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Abstract: For mechanical compound fault, it is of great significance to employ the vibration signal of a
single-channel compound fault to analyze and realize the separation of multiple fault sources, which
is essentially the problem of single-channel blind source separation. Shift invariant K-means singular
value decomposition (shift invariant K-SVD) dictionary learning is suitable to extract the periodic and
repeated fault features of a rotating machinery fault, hence in this article a single-channel compound
fault analysis method is put forward which combines shift invariant K-SVD with improved fast
independent component analysis (improved FastICA) algorithm. Firstly, based on single-channel
compound fault signal, the shift invariant K-SVD algorithm can be used for learning multiple latent
components that can be constructed as a virtual multi-channel signal. Then the improved FastICA
algorithm is utilized to realize the separation of multiple fault source signals. With regard to the
FastICA algorithm, the third-order convergence Newton iteration method is adopted to improve
convergence speed. Moreover, in order to address the problem that FastICA is very sensitive to
initialization, a steepest descent method can be applied. The experimental analysis of the compound
fault of rolling bearing verifies that the presented method is effective to separate multiple fault
source signals and the improved FastICA algorithm can increase convergence rate and overcome the
problem of sensitivity to initialization.

Keywords: shift invariant K-SVD; improved FastICA; single-channel blind source separation; com-
pound fault analysis; rolling bearing

1. Introduction

Recently in the field of mechanical fault diagnosis, sparse representation has been
extensively employed [1–5]. Sparse representation mainly includes two parts: sparse
coefficient solving and dictionary learning. With regard to dictionary learning, K-means
singular value decomposition (K-SVD) [6] can be utilized. In the shift invariant case,
some patterns appear periodically and repeatedly in the long signal, and shift invariant
dictionary learning algorithms can be adopted, e.g., shift invariant sparse coding [7] and
shift invariant K-SVD [8], etc. There are periodic repetitive shocks in the vibration signals
of a rotating machinery fault, therefore shift invariant dictionary learning algorithm is
especially available to extract fault feature of a rotating machine and then fault diagnosis
can be carried out. In recent years in the area of fault diagnosis of rotating machinery, shift
invariant dictionary learning algorithms have been introduced [9–18]. In [11,13,18], shift
invariant K-SVD was implemented. In this article, we utilized shift invariant K-SVD to
acquire basis functions, then their corresponding latent components can be obtained and
constructed as virtual multi-channel signal.

In engineering practice the vibration signal of a machinery fault is usually generated
by multiple vibration sources, however the contribution of each vibration source to the
mixed signal is unknown. For the diagnosis of a mechanical compound fault, it is very
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meaningful to effectively separate multiple unknown vibration source signals from a
mixed signal, which is called blind source separation (BSS). To address this issue, blind
source separation methods, e.g., independent component analysis (ICA), have been broadly
applied to machinery fault diagnosis [19–22]. BSS usually needs to collect multi-channel
signals. However, considering the installation conditions and cost of sensors, the number
of sensors is required to be as small as possible in engineering practice, and sometimes
only one channel signal can be utilized to separate different vibration source signals, which
is called single-channel BSS. For this kind of underdetermined BSS problem, ICA cannot
solve it directly. Therefore, we usually transform a single-channel signal to a multi-channel
signal through some methods, and then ICA can be carried out using the transformed multi-
channel signal. For example, based on a single-channel signal we can adopt empirical mode
decomposition (EMD) [23] and ensemble empirical mode decomposition (EEMD) [24], etc.
to obtain multiple intrinsic mode functions [25,26], and then perform ICA to realize blind
source separation [27–38]. EMD does not need to construct basis functions and realizes
adaptive decomposition of the signal in the time scale. However, there exists mode aliasing
in EMD. Although EEMD can effectively suppress mode aliasing, the added white noise
finally needs to be compensated by increasing the number of ensemble averaging, hence
the calculation is time-consuming and the reconstruction error is large. In this article,
we implemented shift invariant K-SVD to transform a single-channel signal into multi-
channel signal.

