculating the indicators are as follows:

RMSE =

√√
1
m

m∑
i=1

(ŷi − yi)
2 (6)

PE =
1
m

m∑
i=1

∣∣∣∣∣ ŷi − yi

Z

∣∣∣∣∣ (7)

QR =
1
m

count
{ ∣∣∣ŷi − y

∣∣∣ ≤ ay + b True
else False

(8)

where m is the number of sampling points, ŷ and y are the predicted value and the real value, Z is the
max power per day, a and b are adjustable parameters, determined by the actual dispatching situation
of the power grid, and the proportion of True is the qualification rate.Machines 2020, 13, x 7 of 12 
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5. Case Analysis

Take the wind power data of a regional wind farm as an example. Specifically, there is a prediction
system in the Beijing–Tianjin–Tangshan region of China where the maximum wind power is 7446 MW
Through this prediction system, only the real data and predicted data of historical wind power in
the last decade are sampled at a sampling frequency of 15 min. Ten years of data from 2010 to 2019
are used in similar day models for long-term law prediction, and the data of the last two years are
used in the CNN model for short-term law prediction, so as to achieve the prediction goal of the next
4 h The feasibility of this method is verified by simulations, and the single CNN method, the single
similar day method and the existing level (the prediction accuracy of this prediction system, which has
been running for more than three years) are compared using three evaluation indexes to verify the
superiority of the combined prediction method.
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5.1. Select Combination Weighting Method

This paper selects the Tensorflow deep learning framework in Python to build the model. First,
determine the K value of the least square fitting. By testing the K value in References [10,20], the optimal
K = 15 can be achieved. Then, normalize and matrix the fitted data with BN. Take the winter data of
the year 2019 as an example, the CNN data set is divided as follows:

In the data set divided in Figure 4, considering the seasonal characteristics of wind power,
the validation set is selected as the same quarter of the year before the test set. In the verification set,
the method of grid optimization is used to optimize the super parameters of CNN. In the CNN training,
a simple grid search method is used to traverse the value interval set by hyperparameters and selects
the optimal hyperparameters without excessively increasing the complexity of the model. The structure
and training parameters of the optimal CNN network are shown in Tables 1 and 2, respectively.
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Table 1. CNN networks structure parameters.

Structure Input Size Conv Kernel/Filter

Conv1 8 × 8 4, (2 × 2)
Average Pool1 6 × 6 2 × 2

Conv2 3 × 3 16, (2 × 2)
Dense 128
Dense 64
Dense 1

Table 2. CNN training parameters.

Parameter Value

Loss Mean squared error
Optimizer Adam

Epoch 90
Batch size 128

In addition, each layer of the CNN uses the relu activation function, and the steps of convolution
kernel and pooling kernel are 1 and 2, respectively. In the end, the recursive prediction method is
adopted to achieve 64 to 16 prediction structures.

According to the prediction process of CNN in Figure 3, take the time interval 0:00–4:00 on
6 November 2019 as an example, and the predictive effect is as follows:

In Figure 5, the left side of the vertical dotted line is the actual curve at 20:00–24:00 on the previous
day, and the right side is the effect comparison of the forecast curve. RMSE and PE indexes of CNN
are 266.85 MW and 4.63%, respectively. It can be seen that the existing level can track the actual value
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on the general trend, but there is no response at the fluctuation, so it can only meet the basic forecast
demand. CNN predicted results successfully predicted the time of the first trough, and followed the
climbing process well. However, after the 24th point, it continued to rise and deviated from the actual
curve until the 29th point. Yet the climbing response time is too long.
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Generally speaking, CNN is more sensitive to the short-term data and has a good tracking effect.
The farther it is from the prediction starting point, the more difficult it is to achieve accurate prediction.
Thus, similar days need to be introduced to assist prediction, so as to improve the prediction accuracy.

5.2. Similar Day Forecast

In order to select the most suitable similar day, the similar day method in Section 2.1 is used as the
validation set for prediction, and the prediction effect is shown in Table 3. It is shown that by using the
combination of the Pearson correlation coefficient and cosine similarity, the prediction effect is the best.
Therefore, this combination is selected to predict the test set data.

Table 3. Statistical error of different similar days selection methods.

Method PE

Euclidean distance 6.44%
PCCs 6.39%

Cosine similarity 6.36%
PCCs + Cosine similarity 6.31%

We also take the time interval 0:00–4:00 on 6 November 2019 as an example to conduct the
prediction based on similar day, which is convenient for comparison between different models.
The predicted results are calculated as follows:

In Figure 6, the prediction values of similar days are lower than the actual ones, but some inflexion
points appear similar to the actual value. Moreover, the response of the similar days prediction at
the wave crest is slow, and the downward trend in the second half is greater than the real situation,
which can neutralize the long response of the CNN prediction.
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5.3. PSO Combination Prediction and Error Analysis

The subsection tests the combination method mentioned above in the verification set, and the
comparison results are shown in Table 4.

Table 4. Statistical effect of combination weighting.

Method CNN Weight RMSE (MW)

Average weight 0.5 608.51
Time varying weight change 620.91

Entropy weight method 0.474 607.43
Genetic algorithm 0.486 607.30

PSO 0.487 607.29

It shows that the RMSE of the combination weight determined by PSO is the smallest, and the
predicted results of multiple models are shown as follows:

It can be seen from Figure 7 that the prediction curve using the PSO combination tracks the first
trough well, corrects the response at the peak, fits the real value more closely, and the prediction
accuracy is better than other individual predicted results.
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To better verify this conclusion, statistical analysis is carried out on the whole year 2019, and the
parameters a and b of the qualified rate in the evaluation index are taken 15% and 350 respectively.
The annual prediction indexes are shown in the table below.
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From Table 5, we know that, compared to the existing level, RMSE and PE indexes of the
combination model are reduced by 73.2 MW and 1.69%, respectively, and the corresponding QR index
is increased by 10.1%. Moreover, even if the CNN method and the similar days method can achieve
higher prediction accuracy than the existing level, the prediction errors based on PSO weighting
combination are the lowest, and the qualification rate is the highest at the same time. This is consistent
with the theoretical analysis, that is, the combination model synthesizes the short-term laws (by CNN)
and the long-term ones (by the similar days) to give a more accurate prediction. In a word, this method
has a great application prospect to accurately predict the short-term wind power.

Table 5. Forecast indicators for the whole year of 2019.

Evaluation Indexes CNN Similar Days Combination Model Existing Level

RMSE (MW) 621.2 627.9 592.9 666.1
PE 6.07% 6.16% 5.79% 7.48%
QR 80.3% 78.6% 81.1% 71.0%

6. Conclusions

In this paper, based on the traditional CNN model, a new multi model combination forecasting
method is implemented. The prediction accuracy is greatly improved compared to the existing level.
The main contributions are as follows:

• On the basis of CNN′s wind power prediction, we add the prediction method of similar days,
discuss its feasibility, make up for the shortcomings of the same time dimension of multi model
combination prediction, and form the characteristics of CNN′s short-term law learning and similar
days′ long-term law searching.

• In this paper, the PSO method is used to avoid the subjectivity in choosing combination weight.
The result shows that the combined prediction algorithm of CNN and similar days with PSO has
higher prediction accuracy and longer prediction period, which is an effective method.

• Regional wind power prediction is different from single base station prediction or single wind
farm prediction. Regional wind power prediction is difficult to rely on real-time data or single
regional meteorological data, and needs a longer time margin. Therefore, it requires fully mining
the law in historical data to meet the prediction demand.
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