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Abstract: The present paper deals with the optimization of the three components of cutting forces
and the Material Removal Rate (MRR) in the turning of AISI 5140 steel. The Harmonic Artificial Bee
Colony Algorithm (H-ABC), which is an improved nature-inspired method, was compared with the
Harmonic Bee Algorithm (HBA) and popular methods such as Taguchi’s S/N ratio and the Response
Surface Methodology (RSM) in order to achieve the optimum parameters in machining applications.
The experiments were performed under dry cutting conditions using three cutting speeds, three feed
rates, and two depths of cuts. Quadratic regression equations were identified as the objective function
for HBA to represent the relationship between the cutting parameters and responses, i.e., the cutting
forces and MRR. According to the results, the RSM (72.1%) and H-ABC (64%) algorithms provide
better composite desirability compared to the other techniques, namely Taguchi (43.4%) and HBA
(47.2%). While the optimum parameters found by the H-ABC algorithm are better when considering
cutting forces, RSM has a higher success rate for MRR. It is worth remarking that H-ABC provides
an effective solution in comparison with the frequently used methods, which is promising for the
optimization of the parameters in the turning of new-generation materials in the industry. There is a
contradictory situation in maximizing the MRR and minimizing the cutting power simultaneously,
because the affecting parameters have a reverse effect on these two response parameters. Comparing
different types of methods provides a perspective in the selection of the optimum parameter design
for industrial applications of the turning processes. This study stands as the first paper representing
the comparative optimization approach for cutting forces and MRR.

Keywords: harmonic artificial bee colony algorithm; optimization; turning; S/N ratio; response
surface methodology

1. Introduction

One of the greatest challenges for machining industries is to overcome excessive
energy consumption [1]. The fundamental necessity for reducing outgoings is to shorten
the machining time [2]. The power employed for chip removing needs to be considered for
this reason as well. Machining time is directly affected by the material removal rate assigned
with basic machining parameters, i.e., cutting speed, feed rate, and the depth of the cut [3].
Cutting powers, as well as cutting force, are also affected mostly by these three parameters.
Theoretically, the cutting force is obtained by multiplying the specific cutting force by the
chip area, which is a function of feed rate and depth of cut [4]. Because increasing the cutting
parameters increases MRR and cutting power at the same time, there are uncertainties in
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the selection process of suitable parameter combinations [5]. Therefore, there is always
a need for an effective optimization method to determine the optimum combination of
parameters [6–8]. This is important in terms of the sustainability assessment, which covers
the consumed energy, machining costs, and eco-friendly manufacturing [9–11].

The resultant cutting force is divided into three components of cutting force in a simple
turning operation: tangential (FC), axial (FF) and radial (FR). The motive for measuring the
cutting forces in machining operations comes from their major effect on cutting tool wear,
cutting temperatures, the vibration mechanism and consequently the surface texture of
the workpiece [12,13]. As such, cutting forces are one of the significant characteristics in
machining operations [14,15]. Although cutting forces are calculated theoretically, complex
turning processes can reveal unexpected developments. Therefore, actual measurements
become important, especially for industrial applications, as they provide cleaner results.

In general, based on operation types such as rough, semi-rough and finishing, the
depth of cut is accommodated first. Then, the feed rate and cutting speed are adjusted by
taking into consideration of used materials and required cutting power, respectively [16].
At this point, in order to maximize MRR, a high level of cutting parameters is needed, but
this leads to excessive growth of cutting forces, short tool life and poor surface integrity.
Numerous papers have been published on the optimization of the cutting parameters for
cutting forces in the turning of widespread types of materials. Laghari et al. [17] performed
the parametric optimization of the turning parameters for composite materials using RSM.
According to results, the first level of cutting speed, feed rate and depth of cut are proposed
among the four levels as the optimal values presenting the highest desirability value. The
paper showed the success of RSM in the optimization of three components of cutting forces.
Zerti et al. [18] minimized the cutting force and cutting power to maximize productivity for
an AISI 420 turning operation via RSM. The main outcome was that the maximum cutting
speed along with a minimum depth of cut and feed rate should be selected for optimum
responses. Toulfatzis et al. [19] studied the machinability of brass alloy for an optimal
solution during a turning operation. Similarly, the maximum cutting speed, minimum
feed rate and minimum depth of cut values were suggested for reduced cutting force using
Taguchi’s S/N ratio. Selvaraj et al. [20] used the Taguchi method to optimize the cutting
speed and feed rate for a variety of responses for nitrogen-alloyed duplex stainless steel in
the turning process. The authors emphasized that the highest value of cutting speed and
lowest value of feed rate produce the minimum cutting force. Kuntoglu and Saglam [16]
determined the optimal cutting speed and feed rate values in turning of AISI 1050 steel
with S/N ratios. The minimum tangential cutting force was obtained with a high cutting
speed and low feed rate according to the authors’ findings. Aouici et al. [21] obtained
optimum cutting forces in three components during the turning of AISI H11 steel. An
interesting result was found with RSM based on ranges for the best cutting conditions. The
findings provide an important source as being a meaningful solution in turning a specified
material in the industry. Aslan [22] found optimum conditions in turning operations for all
of the components of cutting force using RSM. According to the author’s deductions, two
components of cutting force can be minimized with high desirability, except for radial one.
The outlined papers have common outcomes for the success of Taguchi and RSM in the
optimization of cutting forces while turning several materials.