As for ICA, fast independent component analysis (FastICA) is a frequently used algo-
rithm, which employs fixed point and Newton iteration, thus possessing a fast convergence
rate [39]. However, the FastICA algorithm is very sensitive to the initial value that leads to
unstable convergence. In this paper, we employed the steepest descent method to solve this
problem. Additionally, third-order convergence Newton iteration method is implemented
to further accelerate convergence [40].

In this article, we propose a new mechanical compound fault analysis method com-
bining shift invariant K-SVD and improved FastICA based on the steepest descent method
and third-order convergence Newton iteration method to achieve single-channel blind
source separation. Firstly, shift invariant K-SVD is conducted for a single-channel me-
chanical compound fault signal to learn multiple basis functions and corresponding latent
components that can be constructed as a virtual multi-channel signal. Subsequently, based
on a virtual multi-channel signal improved FastICA is carried out to separate different
source signals that are statistically independent.

The rest of this paper is shown below: in Section 2 shift invariant K-SVD algorithm and
the relationship between single-channel blind source separation and shift invariant K-SVD
are introduced. Section 3 describes the improved FastICA algorithm using steepest descent
and third-order convergence Newton iteration. Afterwards, in Section 4 the proposed
single-channel compound fault analysis method combining shift invariant K-SVD with
improved FastICA is summarized. Next, Section 5 presents the experiment of rolling
bearing compound fault, which verified the validity of the developed method. Finally, the
conclusions are obtained in Section 6.

2. Single-Channel Blind Source Separation (BSS) Based on Shift Invariant K-Means
Singular Value Decomposition (K-SVD)

The proposed single-channel BSS method based on shift invariant K-SVD is divided
into two stages: shift invariant dictionary learning and ICA. Firstly, the shift invariant
K-SVD dictionary learning algorithm is employed to obtain basis functions and their
corresponding latent components and the multiple latent components can constitute virtual
multi-channel signals. Then, ICA is conducted to separate multiple source signals using
the constructed virtual multi-channel signal.
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2.1. Shift Invariant K-SVD Algorithm

Shift invariant K-SVD algorithm is based on a long signal x ∈ Rp×1 and suppose there
are K basis functions dk ∈ Rq×1(q� p). Then the objective function is [8]:

〈d, s〉 = argmin
d,s

∣∣∣∣∣
∣∣∣∣∣x−∑

k
∑
τ

sk,τTτdk

∣∣∣∣∣
∣∣∣∣∣
2

2

s.t. ‖s‖0 ≤ T (1)

where Tτ is shift operator that shifts the basis function dk to time τ and extends it by
setting the rest to 0 to get a dictionary atom with the same length as the long signal. sk,τ
is the sparse coefficient corresponding to the dictionary atom Tτdk. s indicates the sparse
coefficient of the long signal while T denotes sparsity prior.

In the shift invariant K-SVD algorithm, there are two steps: sparse coefficient solving
and dictionary updating stage. During dictionary updating, with respect to the basis
function dκ , the set of activated sparse coefficients is σκ = {τ|sκ,τ 6= 0} and the definition
of signal x̂κ without contribution from other basis functions can be made:

x̂κ = r + ∑
τ

sκ,τTτdκ (2)

where r represents residual signal. According to Equation (1), the basis function can be
optimized by:

〈
dopt

κ , sopt
κ

〉
= argmin

d,s

∣∣∣∣∣
∣∣∣∣∣x̂κ − ∑

τ∈σκ

sτTτd

∣∣∣∣∣
∣∣∣∣∣
2

2

s.t. ‖d‖2 = 1 (3)

The above objective function can be rewritten:∣∣∣∣∣
∣∣∣∣∣x̂κ − ∑

τ∈σκ

sτTτd

∣∣∣∣∣
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2

2

= ∑
τ∈σκ

‖T∗τ x̂κ − sτd‖2
2 + constant (4)

where T∗τ is the operator that can extract a segment with the same length as the basis
function from the long signal and the start time of the segment is τ.

