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Abstract: Aiming at addressing the problems of high specific energy consumption for cutting and
slow response to the change of hardness in the control of existing mining roadheaders, an adaptive
variable speed cutting control method based on cutting performance optimization is proposed by
analyzing the working principle of roadheaders. Firstly, cylinder pressure and motor current are
invoked as the criteria to judge load changes. Particle swarm optimization is utilized to optimize
the cutting parameters under different impedance. Then, the relation between cutting speed, motor
current and cylinder pressure is established by using fuzzy neural network to train cutting parameters
and identification parameters under different conditions. Finally, the vector control of motor and
electro-hydraulic servo valve is used to control the cutting speed. The results show that the cutting
unit can adapt to different load signals and always keep the roadheader in the optimal working
state. The rotation speed regulation of the cutting head reaches the stable state after 0.05 s, with the
overshoot of 1.42%. The swing speed regulation of the cutting head reaches the stable state after 1 s,
with the overshoot of 5.3%. Conclusions provide a basis for improving the cutting efficiency and
prolonging the working life of the roadheader.

Keywords: performance optimization; adaptive; fuzzy neural networks; SVPWM; servo valve

1. Introduction

The cutting unit bears a large load and impact load, and its power consumption
accounts for about 75% of the total installed power. The cutting motor is often in the state
of overload or underload because of the constant change of the cutting load which is caused
by the complex and changeable physical characteristics of coal and rock. Therefore, it is
necessary to dynamically adjust cutting speed according to the hardness of the coal and rock
to maintain a high-efficiency cutting state [1,2]. The cutting performance of roadheader is
mainly determined by structural parameters and cutting motion parameters [3]. The finite
element method was used to establish the numerical model of rock cutting for investigating
the variation laws of cutting force and debris size with cutting speed and rake angle [4,5].
Liu et al. [6] studied the influence of cutting angle on cutter wear and concluded that
larger rake angle could reduce wear. Wang et al. [7] studied the effect of cutting depth on
specific energy consumption for cutting and found that only 3% of external work is used to
generate new chipping surfaces. By investigating the influence of cutting speed on cutting
performance, Zhang et al. [8] explored the change rules of specific energy consumption for
cutting and average cutting force with propelling speed and rotation speed.

The above research on cutting parameters and motion parameters can improve the
cutting performance to a certain extent, but the performance can be further improved
by adjusting the parameters according to the hardness of the coal. Yang et al. [9] used a
proportional integral derivative (PID) control to maintain the power of the cutting machine
motor constant by adjusting the speed of the hydraulic cylinder. Wang et al. [10] proposed
a coal-rock dynamic identification method based on adaptive weight optimization and
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multi-sensor information fusion according to the differences in cutting current, vibration,
acoustic emission, infrared thermal image and other signals at different cutting state.
Faradonbeh et al. [11] established a database of machine performance and geomechanical
parameters of rock. In order to obtain more accurate models for predicting the performance
of roadheaders, they also analyzed the parameters through genetic programming (GP)
and gene expression programming (GEP) approaches. Dolipski et al. [12] proposed an
automatic cutting head speed control system with a PID controller to reduce the energy
consumption of the cutting head. Wang et al. [13] established a multi-information feature
library including Y-axis vibration signal, acoustic emission signal, cutting current signal
and temperature signal to judge the hardness of coal and rock. Gao et al. [14] used the power
supply panel as the controller to realize the automatic forming of the roadway section
and the automatic traction and the speed regulation of the cutting arm. Wang et al. [15]
proposed a control method to improve the speed of roadheader by using multi-sensor
information fusion and solved the problem of low efficiency of roadheader by classifying
the speed of cutting head to adapt to the change of coal and rock hardness. Zhao et al. [16]
took the current as the control object and adjusted the motor speed by setting the rated
current and using vector control to make the cutting motor operate at constant power.
Cheluszka et al. [17] proposed a speed control mode of cutting head and compared the
performance of the control system with and without speed feedback through experiments.