Some of the papers—without applying an optimization approach—investigated the ef-
fect of parameters and noted or figured the optimal solutions. For example, Leksycki et al. [23]
presented stainless steel turning for the three components of cutting forces. Both feed rate
and depth of cut have an influence, and their increase directly increases the responses. The
importance of the study is that, regardless of the cooling conditions, an enhanced feed rate
and depth of cut increase each cutting force component. Lalwani et al. [24] carried out an
experimental study in the finish hard turning of MDN250 steel. The prominent result is that
the cutting speed has no importance on cutting forces, the depth of cut has an impact on
axial cutting force, and both the feed rate and depth of cut influence the tangential cutting
force. Korkmaz et al. [25] investigated a Nimonic 80A superalloy material during turning.
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The most important result noted by the authors was that the depth of cut influences the
tangential and axial force, while the feed rate is dominant over the radial cutting force.
Cutting force optimization brings multiple advantages not only in terms of productivity
but also for understanding cutting mechanisms during the turning process.

MRR represents productivity containing the removed material in unit time. As such,
it is one of the most desired optimization parameters and directly considers the amount
of material removed from the surface. The definition can be extended as the volume of
the removed material in a given moment. Thus, the optimization issues of MRR have
been an attractive subject for the producers and researchers from the past to the present.
Bouzid et al. [26] carried out a Taguchi S/N-based optimization work in the turning of
stainless steel. The paper exhibited the importance of MRR using both mono- and multi-
objective optimizations via Taguchi and grey relational analysis. Mia et al. [27] also
presented a Taguchi-based S/N optimization in hard turning. The study purposed opti-
mization for economical consumption of resources considering a lot of parameters along
with MRR. Kaladhar [28] integrated cutting speed, feed rate, depth of cut, nose radius and
coating types into the turning of AISI 304 steel. According to the author’s result, a lower
nose radius and the third level of cutting speed along with a maximum depth of cut and
feed rate should be selected for maximum MRR. Kini and Chincholkar [29] studied the
effect of turning parameters and their optimization during the machining of reinforced
polymer pipes. As an important outcome of the study, it was noted that the depth of cut
was found to be an effective parameter on MRR, followed by the nose radius. Kumar [30]
used C360 copper alloy during a micro-turning operation considering MRR. Taguchi opti-
mization showed its effectiveness for optimization processes in the micro-turning operation.
The common part of the mentioned papers is the usage of the maximum value of depth of
cut to optimize MRR without looking at the method. In addition, a consensus was observed
about the utility of MRR optimization and its contribution to the machining economy.

The Artificial Bee Colony (ABC) algorithm is one of the nature-inspired algorithms
frequently used in the literature. The ABC algorithm was inspired by the method of bees
searching for fruitful flowers. Similarly, the ABC algorithm searches the best parameters
for a maximum value of an objective function. In studies investigating cutting parameter
optimization using the ABC algorithm, the researchers made inferences on the effectiveness
and lack of this method. Yildiz et al. [31] contributed an improved hybrid ABC algorithm
by comparing it with nine nature-inspired algorithms from the literature. They focused
on finding better optimal solutions in a shorter time. Therefore, they integrated Taguchi’s
robust parameter design into the initial swarm generation stage of ABC. Thus, they im-
proved the performance of the ABC algorithm. However, their method was exhaustive
due to the determination of several constraints. Prasanth et al. [32] searched the optimum
parameter design of the cutting speed, feed rate, depth of cut and tool nose radius by using
the ABC algorithm for the best results. They presented a comparative study between the
ABC algorithm, genetic algorithm, and ant colony algorithm. They concluded that the ABC
algorithm is the best among the three algorithms. These two results above also inspired us
to focus on the ABC algorithm in order to improve its searching strategy. Öztürk et al. [33]
used a bee algorithm to optimize a contradictive multi-objective function for the deter-
mination of cutting speed, feed rate, and cutting depth. Their way of integrating two
objectives into one fitness function can be replaced by using quadratic regression models of
the cutting forces. This study differs from the literature in terms of an algorithm developed
to optimize conflicting objectives, i.e., cutting forces and MRR. A harmony memory was
simply integrated into the searching steps of the ABC algorithm, and the constraints were
determined according to the experimental input range of the cutting speed, feed rate, and
cutting depth.

Despite several initiatives about cutting forces and MRR in the open literature, no
study was found about a comparative optimization approach for these response parame-
ters. In a nutshell, Taguchi-based optimization and RSM were referred to many times as
optimization approaches in the open literature. Some studies included nature-inspired algo-
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rithms in turning for the application of important response parameters in the past [31–35],
but none of them considered the three components of cutting forces and MRR simulta-
neously. In this study, in order to find the optimum solutions, the popular optimization
methods, namely Taguchi S/N ratio, RSM and nature-inspired algorithms, HBA and H-ABC
were proposed to obtain the optimum levels of the cutting speed, feed rate and depth of cut
values. The methods presented in this study are expected to make significant contributions
to the practical applications of multiple optimizations incorporating the time and cost
minimization approach.