Based on the activation coefficients σκ corresponding to the basis function dκ , the
sparse coefficients and the basis functions can be jointly estimated. Through Equation (4),
a matrix can be formed by segment T∗τ x̂κ , and singular value decomposition is carried out
on it while only the maximum singular value is kept, that is, the best basis function and the
corresponding sparse coefficient can be obtained by taking the first principal component:

dκ ← argmax ∑
τ∈σκ

〈d, T∗τ x̂κ〉2, s.t. ‖d‖2 = 1 (5)

(sκ,τ)τ∈σκ
← argmin

∣∣∣∣∣
∣∣∣∣∣x̂κ − ∑

τ∈σκ

sτTτd

∣∣∣∣∣
∣∣∣∣∣
2

2

(6)

In summary, the steps of shift invariant K-SVD algorithm are:

(1) For a long signal x, set the parameters including the length q and number K of
basis functions and the sparsity prior T. The basis functions are initialized through
randomly intercepting on the signal x and be normalized afterwards. Let the iteration
number t = 1 and set tolerance error ε;

(2) Sparse coefficient solving. The fast matching pursuit algorithm [41] is employed to
solve sparse coefficient s;

(3) Dictionary update. The basis functions are updated sequentially and if it is updated
to dk, the set of sparse coefficients σk activated by dk can be obtained, then new dk
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and corresponding sparse coefficients (sk,τ)τ∈σk
are computed through Equations (5)

and (6);
(4) Let t = t + 1 and decide whether the algorithm reaches the termination condition.

When the ratio of reconstruction error of two adjacent iterations is less than ε, the
iterations stop, if not repeat (2)–(4).

2.2. Single-Channel BSS with Shift Invariant K-SVD

Shift invariant K-SVD does not need to truncate the original long signal to obtain
training samples, while directly using the original long signal for self-learning to obtain a
series of basis functions. Each basis function di(i = 1, 2, . . . , K) is translated and extended
to the length of the original signal to obtain the sub-dictionary Di corresponding to the
basis function di. Through the shift invariant dictionary learning, K self-learned basis
functions in total are obtained, and each basis function represents the fault characteristic
mode implicit in the original signal.

After the basis functions and corresponding sub-dictionaries are learned, a total over-
complete dictionary D = [D1, D2, . . . , DK] can be constructed. Then, based on dictionary
D, matching pursuit can be employed to calculate sparse coefficient of the original single-
channel signal x, and the latent component li corresponding to basis function di can be
reconstructed by:

li = Disi (7)

where si represents corresponding sparse coefficient of sub-dictionary Di. These latent com-
ponents are obtained by the reconstruction of the basis functions that capture different fault
characteristic modes hidden in the long signal, therefore multiple latent components can be
constructed as a virtual multi-channel signal, namely observation signal X = [l1, l2, . . . , lK].

In this study, the single-channel BSS is a linear mixed model. Suppose there are n
independent source signals, then observation signal acquired through only one sensor is a
linear superposition of the source signals, as shown below:

x =
n

∑
i=1

aisi (8)

where si indicates the i-th source signal and mixing coefficient ai represents the contribution
of si to the mixed signal.

For the virtual multi-channel signals X = [l1, l2, . . . , lK] (K indicates the number of
channels), the above equation can be rewritten:

X = As (9)

where A means mixing matrix, which can be estimated by ICA and thus the estimation ŝ of
the source signals can be acquired:

ŝ = WX (10)

where W corresponding to mixing matrix A stands for demixing matrix, namely separating
matrix. ŝ represents the estimated source signals separated by ICA.