As stated previously, most studies on cutting performance focus on the design of
cutting head, and the researches about motion parameters are also limited to specific loads,
which leads to the inability of the roadheader to maintain the optimal cutting state in real
time. Aiming at the above problem, this paper proposes an adaptive control method based
on performance optimization to improve the cutting efficiency of roadheader.

The rest of the paper is structured as follows: The influences of cutting speed on loads
are analyzed in Section 2. In Section 3, particle swarm optimization is utilized to calculate
the cutting parameters with the best cutting performance. In Section 4, the fuzzy neural
network is used to establish the mapping relationship between motor current, cylinder
pressure and cutting speed to realize the hardness identification. The optimal cutting
conditions under different loads are achieved by the above methods.

2. The Establishment of Mathematical Models
2.1. Working Principle of Roadheader

The front of the cantilever is the cutting head, which is driven by the motor to rotate
the cutting head for crushing coal and rock, and the back part is connected with the
revolving platform. The transverse swing process of the cantilever is driven by a pair of
symmetrical rotary hydraulic cylinders. The cantilever can swing around its rotary center
by extending one side of the hydraulic cylinder and synchronously shortening the other
side. The cantilever vertical swing through a pair of lifting hydraulic cylinders at the same
time telescopic or shortened. Its structural principle is shown in Figure 1.
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Figure 1. Structure diagram of roadheader. 1. Cutting head 2. Cutting arm 3. Lifting cylinders 4.
Revolving platform 5. Travelling mechanism 6. Rack 7. Angling cylinders 8. Electrical system.

From the working principle and working process of roadheader as shown in Figure 2,
the cutting performance is related to the swing speed and rotation speed of the cutting
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head. Therefore, it is necessary to establish the relationship between the speed of the
hydraulic cylinder and the swing speed of the cutting head, as well as the influence of the
swing speed v and the rotation speed n on the cutting load.
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Figure 2. Schematic of cutting mechanism of roadheader: (a) horizontal swing; (b) lifting swing.

According to the working principle, the swing speed of the cutting head can be
obtained as follows:{

vy = Lω1 =
L sin γy

c vys
vh = (L cos α + m)ω2 = 1

R (L cos α + m)vhs sin γh
(1)

where vy is the lifting speed, vh is the swing speed; L is the length of the cantilever; γ is the
transmission angle; m is the distance between the projection point of the lifting center on
the horizontal plane and the rotation center; α is the lifting angle; vys and vhs are the speed
of the lifting cylinder and the angling cylinder respectively.

2.2. Roadheader Cutting Head Load

The load of the cutting head is determined by the hardness of coal and rock and the
cutting depth of the cutting teeth. Large loads and load fluctuations will cause the damage
of the picks and decrease the working life of the roadheader [18,19].

As shown in Figure 3, the force on the i-th pick can be decomposed into cutting
resistance Zi, tractive resistance Yi and side resistance Xi. The value of parameters in
the load calculation formula is shown in Table 1 [20]. The pick information is shown in
Table 2 [21]. 

Zi = Pk[kTkgky(0.25 + 0.018thi) + 0.1Sj]
Yi = Zi(0.15 + 0.00056Pk)2.5/h0.4

i
Xi = Zi(C1/(C2 + hi) + C3)hi/t

(2)

where Pk is the contact strength of the coal and rock; kT, kg and ky are the coefficient of type,
the coefficient geometrical shape and the coefficient of chamfering of cutting pick; t is the
average transversal spacing; hi = (1000v/nm) sin φi denotes the average cutting thickness,
m is the number of cutting pick on the same cutting line; Sj is the projected area of cutting
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pick after blade surface in the traction direction; C1, C2 and C3 are influence coefficients of
breakout patterns.
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Table 1. The value of parameters in the load calculation formula.

Parameter kT kg ky t Sj C1 C2 C3 m

Value 1.5 1.221 0.65 30 20 1 0.2 0.1 3

Table 2. Information of cutting pick.