2. Materials and Methods
2.1. Cutting Tool and Workpiece Specifications

The workpiece material AISI 5140 was prepared as cylindrical shapes (Ø75 × 500 mm)
for the physical tests. Before beginning the tests, 1 mm of the oxide layer was removed
from the surface to preserve the cutting tool from unstable machining. In order to perform
the tests, a centre hole was composed to provide stability for the fastening between the
chuck and tailstock during turning due to the length of the workpiece bars. As AISI 5140
steel is a common material used in the automotive and manufacturing industries, the
machinability of AISI 5140 is an important issue. The chemical composition of the material
is given in Table 1. The content of chrome (0.85%) presents a challenging environment
which enables tool vibrations, high cutting forces and, as a result, poor surface texture
because this element allows us to create hard carbides. A new bar was prepared for each
test to complete the experimental design. In every test chip removal was performed as
six times, using a new cutting insert code of WCMT 06 T308-AP301U (Achteck-China)
which is PVD-coated P25 grade carbides. It is noteworthy to state that the special design
dynamometer used in this study was also utilized as a cutting tool holder. In this way,
specific cartridges with a 75◦ approaching angle designed for carrying the inserts were
used in the tests.

Table 1. Chemical composition of the material [4,36–39].

Element C Mn Cr Ni Si Cu S Mo P

Composition 0.45 0.7 0.85 0.14 0.28 0.01 0.065 0.05 0.02

2.2. Experimental Design and Physical Tests

Based on the literature knowledge [4,36–39] and the cutting tool manufacturer’s cata-
log, three different cutting speeds (150, 200 and 300 m/min), three feed rates (0.06, 0.12 and
0.24 mm/rev) and two depths of cut (1 and 1.5 mm) were integrated into the experimental
design. For the experimental design, Taguchi L18 was preferred, as is shown in Table 2.
Based on the preliminary tests and collected data, such as chip formation and chatter
vibrations, the proper data group was composed. It was desired to produce controllable
chips without tangling and high vibrations which may cause excessive cutting forces.

In the tests, a conventional lathe (De Lorenzo S547-8899-Italy) was used and 18 cutting
experiments were carried out according to the full factorial design principle under dry
cutting conditions during the process. Before the tests, an extensive preliminary test study
was implemented to check the validity of the values suggested by the manufacturer. A
dynamometer (TelC-Germany) was used for the measurement of the cutting forces in three
axes as tangential, axial and radial components. As mentioned, the dynamometer can
be mounted on the carriage of the machine tool in order to use it as a tool holder. The
main advantage of the dynamometer is that it can directly transfer data with its software
(Telc XKM 2000-Germany) without the need for any additional equipment. Figure 1 repre-
sents the value of three cutting force components at a moment of the experiments, and the
amount of data captured from the computer screen. As can be seen in the horizontal axes
in Figure 1, the dynamometer and its software are capable of measuring ten data points
in a second. Figure 1 represents the value of the three cutting forces for twenty seconds
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in the first experiment. Each number on the axes indicates the actual second count. After
collecting data during the tests, data visualization and processing can be performed using
the same interface. In the evaluation phase, the average cutting force data was calculated
and considered. In Figure 2, the experimental details for machine tool, cutting insert, data
measurement and collection are represented.

Table 2. Taguchi L18 factorial plan.

Experiment Number
Factors and Levels

Factor 1
(Depth of Cut)

Factor 2
(Cutting Speed)

Factor 3
(Feed Rate)

1 1 1 1
2 1 1 2
3 1 1 3
4 1 2 1
5 1 2 2
6 1 2 3
7 1 3 1
8 1 3 2
9 1 3 3
10 2 1 1
11 2 1 2
12 2 1 3
13 2 2 1
14 2 2 2
15 2 2 3
16 2 3 1
17 2 3 2
18 2 3 3

Figure 1. Measured and recorded cutting force data via XKM software.



Machines 2021, 9, 90 6 of 20

Figure 2. Experimental details [37–39].

2.3. Quadratic Regression Model

Being a statistical modeling technique, quadratic regression defines the correlation
between a dependent variable and at least two independent variables. Among the regres-
sion models, the second-order regression equation or quadratic regression is popular for
prediction in particular [40,41]. In order to provide an improvement in quality engineering,
predictive modeling embraces the requirements not only in the economical aspect but also
from social and environmental points of view. Therefore, the integration of prediction
models has a valuable impact on the sustainability of the process by providing the optimal
solutions. Especially in a turning operation, instant changes deteriorate the quality and
make prediction difficult. The quadratic regression models generated for the three compo-
nents of cutting forces and MRR were integrated into the H-ABC algorithm to check their
validity under specific conditions for AISI 5140 steel. The following equations are handled
as objective functions in H-ABC and HBA.

In order to derive the quadratic equations, a treatment equation is described in
Equation (1) containing the parameters and error constant.

A = f ((vC), (f), (ap)) + Error (1)

here, A represents the cutting force parameters, and the Equation (1) is transformed into
Equation (2), representing the quadratic regression model.