3. Improved Fast Independent Component Analysis (FastICA) Algorithm
3.1. FastICA

Suppose that the observation signal X is preprocessed to obtain a new signal z, w
denotes a row vector in demixing matrix W. The FastICA algorithm maximizes the non-
Gaussianity of vector wTz (where T denotes transpose) through a fixed point iterative
algorithm. The most commonly used evaluation function for non-Gaussianity is the
approximation of negative entropy. The objective function of the FastICA algorithm is [39]:

J(w) = [E
{

G(wTz)
}
− E{G(v)}]

2
(11)
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where G indicates an arbitrary non-quadratic function and v represents Gaussian random
variable with zero mean and unit variance. Optimal w can be obtained through maxi-
mizing J(w). It can be seen that under the constraints of ‖w‖2 = 1, the negative entropy
J(w) is maximized means that E

{
G(wTz)

}
is maximized, then using Lagrange multiplier

algorithm the objective function of the fixed point algorithm can be acquired as follows:

L(w) = E
{

G(wTz)
}
+ β‖w‖ (12)

where β signifies a constant. The above optimization problem can be solved via:

E
{

zg(wTz)
}
+ βw = 0 (13)

where the function g represents derivative of G. In order to get solution of w in the above
equation, the principle of FastICA algorithm is similar to Newton iterative. Let the left of
the above equation be:

F(w) = E
{

zg(wTz)
}
+ βw (14)

The gradient of F(w) is:

∂F
∂w

= E
{

zzT g′(wTz)
}
+ βI (15)

where T denotes transpose. Through the above equations and approximate treatment, the
final iterative form of FastICA algorithm can be obtained:

w← E
{

zg(wTz)
}
− E

{
g′(wTz)

}
w (16)

The weight vector w needs to be normalized after each iteration by the following equation:

w← w/‖w‖ (17)

In general, the steps of FastICA algorithm are:

(1) Firstly, remove the mean value of the observation signal X, and then whiten it to get
the variable z. Set the maximum number of iterations N and tolerance error ε;

(2) Set initial weight vector w and let the iteration number t = 1;
(3) Update w by Equation (16) and normalize it after each iteration by Equation (17);
(4) Let t = t + 1. If it does not converge, namely t ≤ N and ‖w(t + 1)− w(t)‖ > ε, go

back to step (3).

3.2. Improved FastICA

The FastICA algorithm is generally a relatively good learning algorithm, but the
algorithm is easily affected by the selection of the initial value, resulting in unstable
convergence. To solve the problem, the steepest descent whose performance is not affected
by the initial value can be employed to initialize w. Moreover, a third-order convergence
Newton iteration method can improve convergence speed.

3.2.1. Steepest Descent Method

The iteration steps of steepest descent include:

(1) The initialization matrix is randomly selected and transformed into an orthogonal
matrix W = [w1, w2, · · ·wn]

T (where T denotes transpose);
(2) Compute negative gradient of E

{
Xg(WTX)

}
(where T denotes transpose) at W:
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λ = −


∂E{Xg(WT X)}

∂w1
0

. . .

0
∂E{Xg(WT X)}

∂wn

 (18)

The function drops faster in the negative gradient direction, so negative gradient can
be brought in as a relaxation factor:

W ←W + λE
{

Xg(WTX)
}

(19)

(3) If it does not converge, namely ‖W(t + 1)−W(t)‖ > ε, go back to step (2).