Pick 1 2 3 4 5 6 7 8 9 10 11 12

φi (◦) 0 85 228 37 132 265 74 169 302 111 206 339
ri (mm) 560 560 560 559 553 543 533 523 513 503 493 483

Pick 13 14 15 16 17 18 19 20 21 22 23 24

φi (◦) 148 243 16 185 280 53 222 317 90 259 354 127
ri (mm) 473 464 455 446 437 428 419 410 399 386 371 354

Pick 25 26 27 28 29 30 31 32 33 34 35 36

φi (◦) 296 33 166 338 81 215 31 146 280 95 217 356
ri (mm) 335 315 294 270 247 222 195 168 140 110 80 50

The vertical force Ra, traversing force Rb, axial force Rc and load torque Mt in the
cutting head can be expressed as:

Ra =
j

∑
i
(Zi sin φi −Yi cos φi)

Rb =
j

∑
i
(Zi cos φi + Yi sin φi)

Rc =
j

∑
i

Xi

Mt =
j

∑
i

Ziri

(3)

where φi is the position angle of a single cutting pick; ri is the working radius of the i-th
pick, j is the number of picks which participate in cutting at this moment.

In Figure 4a, the three-way force load presents periodic variation and the sequence
from high to low is Ra, Rb, Rc. In Figure 4b,c, the load and torque decrease with the increase
of the rotational speed and increase with the growth of the swing speed. According to the
analysis, the impact caused by the abrupt change in hardness can be reduced by decreasing
the swing speed and increasing the rotation speed.
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Figure 4. Influence of cutting parameters on cutting head load: (a) loading curve at Pk = 350 and
(b) the load comparison curve at different rotating speeds and (c) the load comparison curve at
different swinging speeds.

2.3. Establishment of Coal and Rock Load Identification Database

The identification of the hardness of coal and rock is the premise of adjusting the
cutting parameters. By collecting the current of motor and the pressure of cylinder under
different loads, the load identification database can be established.

The relationship between load torque and current is:

Il =
Mtn

9550×
√

3Ulη cos ϕ
(4)

The effect of vertical force on the pressure of the lifting cylinder is expressed as:

P =
RaL + Gb cos α

2Ac sin γ
(5)

The effect of traversing force on the pressure of the rotary cylinder is denoted as:

P1 =
Rb(L cos α + m)

A1R sin ϕ1 + RA2 sin ϕ2
(6)

where Ul is the line voltage of motor; Il is the line current of motor; η = 0.9 represents
transmission efficiency of the reducer; cos ϕ refers to the motor power factor; P and P1 are
the pressure of lifting cylinder and the rotary cylinder; A, A1 and A2 are the working area
of cylinder; ϕ1,ϕ2 is the angle between the oil cylinder and the two hinge points.
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From Equations (4)–(6) it can be observed that the current of the cutting motor and the
pressure of the cylinder are related to the load. Hence, the impedance of coal and rock can
be identified by establishing the relationship between current, pressure and impedance.

The relationship between motor current and cylinder pressure and load is shown in
Figure 5. The analysis shows that the current of the cutting motor and the pressure of
the driving cylinder are consistent with the changes of the cutting load. The feasibility of
this method is proved by the above research. The impedance identification database was
established as shown in Table 3.
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Table 3. Coal and rock impedance identification database.

Pk (MPa) 350 490 650 800 1000 1300

Current (A) 96 105 133 156 170 203
Pressure (MPa) 9.8 10.3 10.8 11.28 11.73 12.6

3. Cutting Parameter Optimization
3.1. Cutting Parameter Optimization Do Not Use the Same Titles

The cutting performance depends on the structural parameter and cutting parameters
during the cutting process of the roadheader. The structural parameters were fixed at the
beginning of the design, the cutting performance can only be improved by changing the
swing speed v and the rotation speed n [22]:

(1) Determination of design variables
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The swing (v), and rotation (n) speeds were selected as the optimized variables, then
the optimized variables is described as:

X = [x1, x2]
T = [v, n]T (7)

(2) Objective function establishment

The fluctuation coefficient of three-direction load and torque Mt, and specific energy
consumption for cutting Hw are used as the objective function for optimization of the
cutting performance. The fluctuation coefficients of the three-direction load is:

KRg =
1

Rg

√√√√ 1
N

N

∑
i=1

(Rgi − Rg)
2 (8)

The fluctuation coefficients of torque is denoted as:

KMt =
1

Mt

√√√√ 1
N

N

∑
i=1

(Mti −Mt)
2 (9)

The specific energy consumption for cutting is as follows:

Hw =
2πnMt

3600λAv
(10)

where N is the number of discrete points; Rgi and Mti are the discrete value of load; Rg and
Mt are the average value of load; λ is the bulk density of coal and rock; A is the area of the
cutting head that participates in the cutting part perpendicular to the yaw direction.