A = B0+∑3
i=1 BiXi+∑3

i=1 BiiX2
i +∑3

i<j BijXiXj (2)

where B0 is constant and Bi, Bii and Bij are linear, square and interaction coefficients,
respectively. Due to the number of the degree of freedom, the square value of the depth
of cut cannot be estimated by the software. Then, the equation is transformed into its
final form:

A = B0 + B1 · vC + B2 · f + B3 · ap + B11 · vC
2 + B22 · f2 + B12 · vC · f + B23 · f · ap + B13 · ap · vC (3)
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The parameters vC, f, ap in these equations are set in a range: cutting speeds
150 < vC < 330 m/min, feed rates 0.06 < f < 0.24 mm/rev and depth of cuts 1 < ap < 1.5 mm.
For cutting forces, Equations (4)–(6) can be described as follows. According to the quadratic
regression model developed, the accuracy of these equations was found to be 93.83%,
81.87% and 89.96% for the FC, FF and FR coefficients. Furthermore, the uncertainties were
calculated as 6.17%, 18.13% and 10.04%, respectively. These results were estimated by
response surface regression analysis in the Minitab 16 software.

FC = 964.163 − 8.16642 · vc + 200.219 · f + 79.7426 · ap + 0.0158733 · vc
2 + 559.877

· f2 + 0.597705 · vc · f − 0.259394· vc · ap + 476.286 · f · ap
(4)

FF = 436.921 − 3.75155 · vc − 132.978 · f + 77.4777 · ap + 0.00719718 · vc
2 + 154.090

· f2 + 1.31582 · vc · f − 0.148916 · vc · ap + 84.4365 · f · ap
(5)

FR = 401.779 − 2.50486 · vc − 112.883 · f − 103.758 · ap + 0.00389017 · vc
2 − 387.346

· f2 + 0.118337 · vc · f − 0.329519 · vc · ap + 328.492 · f · ap
(6)

2.4. Harmonic Artificial Bee Colony Algorithm

The harmony search algorithm was inspired by the aesthetic estimation of musical
sounds [42,43]. The algorithm evaluates and selects objective function depending on the
parameters defined within a range by the operator; likewise, the aesthetic estimation is
composed of a set of sounds from instruments played by an operator [44]. The selected
value of the objective function is improved in each iteration just as the aesthetic estimation
progresses through practice.

The significant step of the harmony search algorithm is the creation of the Harmony
Memory (HM), as illustrated in Figure 3. The HM is inspired by a jazz trio composed
of a fiddle, saxophone, and keyboard. In a single performance, the instruments produce
random sounds (G, D, A), (E, F, D) and (D, G, E) recorded in HM, respectively, as shown
in Figure 3. The evaluations of the harmonic sound are sequenced based on quality,
e.g., excellent, good, and fair. This evaluation is improved by practicing. In the research
paper, the three sounds of instruments are regarded as the three parameters vC, f, ap of
the objectives: FC, FF, FR, and MRR. The randomly produced parameter values in HM are
replaced interchangeably to evaluate objective functions with various values. In this way,
the searching method increases the chance of finding global extreme points by evaluating
all combinations of randomly produced parameter values in HM. This study integrated the
HM into the searching process of the Artificial Bee Colony (ABC) algorithm to increase the
chance of finding the global extreme point.

The ABC algorithm is composed of three significant main steps [45]:

1. Place the employed bees on the food sources in the memory.
2. Place the onlooker bees on the food sources in the memory.
3. Place the scouts in the search area for the discovery of a new food source.
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Figure 3. The pattern of Harmony Memory.

The steps mentioned above are repeated until the defined conditions are met. The
objective functions were optimized by using both HBA and H-ABC. The procedure of HBA
and H-ABC are comparatively shown in Figure 4a,b. The integration is performed into
the afore-mentioned three steps, as shown in Figure 4b. The steps are illustrated within
different background colors, i.e., green, blue, and brown, respectively. The H-ABC was
set by using only two parameters: a population that was set to 100 and an iteration that
was set to 100. On the other hand, the HBA was set by using seven parameters: number
of scout bees n = 60, number of sites selected out of n visited sites m = 10, number of best
sites out of m selected sites e = 4, number of bees recruited for the other (m-e) selected
sites nsp = 10, number of bees recruited for best e sites nep = 20, the initial size of patches
ngh = 0.001, and iterations = 100. The parameter values of the algorithms were defined
from the literature [42,46].

The optimization operation was performed for four objective functions: FC, FF, FR
and MRR. FC, FF and FR were minimized and MRR was maximized. In this context,
the objectives were handled in turn. The Pareto front was obtained from each of the
objective functions by using both H-ABC and HBA. The Pareto front parameters were used
to calculate the values of the rest of the objective functions from the optimized one. The
values were graphed as shown in Figure 5a–h. The graph was used for the actual selection
of the optimal values from the Pareto front. The actual optimal value was selected from the
quadrilateral area between the line fits of the objective function results in the graph of the
Pareto front.