3.2.2. Third-Order Convergence Newton Iteration

The conventional Newton iteration has a second-order convergence rate, while the
third-order convergence Newton iteration method is on the basis of the conventional
Newton iteration, which has a third-order convergence rate. In the FastICA algorithm with
third-order convergence, the iteration of w is as follows [40]:

w∗ = E
{

zg(wTz)
}
− E

{
g′(wTz)

}
w

w+ = 2E
{

zg(wTz)
}
−
{

E
{

g′(wTz)
}
+ E

{
g′(w∗Tz)

}}
w

w′ = w+/‖w+‖
(20)

3.2.3. Improved FastICA

The improved FastICA combines the steepest descent method and third-order conver-
gence Newton iteration method, whose steps are:

(1) Firstly, remove mean value of observation signal X, and then whiten the zero-mean
signal to obtain the variable z. Set the maximum number of iterations N and tolerance
error ε;

(2) Using steepest descent method to solve initial weight vector w and let the iteration
number t = 1;

(3) Update w by Equation (20);
(4) Let t = t + 1. If it does not converge, namely t ≤ N and ‖w(t + 1)− w(t)‖ > ε, go

back to step (3).

4. Single-Channel Compound Fault Analysis Method Using Shift Invariant K-SVD
and Improved FastICA

In this study, a single-channel mechanical compound fault analysis method combining
shift invariant dictionary learning with an improved FastICA algorithm is presented.
Figure 1 describes the whole process of the method and the description with regard to each
stage is as follows:

(1) Dictionary learning with shift invariant K-SVD. Using the single-channel vibration
signal, an over-complete dictionary is obtained with shift invariant K-SVD.

(2) Construct a virtual multi-channel signal through latent components. Using the learned
over-complete dictionary, latent components can be obtained and constructed as a
virtual multi-channel signal.

(3) Blind source separation using improved FastICA. The improved FastICA algorithm
combining steepest descent method and third-order convergence Newton iteration
can be conducted to achieve BSS and obtain estimated source signals.
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Figure 1. Diagram of the presented method.

5. Experiment and Analysis
5.1. Description of the Experiment

To validate the proposed method, an experiment of a compound fault of rolling
bearings was carried out on the QPZZ II test bench that can simulate faults in rotating
machinery, including compound faults of outer and inner races, outer race and rolling
element, and outer race, inner race and rolling element. The experiment rig is demonstrated
in Figure 2a. In rolling bearing, the inner race revolves with the main drive shaft at
800 r/min, while the outer race is installed on the bearing housing. An acceleration sensor
is respectively installed on the horizontal and vertical positions of bearing housing to
synchronously collect the vibration signals of the bearing in two directions. The data
acquisition system is shown in Figure 2b, whose sampling frequency is 8192 Hz. The type
of experiment bearing is NU205, and the main geometric parameters and theoretical fault
characteristic frequencies are described in Tables 1 and 2, respectively. Among them, Z,
d, D, θ represent number of rolling elements, rolling element diameter, pitch diameter
and contact angle individually. fr, fc, fi, fo and fb separately denotes rotation frequency of
drive shaft, rotation frequency of cage, characteristic frequency of bearing inner race fault,
outer race fault and rolling element fault. In total 26 sets of signal are collected under each
compound fault state of the rolling bearing. Each signal has 8192 points and the duration
is 1 s.
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Figure 2. The experiment rig of rolling bearings with compound fault: (a) experiment rig; (b) data
acquisition system.

Table 1. The main parameters of rolling bearing.

Type Z d (mm) D (mm) θ (◦)

NU205 12 7.5 39 0

Table 2. The characteristic frequencies of rolling bearing (Hz).

Type fr fc fi fo fb

NU205 13.3 5.4 95.38 64.61 33.02

5.2. Compound Fault of Rolling Bearing with Outer and Inner Race Fault

The time waveform and envelope spectrum of the first set of vibration signals of a
compound fault of a rolling bearing with outer and inner race faults are shown in Figure 3.
As can be seen from the envelope spectrum, the peak values under the characteristic
frequency of the bearing outer race fault fo and its multiplier frequencies are obvious, which
means that an outer race fault has occurred, but the peak value under the characteristic
frequency of inner race fault fi is not obvious.
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Figure 3. Rolling bearing signal with outer and inner race compound fault: (a) time waveform;
(b) envelope spectrum.
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Firstly, shift invariant K-SVD was utilized to analyze the first set of vibration signals
of the compound fault of a rolling bearing with outer and inner race faults. The main pa-
rameters of shift invariant K-SVD are: the length of basis function is 128, the basis function
number is 8, and the signal length is 8192 so the sparsity is set to 1.2 × 8192/128 ≈ 77 [11].
The learned eight basis functions are exhibited in Figure 4. It can be seen that these basis
functions can successfully capture the fault characteristics in the mixed signal.
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Figure 4. The eight learned basis functions using shift invariant K-SVD algorithm corresponding to
outer and inner race compound fault.