For the multi-objective optimization design, the multiple objectives is transformed
into several single objectives by using the linear weighting algorithm expressed as:

F(X) = k1 fRa(X) + k2 fRb(X) + k3 fRc(X) + k4 fMt(X) + k5 fHw(X) (11)

where k1, k2, k3, k4 and k5 are the optimal weight coefficients of each objective function,
fRa(X), fRb(X), fRc(X) and fMt(X) are three-direction load and torque fluctuation coeffi-
cients, fHw(X) is the minimum objective function of Hw.

(3) Analysis of optimization results

Regarding the power and speed range of the cutting motor as constraints, the cutting
parameters of roadheader are optimized by the particle swarm algorithm to obtain the
best rotation speed and swing speed under different hardness [23]. The optimized result is
shown in Table 4. Table 5 shows the optimized motion parameters.

Table 4. Comparison of optimization results for Pk = 350.

Pk = 350 (MPa) N(r/min) V(m/min) KRa KRb KRc KMt HW(kW·h/m3)

Before
optimization 50 2.5 0.0117 0.0612 0.0236 0.0106 1.017

After
optimization 48.28 2.43 0.011 0.0583 0.0215 0.0102 0.9136

Table 5. Motion parameters after optimization.

Pk (MPa) 350 490 650 800 1000 1300

N (r/min) 48.28 43.96 40.15 38 36.91 34.17
V (m/min) 2.43 2.18 1.92 1.7 1.508 1.38
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Compared with the traditional power control method, the fluctuation coefficient of the
optimized forces in three directions is reduced by 5.98%, 4.73% and 8.89% respectively; the
fluctuation coefficient of load torque is reduced by 3.77%; the specific energy consumption
for cutting is reduced by 10.16%. This method can effectively improve the cutting efficiency
of the roadheader.

3.2. Adaptive Variable Speed Cutting Control Strategy for Roadheader

The voltage and current of the cutting motor and the pressure of the driving cylinder
vary with the hardness of coal and rock. Hence, the current and pressure are used as
identification criteria in this strategy. Using the swing speed v and the rotational speed
n of the cutting head as the control targets, the fuzzy neural network is used to ensure
that roadheader performs the optimal working state. In the control process, the real-time
detection equipment (RTDE) collects the current I of the cutting motor and the pressure
P of the driving cylinder, then I and P are employed as the input parameters of the fuzzy
neural network. The optimal cutting parameters are output by the neural network under
the under specific conditions of hardness. PID is used to reduce the deviation signal that is
the difference between the optimization parameters v1 and n1 and the feedback signals v
and n. Control signals are tracked by electro-hydraulic servo valves (EHSV) and inverter
to achieve optimal cutting state as shown in Figure 6.

Machines 2021, 9, 46 9 of 16 
 

 

roadheader performs the optimal working state. In the control process, the real-time de-
tection equipment (RTDE) collects the current I of the cutting motor and the pressure P of 
the driving cylinder, then I and P are employed as the input parameters of the fuzzy neu-
ral network. The optimal cutting parameters are output by the neural network under the 
under specific conditions of hardness. PID is used to reduce the deviation signal that is 
the difference between the optimization parameters v1 and n1 and the feedback signals v 
and n. Control signals are tracked by electro-hydraulic servo valves (EHSV) and inverter 
to achieve optimal cutting state as shown in Figure 6. 

Current I

Pressure P

Fuzzy neural 
network

Controller

RTDE
n1

v1

PID Converter

PID EHSV

Cutting 
machine

 Hydraulic 
cylinder

v

nCutting 
head

Cutting 
arm

-

-

+

+

 
Figure 6. Adaptive variable speed cutting control strategy diagram. 