The Algorithm procedure in Figure 4b is the only kind used as an algorithm to search
for the best values of cutting parameters. The procedure starts by producing k number of
populations of vC, f, ap in a scattered space in the range of design parameters. The algorithm
provides a primary selection among the results of HM. Therefore, the first step focuses on
a particular space in the range of design parameters. The second step shortens the space of
the design parameters to search by using the same method after the HM. Consequently, the
third step finds the best of the design parameters in the focused space. However, this is not
the complete final solution, because the focused space resulting from the three steps is only
one local extreme point. However, the algorithm can save the local extreme and converge
to the global extreme point at the end of the iteration. The HM, which is applied for the first
time within the ABC algorithm, provides significant sensitivity in the searching operation.
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Figure 4. Algorithm procedures: (a) Harmonic Bee Algorithm, (b) Harmonic ABC algorithm.
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Figure 5. Optimal MRR, Fc, FF, and FR values obtained by using H-ABC and HBA algorithms. (a) Optimization of MRR by
using H-ABC and (b) by using HBA, (c) optimization of Fc by using H-ABC and (d) by using HBA, (e) optimization of FR

by using H-ABC and (f) by using HBA, and (g) optimization of FF by using H-ABC and (h) by using HBA.
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2.5. Taguchi’s S/N Ratio Method

Taguchi’s approach introduces a design methodology for reduced labor costs with
increased efficiency [47–49]. Its main purpose is quality engineering. Taguchi applied the
idea of the variability of the material and process to the experimental design phenomenon
instead of hypothetical innovations. As such, a new method appeared, which aims at robust
and reliable design in manufacturing for better quality and low costs [50,51]. There are
numerous applications in engineering, and especially for machining studies, integrating
Taguchi [52–55]. This method is available for experimental design, optimization and
prediction. Taguchi uses an objective function for the determination of a deviation from
the desired value of the response parameters. The response parameter is defined as the
measured and dependent variable in the experimental plan. In order to determine the aim
of the experiment, Taguchi presents several S/N ratio calculation equations according to
the maximization or minimization targets. Two of these equations are listed below:

Smaller is better to minimize the cutting force components:

S/N = −10 log 1/n (Σy2) (7)

Larger is better to maximize the MRR:

S/N = −10 log 1/n (Σ(1/y)2) (8)

2.6. Response Surface Methodology

RSM covers mathematical and statistical techniques to provide optimum solutions for
a response parameter which constitutes the main purpose of an engineering problem [56].
The method offers to model all parameters in the experimental plan dividing them into
dependents and independents. The modeling, analysis and viewing with graphs and
tables should be performed step by step in the application. Each independent parameter is
arbitrarily included in the model according to the desired response or dependent parameter.
As it is being applied to optimization algorithms, the objective function should be consulted
to make the response the maximum or minimum. An identical approach is implemented
here with the former for the optimization of the responses. The prominent advantage of this
method is to provide feasibility for both mono and multiple optimizations. Furthermore,
defining the weights and importance bring a clear advantage for practical applications
with the determination of the significance of the responses. The broad application field can
be implemented with RSM, especially for machining. A variety of researchers selected this
method in the open literature [57–59]. Therefore, it is desired to apply this method for the
provision of successful, reliable and robust modeling.

3. Results

In the experimental design, three cutting speeds and feed rates along with two depths
of cut were used to formulate a full factorial design. This approach promises to obtain the
effect of each parameter on the responses, which brings a clear advantage in determining
the optimum results. Table 3 includes the design parameters, and the responses belong
to 18 experiments. In the context of this topic, three different approaches were applied to
the cutting speed, feed rate and depth of cut for the parametric optimization. Respectively,
the H-ABC, HBA Taguchi S/N ratio and RMS algorithms were identified and explained
in detail.
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Table 3. Full factorial experimental design and results.

Exp.
Number

Design Parameters Responses

Cutting
Speed

vC
(m/min)

Feed
Rate

f
(mm/rev)

Depth of
Cut
ap

(mm)

Material
Removal

Rate
MRR

(mm3/min)

Tangential
Cutting

Force
FC
(N)

Axial
Cutting

Force
FF
(N)

Radial
Cutting

Force
FR
(N)

1 150 0.06 1 900 167.4 100.85 84.81
2 150 0.12 1 1800 254.28 103.99 87.44
3 150 0.24 1 3600 302.05 107.5 88.03
4 200 0.06 1 1200 68.19 36.45 19.77
5 200 0.12 1 2400 86.2 45.78 25.44
6 200 0.24 1 4800 275.2 135.45 62.57
7 330 0.06 1 1980 55.78 37.44 21.45
8 330 0.12 1 3960 74.38 65.78 31.82
9 330 0.24 1 7920 235.13 89.77 41.11
10 150 0.06 1.5 1350 206.97 132.41 48.07
11 150 0.12 1.5 2700 310.78 167.11 63.59
12 150 0.24 1.5 5400 471.11 184.49 108.50
13 200 0.06 1.5 1800 66.01 58.82 32.44
14 200 0.12 1.5 3600 128.18 61.72 54.66
15 200 0.24 1.5 7200 233.41 87.79 71.11
16 330 0.06 1.5 2970 60.03 49.39 21.55
17 330 0.12 1.5 5940 142.02 78.46 56.88
18 330 0.24 1.5 11,880 294.42 152.77 81.79