After that the multiple latent components can be obtained and constructed as a virtual
8-channel signal. Then, original FastICA and improved FastICA were employed to separate
the source signals, respectively. The source number is 2 and tanh function is utilized as
nonlinear function. Through a large number of repeated runs of 26 sets of vibration signals
using original FastICA and improved FastICA algorithms, respectively, it can be found
that the separation effect of the improved FastICA algorithm and original FastICA is
basically the same. The estimated source signals and their corresponding envelope spectra
of the first set of vibration signals using improved FastICA are demonstrated in Figure 5.
From Figure 5, we can see that improved FastICA can successfully separate mixed signals.
Besides that for source signal x2, in the envelope spectrum the peak values under fo and
its multiplier frequencies are obvious, indicating that it is the source signal of outer race
fault, while for source signal x1, the peak value under fi is obvious, and there are side
frequencies on both sides of fi with the interval of rotation frequency fr, indicating that it is
the source signal of the inner race fault. The energy of the inner race fault source signal in
the original mixed signal is small. Hence, if the envelope spectrum of the original signal is
directly analyzed, fi is easily ignored. However, the proposed method using shift invariant
K-SVD dictionary learning and improved FastICA can successfully separate signals from
different fault sources.



Machines 2021, 9, 144 10 of 18

Machines 2021, 9, x FOR PEER REVIEW 10 of 19 
 

 

bration signals using original FastICA and improved FastICA algorithms, respectively, it 
can be found that the separation effect of the improved FastICA algorithm and original 
FastICA is basically the same. The estimated source signals and their corresponding en-
velope spectra of the first set of vibration signals using improved FastICA are demon-
strated in Figure 5. From Figure 5, we can see that improved FastICA can successfully 
separate mixed signals. Besides that for source signal 2x , in the envelope spectrum the 
peak values under of  and its multiplier frequencies are obvious, indicating that it is the 
source signal of outer race fault, while for source signal 1x , the peak value under if  is 
obvious, and there are side frequencies on both sides of if  with the interval of rotation 
frequency rf , indicating that it is the source signal of the inner race fault. The energy of 
the inner race fault source signal in the original mixed signal is small. Hence, if the en-
velope spectrum of the original signal is directly analyzed, if  is easily ignored. How-
ever, the proposed method using shift invariant K-SVD dictionary learning and im-
proved FastICA can successfully separate signals from different fault sources. 

Although the separation effect of original FastICA and improved FastICA is basi-
cally the same, the convergence performance of the two algorithms is quite different. 
Based on the first set of vibration signals, each algorithm is run 10 times respectively. The 
number of iterations corresponding to the separated two source signals in a certain run is 
illustrated in Table 3 and the total number of iterations (sum of the number of iterations 
of two source signals) in each run is revealed in Figure 6. From the table and figure we 
can see that improved FastICA can reduce the number of iterations. As shown in the 
figure, using original FastICA the number of iterations fluctuates greatly which is caused 
by the algorithm being sensitive to initialization, while the iteration number is relatively 
stable in improved FastICA. The results indicate that the improved FastICA algorithm 
can not only speed up the convergence speed significantly, but also solve the problem of 
unstable convergence. 

 
Figure 5. Estimated source signal using improved fast independent component analysis (FastICA): (a) source signal 1x ; 
(b) source signal 2x ; (c) envelope spectrum of 1x ; (d) envelope spectrum of 2x . 