3.3. Fuzzy Neural Recognition of Coal and Rock Impedance 
As shown in Figure 7, two neurons in the input layer of the neural network corre-

spond to the current I and the pressure P respectively. The output of the neural network 
is the swing speed or rotational speed that has been optimized [24]. 

 
Figure 7. Fuzzy neural network structure diagram. 

The network adopts the triangle function as the membership function. The first layer 
of the sub-network is the input layer. The second layer is the hidden layer, which is used 
to calculate the result of three nodes. 

=

= + + + =L0 1 1
1

n
i i i i

ij j j jn n jl l
l

y p p x p x p x  (12) 

The third layer is the output of the system: 

α
=

=
1

m

ji ij
j

y y  (13) 

where α j is the normalization of fitness, that is the calculation of the second layer to the 

third layer α α α
=

= 
1

/
m

j j i
i

. 

Figure 6. Adaptive variable speed cutting control strategy diagram.

3.3. Fuzzy Neural Recognition of Coal and Rock Impedance

As shown in Figure 7, two neurons in the input layer of the neural network correspond
to the current I and the pressure P respectively. The output of the neural network is the
swing speed or rotational speed that has been optimized [24].
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The network adopts the triangle function as the membership function. The first layer
of the sub-network is the input layer. The second layer is the hidden layer, which is used to
calculate the result of three nodes.

yij = pi
j0 + pi

j1x1 + · · ·+ pi
jnxn =

n

∑
l=1

pi
jl xl (12)

The third layer is the output of the system:

yi =
m

∑
j=1

αjyij (13)

where αj is the normalization of fitness, that is the calculation of the second layer to the

third layer αj = αj/
m
∑

i=1
αi.

The 500 groups of training data were collected in Sections 2 and 3, the 6 groups of
data in Table 3 were used as test data. The training results are shown in Figure 8.
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In Figure 8, input1 is the cutting motor current, and input2 is the rotary cylinder
pressure. The data in Table 5 is considered as checking data, and the FIS output is the
data trained by the fuzzy neural network. In Figure 8a, the output of swing speed is
gradually decreasing with the increase of current I and pressure P. The maximum of
swing speed is 2.55 m/min and the minimum is 1.36 m/min. As the changing trend of
current and pressure in the actual work is consistent, the lack of training data with different
changing trends leads to negative values in the training results in Figure 8a. Figure 8b is
the comparison of the detection parameters and output parameters of the fuzzy nerve. The
comparison shows that the output results are almost the same as the actual optimization
results. The maximum error value of the two is 0.0446 which satisfies the requirements of
the impedance identification controller.
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4. Adaptive Control Simulation of Roadheader

From Tables 2 and 3, we can see that the speed n of cutting head alters from 43.96 r/min
to 38 r/min when the coal and rock hardness changes from Pk = 490 to Pk = 800, and the
speed v of cutting head changes from 2.18 m/min to 1.7 m/min. Current and pressure
also change with Pk. The speed of cutting motor is controlled by SVPWM as shown in
Figure 9 [25,26].
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Figure 9. Cutting motor Simulink model.

As shown in Figure 10, the motor reaches the rated speed at about 0.6 s. The cutting
speed decreases from 1485 r/min to 1406 r/min when the time reaches 0.7 s. The cutting
head speed decreases to 1215 r/min when the hardness of coal and rock changes again.
The maximum overshoot of the system was 1.06% and the response time was 0.05 s.
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In the starting stage, the maximum torque is 2081 Nm and the maximum current
is 500 A. The change trend of stator current is consistent with that of cutting load. The
simulation results show that the effect of vector control is relatively ideal for both step
signal and ramp signal. The vector control can quickly adjust the motor speed to ensure that
it can reach the optimal cutting parameters output by neural network when the hardness
of coal rock changes.