3.1. Optimization with H-ABC and HBA Algorithms

The H-ABC algorithm produces random values for the parameters—cutting speed,
feed rate and depth of cut—in the range determined from Table 2. By using the randomly
produced parameter values, the objective function for MRR given as in Equation (9) is
calculated, sequenced, and compared. The biggest n values are selected in each step, as
shown in Figure 4b. When the iteration is completed, the selected best values for MRR are
graphed. Additionally, the parameters for the optimal MRR are used to calculate the values
of Fc, FF, FR in Equations (4)–(6), respectively. The line fit is drawn for the four objective
function values as shown in Figure 5a,c,e and g. The line fits compose a quadrilateral area
by intersecting with each other. The optimum value of MRR is at the top of the quadrilateral
area. The objective functions Fc, FF, and FR are expected to have the minimum plausible
values because the objective function MRR is expected to have maximum plausible value.
Therefore, the quadrilateral intersection area of the line fits are used to select the plausible
maximum value of MRR instead of a possible maximum value of the Pareto Front. If the
possible maximum value of MRR in the Pareto Front were selected, the values of Fc, FF, FR
would be unrealistic and counterintuitive. The HBA procedure is shown in Figure 4a. The
optimal value is determined in the quadrilateral area as in Figure 5b,d,f and h.

MRR = 3966.67 − 17.5000 · vc − 28333.3 · f − 3173.33 · ap + 1.71857 E − 17 · vc
2 +

1.80505 E − 11 · f2 + 125.000 · vc · f − 14.0000 · vc · ap + 22666.7 · f · ap
(9)

All of the objective functions are individually optimized by using both H-ABC and
HBA. Therefore, mentioning a similar procedure for each of the objective functions is
unnecessary. However, there is a different operation step in the optimization of FC, FF,
and FR. Because, these objective functions are expected to be minimized, the minimum
value of the objective function in the quadrilateral intersection area must be selected as
the optimum. H-ABC is used to optimize FR, as shown in Figure 5e. HBA is also used to
optimize FR, as shown in Figure 5f. Mostly, the line fits of objective function values were
drawn in Figure 5f, although the polynomial curve fit of the values of objective function FR
was drawn. Because of this, when it is drawn as a line fit, the quadrilateral intersection
area includes no value of FR. A comparative table of all of the values of the objectives and
parameters for these optimal selections was given in Table 2. The optimal values of FF are
shown in Figure 5g,h, which resulted from H-ABC and HBA, respectively. Because the
quadrilateral intersection area does not include FF values when the line fits or polynomial
fits are used, the logarithmic curve fitting is preferred, as shown in Figure 5g.
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The objective functions are individually optimized in the proposed approach. The
algorithms selected the best value for the objective function in each iteration. The selected
best values composed a Pareto Front population at the end of the iteration. The Pareto
Front of the optimized objective converges to a minimum or maximum value. However,
the converged value cannot be selected as the optimum because the problem includes
conflicting multiple objective functions. Therefore, all of the objective functions are cal-
culated by using the optimal parameters obtained in each iteration by using the H-ABC
or HBA methods. The results of the calculations are taken in the same graph with the
optimized objective function. A line fit is then drawn for each of the objective functions.
The quadrilateral area formed by intersecting line fits is used to find the optimum of the
objective function. When the HM is integrated into the searching steps of the algorithms in
Figure 4a,b, the optimization converges upon better solutions. If Table 4 is examined, the
most meaningful difference is between the optimal values of MRR resulting from H-ABC or
HBA. Therefore, selecting the optimal cutting parameters by using Figure 5a gives the best
values. Table 5 represents the optimum results for the HBA and H-ABC methods including
the predicted and measured values. The optimal parameters and related responses at these
cutting conditions are indicated with their accuracy, respectively. The findings showed that
H-ABC optimization is much more effective than HBA in determining the optimum results.

Table 4. The optimization results for HBA and H-ABC.

Optimal Cutting Parameter Values Objective Functions

Algorithms
Cutting
Speed

vC
(m/min)

Feed Sate
f

(mm/rev)

Depth of
Cut
ap

(mm)

Material
Removal

Rate
MRR

(mm3/min)

Tangential
Cutting

Force
FC
(N)

Axial
Cutting

Force
FF
(N)

Radial
Cutting

Force
FR
(N)

H-ABC (Calc.) 165 0.1 1.2 3600 113.45 51.75 39.38

H-ABC (Meas.) 165 0.1 1.2 3300 95.75 44.82 28.1

H-ABC (% Acc.) - 91 84.3 84.6 71.3

HBA (Calc.) 245 0.2 1.1 2030 153.4 99.14 138.7

HBA (Meas.) 245 0.2 1.1 5390 225.78 130.15 58.44

HBA (% Acc.) - 37.7 68 76.2 42.2

Table 5. Response surface methodology parameter design and predicted responses for both the mono
and multiple optimizations.

Parameter Goal Lower
Value

Target
Value

Upper
Value

Weight/
Importance

Predicted
Value

Desirability
(%)

Material
removal rate
(mm3/min)

Max. 900 900 11,880 1 5129.18 38.5

Tangential
cutting force

(N)
Min. 55.78 55.78 471.11 1 100.57 89.2

Axial cutting
force
(N)

Min. 36.45 36.45 184.49 1 49.45 91.2

Radial
cutting force

(N)
Min. 19.77 19.77 108.5 1 26.31 92.6

Desirability - 73.4

3.2. Optimization with Taguchi S/N Ratio

Taguchi provides the optimum results using the S/N ratio and orthogonal arrays
according to an experimental plan. In this study, the “smaller is better” approach was
selected for all of the cutting forces, while “larger is better” was chosen for the MRR. The
Taguchi-based optimization was carried out using Minitab software in the scope of this
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study. Figure 6 represents the optimum solutions for the response parameters according to
the S/N ratios.