0 0.2 0.4 0.6 0.8 1
-30

-20

-10

0

10

20

30

Time/s

A
m

pl
itu

de
/m

*s
-2

(a)

0 0.2 0.4 0.6 0.8 1
-30

-20

-10

0

10

20

30

Time/s

A
m

pl
itu

de
/m

*s
-2

(b)

0 100 200 300
0

0.2

0.4

0.6

0.8

Frequency/Hz

A
m

pl
itu

de

(c)

0 100 200 300
0

0.2

0.4

0.6

0.8

Frequency/Hz
A

m
pl

itu
de

(d)

2fo
fr

fi-fr
fi+fr

fi

fo

Figure 5. Estimated source signal using improved fast independent component analysis (FastICA):
(a) source signal x1; (b) source signal x2; (c) envelope spectrum of x1; (d) envelope spectrum of x2.

Although the separation effect of original FastICA and improved FastICA is basically
the same, the convergence performance of the two algorithms is quite different. Based on
the first set of vibration signals, each algorithm is run 10 times respectively. The number of
iterations corresponding to the separated two source signals in a certain run is illustrated
in Table 3 and the total number of iterations (sum of the number of iterations of two
source signals) in each run is revealed in Figure 6. From the table and figure we can
see that improved FastICA can reduce the number of iterations. As shown in the figure,
using original FastICA the number of iterations fluctuates greatly which is caused by
the algorithm being sensitive to initialization, while the iteration number is relatively
stable in improved FastICA. The results indicate that the improved FastICA algorithm
can not only speed up the convergence speed significantly, but also solve the problem of
unstable convergence.

Table 3. The number of iterations corresponding to the separated two source signals in a certain run.

Iterations FastICA Improved FastICA

Source1 21 13
Source2 13 7

Total 34 20
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5.3. Compound Fault of Rolling Bearing with Outer Race and Rolling Element Fault

The time waveform and envelope spectrum of the first set of the vibration signal of
the compound fault of the rolling bearing with an outer race and rolling element fault
are displayed in Figure 7. As can be observed from Figure 7b that the peak values under
the characteristic frequency of bearing outer race fault fo and its multiplier frequencies
are obvious, indicating that the bearing has outer race fault, however the characteristic
frequency of the rolling element fault fb cannot be seen.
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Figure 7. Rolling bearing signal with outer race and rolling element compound fault: (a) time
waveform; (b) envelope spectrum.
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As in the previous subsection, firstly based on the first set of vibration signal, a shift
invariant K-SVD dictionary learning algorithm was employed and the parameters of the
algorithms are consistent with the previous subsection. The learned eight basis functions
are manifested in Figure 8. The estimated source signals and their envelope spectrums
with improved FastICA are shown in Figure 9.
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Figure 8. The eight learned basis functions using shift invariant K-SVD algorithm corresponding to
outer race and rolling element compound fault.
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Figure 9. Estimated source signal using improved FastICA: (a) source signal x1; (b) source signal x2;
(c) envelope spectrum of x1; (d) envelope spectrum of x2.
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Figure 9 shows that improved FastICA can succeed in isolating the source signals.
For source signal x2 in the envelope spectrum the peak values under fo and its multiplier
frequencies are obvious, indicating that x2 represents the source signal of the outer race
fault. The source signal x1 is actually the impulse signal produced by the rolling element
fault and in the envelope spectrum fb is not obvious, yet the peak values under the rotation
frequency of cage fc and its multiplier frequencies are obvious, which is because the impact
signal caused by a rolling element fault is modulated by the rotation frequency of the cage.
When the failed rolling element runs to the load-bearing area, the load is the largest and
the impact energy is also large, while once it leaves the load area, the load on it decreases
rapidly and thus the impact energy is also rapidly reduced, especially when running to
the top when the load is very small or there is even no load, hence there is no obvious
impact signal. Therefore, in the envelope spectrum the rotation frequency of cage and its
multiplier frequencies are obvious.