The fluctuation occurs in the ramp signal because of the approximate linear relation-
ship between the rotation speed and the impedance of coal and rock. In Figure 11, the
change of stator current can reflect the change of coal and rock impedance which verifies
the feasibility of current as the identification criteria again.
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The swing speed v of cantilever is determined by current and pressure signals of
system. Then, the deviation signal ∆v is obtained by comparing the output speed of
network with the feedback speed of system. Deviation signal ∆v controls the current I of
valve through correction, amplification and other links. Current controls the opening size
and direction of the electro-hydraulic servo valve to control the cantilever swing of the
roadheader [27,28].

The parameters of the hydraulic system are set as follows: D = 180 mm, where D
represents the inner diameter of hydraulic cylinder; D1 = 100 mm is the hydraulic rod
diameter; F = 35 MPa denotes the opening pressure of the relief valve; F1 = 1.5 MPa express
the pressure drop of the electro-hydraulic servo valve. The control effect of traditional PID
and fuzzy PID under step and ramp load signals is compared. The deviation between the
input speed and the output speed of the hydraulic system is selected as the optimization
objective. The range of PID parameters is given by the optimizer in AMESim, and the
genetic algorithm is selected to optimize the target to obtain the optimal PI value of the
traditional PID control. The simulation model is shown in Figure 12.
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According to the simulation results shown in Figure 13, the fuzzy PID control effect is
better than the traditional PID because its response time and overshoot are small. The fuzzy
PID control was stabilized after 1 s and the maximum overshooting was 5.3%. Furthermore,
the cutting parameters can be automatically adjusted according to different input signals
to make the roadheader always in an efficient cutting state. Through the simulation of a
single control mode, it can be concluded that the vector control of the motor and the servo
valve of the hydraulic system have a better control effect on the cutting state. Furthermore,
by using the output parameters of the fuzzy neural network, the cutting state of motor and
hydraulic system can be adjusted effectively.
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Figure 13. Speed response curves under different signals: (a) step signal response and (b) ramp
signal response.

In practice the hydraulic system and the motor system always work together, so it is
significant to carry out the joint simulation experiment. Figure 14 shows the co-simulation
model and Figure 15 is the result of the simulation. Figure 15a shows that the motor speed
deviates greatly from the optimization speed between 1 s and 3 s, which is caused by the
current and pressure fluctuations at this time. The motor reaches a stable running state
after 3 s, and the motor speed is basically consistent with the optimized speed at this
moment. In Figure 15b, the hydraulic system fluctuates because the motor current signal
and the hydraulic cylinder pressure signal are constantly changing. Similarly, there is a
large deviation between the swing speed and the optimized speed between 1 s and 3 s. The
swing speed of the cutting head is basically consistent with the optimization speed after
3 s, and the overall change trend is the same as the motor running condition.
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the working state and the optimized state of the cutting motor and (b) Comparison of working state
and optimal state of hydraulic system.

Through the above simulations of the single control mode and the joint control mode,
it can be found that the optimal cutting parameters under the hardness can be output by
the fuzzy neural controller by collecting the current and pressure signals. The roadheader
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has been in the efficient cutting state through the motor vector control and servo valve to
trace the network output parameters. Therefore, the control method proposed in this paper
can realize adaptive control of a roadheader and improve cutting performance.

5. Conclusions

In order to improve the cutting efficiency of a roadheader, the cutting speed is deter-
mined as the variable for the optimization by analyzing the working principle of it. For
this purpose, motor current and cylinder pressure are selected as identification criteria.
The mapping relationship between optimization variables and identification criteria is
established through fuzzy neural network. The following conclusions can be drawn from
the results obtained in this study.

The influence of different motion parameters for load variation was obtained by
simulating the cutting head load of roadheader. The load of cutting head decreases with
the increase of rotating speed and with a decrease of swinging speed.

Load fluctuation and the specific energy consumption for cutting were selected as
the optimization objectives and the cutting parameters were taken as the optimization
variables. By analyzing the optimization results, it is found that the load fluctuation is
reduced and the specific energy consumption for cutting is decreased by 10.16%.

The control method can automatically adjust the rotation speed of the cutting head
and the swing speed of the cutting arm to adapt to load changes and ensure the cutting
mechanism in a highly efficient working state.
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