Figure 6. Optimal solutions for the response parameters according to the Taguchi method.

It should be noted that the highest value of the S/N ratio shows the optimum cutting
parameter for each result. The results indicated that vC: 330 m/min, f : 0.06 mm/rev, and
aP: 1 mm values need to be selected for FC and FR. The FF component is different from the
other two cutting forces with vC: 200 m/min. For MRR, the Taguchi approach suggested
choosing the highest values for all of the parameters, i.e., vC: 330 m/min, f : 0.24 mm/rev,
and aP: 1.5 mm. There is a distinctive difference between the cutting forces and MRR in
that the feed rate and depth of cut influence them oppositely. FC was found as 55.78 N
according to the calculated S/N ratios; the optimum value is shown in the experiment
table. The FF component was found as 45.78 N, which demonstrates the difference between
the minimum values 36.45 N with a 20% error rate. The FR value was obtained as 21.45 N
while the minimum value was observed as 19.77 N, which had 8% error rate. The obtained
optimal solutions with the Taguchi method exist in the original experimental plan; therefore,
there is no need for confirmation experiments.

3.3. Optimization with Response Surface Methodology

The employment of the RSM was carried out using Minitab software for multiple
optimizations of the response parameters. It was created as a response surface design, and
the analysis of this design was performed using analysis of variance. In this analysis process,
cross-interaction between parameters was considered. In order to evaluate the parameters
as interactive, the optimization approach is listed in Table 5. While building the models,
toward the mechanism of turning and the objective of the study, the cutting forces were
minimized and the MRR was maximized. The lower and upper values belonging to each
parameter were selected from the results table and the target value was assigned according
to the objective function. For a clear definition of the optimized parameters, the weight
and importance values were determined as 1. Applying the mentioned specifications,
the predicted values with their desirability are indicated. For multiple optimizations,
vC: 280 m/min, f: 0.18 mm/rev, and aP: 1 mm were found as the optimum solutions.
Remarkably, the multiple optimization approach reduces the desirability of each cutting



Machines 2021, 9, 90 15 of 20

force parameter and MRR, especially. The composite desirability here is calculated by the
following formula:

(d1 × d2 × d3 × d4)1/n* (10)

Here, d1–4 represents the desirability of each individual parameter, and n is the signature
of the number of parameters.

The possibility of applying both mono and multiple optimizations provides an ex-
tended point of view for the producer and researcher. Because machining has a variety
of parameters and customers have several demands, these various options to optimize
the responses are beneficial in different ways. Therefore, it is possible to present different
advantages to meet the expectations. In Table 6, multiple optimization results for selected
responses are demonstrated as a list. First, the predicted values with RSM and their con-
firmed experimental results are given. The difference between them is calculated and
identified with accuracy and error rates. Then, the optimum values for each parameter
obtained from the experiment table are listed and their error rates are also calculated. The
results show that high accuracy can be obtained via RSM in multiple optimizations for
the MRR and FR parameters, and the proximity of these results to the optimum values is
satisfying. It was decided that using this method is reliable, considering all of the responses
without looking at the partial high error rates for tangential and axial cutting forces.

Table 6. The optimization results for RSM.

Optimal Cutting
Parameter Values Objective Functions

Algorithms
Cutting

Speed vC
(m/min)

Feed Rate
f

(mm/rev)

Depth of
Cut ap
(mm)

Material
Removal

Rate
MRR

(mm3/min)

Tangential
Cutting

Force
FC
(N)

Axial
Cutting

Force
FF
(N)

Radial
Cutting

Force
FR
(N)

RSM-Mult.
(Calc.) 280 0.18 1 5129.18 100.57 49.45 26.31

RSM-Mult.
(Meas.) 280 0.18 1 5040 108.63 41.22 32.84

RSM-Mult.
(% Acc.) - 98.3 92.6 83.4 80.2

4. Discussion

The Taguchi method is widely used in engineering applications. Because Taguchi ap-
plies a guaranteed design approach, high-quality solutions and reliable optimization can be
obtained. The only drawback of Taguchi is the lack of multiple optimization options. RSM
is also a highly reliable technique practice for mono and multiple optimizations, which are
popular in the field of machining. On the other hand, nature-inspired algorithms develop
and apply optimization procedures that need to be integrated and experienced many times
in order to validate their competence. The existence of the widespread applications of
traditional methods gives researchers different points of view in order to obtain the best
choices in the experiments. However, the new generation of optimization methods is hard
to compare within itself and with other methods. Especially for nature-inspired algorithms,
they are highly available for development because the structure is based on the observation
of natural events. It is recommended that these methods should be tried for different types
of machining studies.