As in the above subsection, the convergence performance of original FastICA and
improved FastICA is also compared, which is demonstrated in Table 4 and Figure 10.
The comparison results indicate that the improved FastICA algorithm possesses stable
convergence and faster convergence speed.

Table 4. The number of iterations corresponding to the separated two source signals in a certain run.

Iterations FastICA Improved FastICA

Source1 13 7
Source2 44 16

Total 57 23
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Figure 10. Iteration number under 10 runs using FastICA and improved FastICA.

5.4. Compound Fault of Rolling Bearing with Outer Race, Inner Race and Rolling Element Fault

The time waveform and envelope spectrum of the first set of vibration signals of the
compound fault of a rolling bearing with an outer race, inner race and rolling element fault
are demonstrated in Figure 11. As shown in Figure 11b, fo and its multiplier frequencies
have obvious peaks. Besides, obvious peaks under fi can be found and there are side
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frequencies on both sides of fi with the interval of rotation frequency fr, however fb cannot
appear. The analysis of the mixed signal demonstrates that there are obvious outer and
inner race faults, but it is easy to ignore the weak rolling element fault.
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Figure 11. Rolling bearing signal with outer race, inner race and rolling element compound fault:
(a) time waveform; (b) envelope spectrum.

Firstly, the shift invariant K-SVD dictionary learning algorithm was conducted to
analyze the first set of vibration signals. The parameters of the algorithms are the same
as the previous subsection except that the source number is 3. The learned eight basis
functions are illustrated in Figure 12.
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Figure 12. The eight learned basis functions using shift invariant K-SVD corresponding to outer race,
inner race and rolling element compound fault.
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The estimated source signals and their envelope spectrums with improved FastICA are
demonstrated in Figure 13, which proves that the mixed signals can be separated effectively
by improved FastICA. Moreover, from the envelope spectrum of the source signal x1 we
can find that there is an obvious peak at fi, and near fi there exist side frequencies with
the interval of the rotation frequency fr, which suggests that it is the source signal of inner
race fault. With regard to source signal x2, there are obvious peaks in fo and its multiplier
frequencies, indicating that it is the source signal of outer race fault, while for source signal
x3, the peak value on the rotation frequency of cage fc is obvious and according to the
analysis in the previous subsection, it actually represents the impact signal generated by the
rolling element fault. Therefore, the proposed method successfully achieved the separation
of the complex mixed signal containing three fault sources.
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Figure 13. Estimated source signal using improved FastICA: (a) source signal x1; (b) envelope
spectrum of x1; (c) source signal x2; (d) envelope spectrum of x2; (e) source signal x3; (f) envelope
spectrum of x3.

Furthermore, the iteration numbers of the original FastICA and improved FastICA
are presented in Table 5 and Figure 14, which prove that the improved FastICA algorithm
outperforms original FastICA in convergence speed and stability.
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Table 5. The number of iterations corresponding to the separated two source signals in a certain run.

Iterations FastICA Improved FastICA

Source1 33 13
Source2 32 9
Source3 14 10

Total 79 32
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6. Conclusions

A single-channel compound fault analysis method combining shift invariant K-SVD
with improved FastICA is proposed. First of all, shift invariant K-SVD is employed to
obtain multiple latent components and then constructed as a virtual multi-channel signal.
After that, improved FastICA is utilized to separate multiple fault source signals. The
experimental results indicate that with respect to a single-channel compound fault signal,
the multiple fault source signals can be successfully separated based on the proposed
method. Besides that, the improved FastICA algorithm can improve convergence speed
and deal with the problem that original FastICA is sensitive to initialization thus making
the convergence more stable. In future research, other shift invariant dictionary learning
algorithms and further improvement methods of FastICA including the improvement of
convergence stability and speed will be exploited.
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