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Abstract: There are several different proposed data mining methods for the postmarketing surveillance
of drug safety. Adverse events are often classified into a hierarchical structure. Our objective was to
compare the performance of several of these different data mining methods for adverse drug events
data with a hierarchical structure. We generated datasets based on the World Health Organization’s
Adverse Reaction Terminology (WHO-ART) hierarchical structure. We evaluated different data
mining methods for signal detection, including several frequentist methods such as reporting odds
ratio (ROR), proportional reporting ratio (PRR), information component (IC), the likelihood ratio
test-based method (LRT), and Bayesian methods such as gamma Poisson shrinker (GPS), Bayesian
confidence propagating neural network (BCPNN), the new IC method, and the simplified Bayesian
method (sB), as well as the tree-based scan statistic through an extensive simulation study. We also
applied the methods to real data on two diabetes drugs, voglibose and acarbose, from the Korea
Adverse event reporting system. Only the tree-based scan statistic method maintained the type I
error rate at the desired level. Likelihood ratio test-based methods and Bayesian methods tended
to be more conservative than other methods in the simulation study and detected fewer signals in
the real data example. No method was superior to the others in terms of the statistical power and
sensitivity of detecting true signals. It is recommended that those conducting drug-adverse event
surveillance use not just one method, but make a decision based on several methods.

Keywords: disproportionate reporting rate; drug safety surveillance; pharmacoepidemiology;
spontaneous reporting system; tree-based scan statistic

1. Introduction

It is critical to detect signals of adverse drug reactions from real-world data early enough to protect
public health. From the real-world data, we could identify new effects of drugs that had not been
identified during premarketing clinical trials. Adverse event (AE) information after drug marketing is
often collected via a spontaneous reporting system to identify any long-term adverse drug reactions.
In Korea, for example, the Korea Institute of Drug Safety and Risk Management (www.drugsafe.or.kr)
collects the information through a spontaneous reporting system.

Through this system, anyone, for example, a patient who has taken the drug, a doctor, or the
manufacturer, can report an AE. They report information such as the symptoms of the AE, the date of
onset, the name of the drug, the frequency and duration of the dose, patient information, and causality
assessment information. As the causality can only be reported by medical experts, the information
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reported by the patients does not confirm that an AE has been caused by a particular drug. In addition,
there could be issues related to data quality and under-reporting. The total number of people who
received the drug and the number of AEs are not precisely known. It is difficult to determine a causal
relationship between drugs and adverse effects from a spontaneous reporting system database. We can
only identify signals of adverse drug reactions, so additional in-depth studies are needed [1].

Statistical analysis is performed to detect whether any particular AEs have occurred more frequently
or whether there are any unexpected AEs. Among the various data mining tools, disproportionality
methods are widely used for AE signal detection. Different disproportionality methods exist based on
different measures such as the reporting odds ratio (ROR) [2], proportional reporting ratio (PRR) [3],
information component (IC), likelihood ratio test-based method (LRT) [4], gamma Poisson shrinker
(GPS) [5], Bayesian confidence propagating neural network (BCPNN) [6], new IC method [7,8], and the
simplified Bayesian method (sB) [9]. ROR, PRR, IC, and LRT are frequentist methods, while GPS,
BCPNN, the new IC method, and sB are Bayesian methods [10]. Some studies suggest that Bayesian
methods, such as multi-item gamma Poisson shrinker (MGPS) and BCPNN, outperform frequentist
methods such as PRR [2,3,6,7,11]. Other studies showed that the sB method performed better than
BCPNN and PRR [9,11]. Unlike other methods, the GPS method needs to estimate hyperparameters
of the prior distribution using the whole data. Because of this process, the GPS method requires
more computation time. Thus, most pharmaceutical companies and national and international
pharmacovigilance organizations use other methods more often than the GPS method [12].

Another type of data mining method for signal detection is the tree-based scan statistic (TreeScan)
proposed by Kulldorff et al. [13]. This method simultaneously searches for signals at any level (or
layer) of AE in a hierarchical structure, adjusting for the multiple testing problem. It has been applied
to drug safety surveillance as well as occupational disease surveillance [13,14].

Both LRT and TreeScan methods were developed based on a likelihood ratio test with the test
statistic as the maximum likelihood ratio. Moreover, both methods use the Monte Carlo method to
obtain the empirical distribution for statistical inference. The LRT method can handle AEs such as
system-organ classes (SOC), preferred terms (PT), or included terms (IT) (only one layer, not all the
layers together). If the AE is coded as PT, the LRT method detects the signal of single PT. The TreeScan
method for detecting AE signals for a fixed drug in data with multiple layers may consider all the
layers, and search for signals of PT and SOC (or other layers) together. The LRT method is more general
and covers different aspects of safety signal detection. The TreeScan method is for detecting AE or
certain prespecified AE groups as signals for a fixed drug, which is a special case of the LRT method.

Clinical information related to adverse drug reactions is generally coded using medical dictionaries
such as the World Health Organization Adverse Reaction Terminology (WHO-ART) and the Medical
Dictionary for Regulatory Activities (MedDRA), which have a hierarchical structure. There are several
studies comparing the performance of disproportionality methods in a usual database format with
AEs and drug combination data [2,3,6,7,9,11,12,15]. However, it is not clear which method performs
better than the others when AEs are classified into a hierarchical structure. There is a study comparing
the application of the GPS and TreeScan methods to real cohort data by Brown et al. [15]. They showed
that the signaled regions were similar. However, in some cases, the TreeScan method detected signals
that were not detected by the GPS. We do not know which results are more reliable.