Table 7 includes the optimum conditions, the desirability of each response parameter
and their total desirability for the Taguchi, RSM, HBA and H-ABC algorithms, respectively.
All of the optimized solutions were evaluated and compared with the predicted values
calculated in the previous sections. In Table 7, we discuss their total effectiveness in
optimizing the cutting force components and MRR at the same time. For the calculation
of the provided values, the maximum and minimum values in the experimental table
are regarded as the references in order to determine desirability. After calculating each
desirability function belonging to the response parameters, the total desirability is found.
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Taguchi’s approach provided three optimum conditions, while the others served one
solution. As such, six different optimized parameter series were identified. Accordingly,
individual and composite desirability values are achieved, because the RSM has the most
accurate composite desirability (72.1%), followed by the H-ABC algorithm (64%). For the
individual success of the responses under these two methods, H-ABC seems more effective
to obtain the optimum cutting forces; however, the RSM is much better for the acquisition
of the maximum MRR. In order to determine the optimal solution, this extended approach
provides a perspective in manufacturing. Except for this, other methods may provide
excellent solutions for specified cutting force/s, but which are insufficient for composite
desirability. The Pareto frontiers of the parameters for different types of optimization
methods are shown in Figure 7. The findings also confirm the calculated results, as
explained and demonstrated before in the paper.

Table 7. The optimization results for all of the methods.

Optimal Cutting Parameter
Values The Desirability of Objective Functions

Algorithms
Cutting
Speed

vC
(m/min)

Feed
Rate

f
(mm/rev)

Depth
of Cut

ap
(mm)

Material
Removal

Rate
MRR

(mm3/min)

Tangential
Cutting

Force
FC
(%)

Axial
Cutting

Force
FF

(%)

Radial
Cutting

Force
FR
(%)

Composite
Desirability

(%)

Taguchi 330 0.06 1 9.8 99.3 37.44 98.1 43.4

Taguchi 200 0.06 1 2.7 97 100 100 40.2

Taguchi 330 0.24 1.5 100 42.5 21.4 30.1 40.6

RSM 280 0.18 1 37.7 87.2 96.7 85.2 72.1

HBA 245 0.2 1.1 40.8 59 36.7 56.4 47.2

H-ABC 165 0.1 1.2 21.8 90.3 94.3 90.6 64

Figure 7. Pareto frontiers of the calculated results for the different optimization methods.
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5. Conclusions

Optimization is one of the important approaches to solve engineering problems, and
it brings many advantages when an approach is accurately modified and integrated. The
main contribution of the optimization approach is bringing productivity with a reduction
in costs. As a result, each parameter can be optimized for efficient manufacturing with
minimal errors in less time. To this end, it is significant to work under cutting conditions
determined for the sustainability of the manufacturing chain. In the context of this study,
it is desirable to present different approaches such as RSM, Taguchi S/N ratio, H-ABC,
and HBA algorithms for the comparison of their success in parametric optimization. The
integration of nature-inspired algorithms into machining operations for the optimization
process is rarely seen in the open literature. Here, for the first time, optimization approaches
were compared for MRR and cutting forces. In addition to the comparison of different types
of optimization methods, the newly developed H-ABC algorithm was also adopted for
turning operations. From the findings of the study, the following inferences can be made:

1. Although traditional methods such as Taguchi and RSM provided reliable optimum
results in the past, new methods should be applied to turning operations and related
academic studies in order to understand their capabilities.

2. The complexity of the machining operations makes it hard to reach optimal solutions
for cutting parameters. Therefore, it is very important to obtain the best results for
improved machining quality. However, momentary alterations due to vibrations
and tool wear, etc., usually lead to underperformance relative to the purposed per-
formance criteria. The main aim here was to observe which optimization approach
provides the best solution in terms of cutting forces. We expected to obtain limited
results because MRR and cutting forces require opposite levels of cutting parame-
ters. If one approach is aimed purely at MRR or cutting forces, higher accuracy can
be determined.

3. Taguchi presents absolute solutions concerned with the experimental plan. In this way,
the optimized parameters and results can be found without additional experiments.
Because the method provides only individual optimization, it is not possible to
observe the interactive solutions. Thus, Taguchi explored the experimental lines
which lead to reduced error rates in the predicted response parameters, such as FC
and MRR (0%), FF (20%), FR (8%).

4. RSM gives multiple optimization results at intermediate values which require further
confirmation experiments. According to the results, vc = 280 m/min, f = 0.18 mm/rev,
and aP = 1 mm values were determined as the optimum solution by RSM. An addi-
tional experiment was carried out under these cutting conditions, which exhibited
the high accuracy (80.2–98.3%) and validity of the model.

5. The comparison of the two nature-inspired algorithms demonstrated that the newly
developed H-ABC showed preferable results compared to the HBA algorithm. The FC,
FF and MRR parameters were obtained with high accuracy (91%, 84.3% and 84.6%),
and FR was achieved within an acceptable error rate (28.7%). The HBA algorithm
indicated low accuracy for all of the response parameters.

6. In order to compare the four optimization methods and provide a clear discussion
about their success, the individual and composite desirability of each method for FC,
MRR, FF, and FR were calculated. Accordingly, RSM and H-ABC provide higher com-
posite desirability with 72.1% and 64%, respectively, compared to Taguchi (40.2–43.4%)
and HBA (47.2%). Because RSM and H-ABC prove the validity with additional exper-
iments, good desirability ratios make them useful for simultaneous optimization.
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Nomenclature

FC Tangential cutting force
FF Axial cutting force
FR Radial cutting force
S/N Taguchi signal-to-noise ratio
HBA Harmonic bee algorithm
H-ABC Harmonic artificial bee colony algorithm
RSM Response surface methodology
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