The purpose of this study was to compare the performance of several different data mining
methods for signal detection in adverse drug event data grouped into hierarchical structures. Through
an extensive simulation study, we evaluated the performance of ROR, PRR, IC, LRT, GPS, BCPNN,
sB, and TreeScan on datasets generated based on the WHO-ART’s hierarchical structure. Originally,
the methods except TreeScan were not developed for hierarchically structured data. We evaluated
all the methods by considering all layers, instead of limiting to a single layer, to better reflect the
hierarchical data structure and make fair comparisons. We used the type I error rate, power, sensitivity,
and positive predictive value as performance measures. We also compared the application results of
the methods to a real dataset from the Korea adverse event reporting system (KAERS).
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2. Signal Detection Method

Several different data mining methods have been developed to detect unusually high
disproportionate reporting rates from the large drug safety databases. In this paper, we considered
ROR, PRR, IC, LRT, GPS, BCPNN, new IC, sB, and TreeScan, which have been relatively widely used.
We mainly referred to Huang et al. [10] for a review of the methods apart from TreeScan.

From a large drug safety database, the number of AEs by drugs can be presented in matrix form
with I rows of AEs and J columns of drugs. For a particular AE (ith AE) at a particular drug (jth drug),
the data can be summarized in a 2 × 2 table, as shown in Table 1.

Table 1. Adverse events count for the ith adverse event and the jth drug.

AE jth Drug All Other Drugs Total

ith adverse event ni j ni. − ni j ni.
All other adverse events n. j − ni j n.. − ni. − n. j + ni j n.. − ni.

Total n. j n.. − n. j n..

2.1. Frequentist Methods

2.1.1. Reporting Odds Ratio (ROR)

The ROR is the odds ratio that a particular AE is reported in patients who take a specific drug
compared to patients who take other drugs [2]. The ROR for the ith AE and the jth drug (RORi j) is
estimated as

RÔRi j =
ni j/

(
ni. − ni j

)(
n. j − ni j

)
/
(
n.. − ni. − n. j + ni j

) =
ni j

(
n.. − ni. − n. j + ni j

)(
ni. − ni j

)(
n. j − ni j

)
and if either

(
ni. − ni j

)
or

(
n. j − ni j

)
is equal to 0, then RÔRi j is not defined. The log-transformed RÔRi j

can be approximated to a normal distribution as follows:

log
(
RÔRi j

) .
∼ N

(
log

(
RORi j

)
, σ2

RORi j

)
,

σ̂2
RORi j

≈
1

ni j
+

1(
ni. − ni j

) + 1(
n. j − ni j

) + 1(
n.. − ni. − n. j + ni j

) .

We can obtain an approximate 100(1− α)% confidence interval (CI) for RORi j as:

CIRORi j,100(1−α)% = exp
(
log

(
RÔRi j

)
± z1−α/2

√
σ̂2

RORi j

)
,

where z1−α/2 = Φ(1− α/2) and Φ is the standard normal distribution’s cumulative
distribution function.

The null and the alternative hypotheses to test whether the ith AE for the jth drug is a signal or
not are expressed as:

H0 : RORi j = 1 vs. Ha : RORi j > 1.

As Evans et al. [3] suggested, the lower bound of CIRORi j,100(1−α)% > 2, so we reject the null
hypothesis and conclude that the ith AE can be interpreted as a signal of the disproportionate rate
(SDR) for the jth drug.
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2.1.2. Proportional Reporting Ratio (PRR)

The PRR is the ratio of the proportion of patients who reported a particular AE after taking a
specific drug to the proportion of patients who have taken other drugs that reported the same AE [3].
We estimate the PRR for the ith AE and the jth drug (PRRi j) as:

PR̂Ri j =
ni j/ni.(

n. j − ni j
)
/(n.. − ni.)

=
ni j(n.. − ni.)

ni.
(
n. j − ni j

) .

If
(
ni. − ni j

)
≈ ni. and

(
n.. − ni. − n. j + ni j

)
≈ (n.. − ni.), then RÔRi j ≈ PR̂Ri j. We use the normal

approximation for the distribution of log
(
PR̂Ri j

)
for inference as follows:

log
(
PR̂Ri j

)
∼ N

(
log

(
PRRi j

)
, σ2

PRRi j

)
,

σ̂2
PRRi j

≈
1

ni j
−

1
ni.

+
1(

n. j − ni j
) − 1

(n.. − ni.)
.

Therefore, an approximate 100(1− α)% CI for PRRi j is expressed as follows:

CIPRRi j,100(1−α)% = exp
(
log

(
PR̂Ri j

)
± z1−α/2

√
σ̂2

PRRi j

)
.

The null hypothesis of H0 : PRRi j = 1 is rejected if the lower bound of CIPRRi j,100(1−α)% > 2,
as for PRR.

2.1.3. Information Component (IC)

The IC is based on the relative reporting rate RRi j, which indicates how many particular events
were reported in excess for a specific drug over the expected number of reported counts under the null
hypothesis that a drug and AE are independent. The relative reporting rate is estimated by

ni j
Ei j

, where

Ei j =
ni·n· j
n·· is the expected number of reports for the ith AE and the jth drug under the null hypothesis.

The IC for the ith AE and the jth drug is defined as follows:

ICi j = log2 RRi j =
log

(
RRi j

)
log 2

.

The ICi j is estimated as ˆICi j = log2
ni j
Ei j

for ni j > 0, ni· > 0, and n· j > 0. The estimated variance of

ˆICi j is given by σ̂2
ˆICi j
; 1

(log 2)2

{
1

ni j
+ 1

ni·
+ 1

n· j

}
. An approximate 100(1 − α)% CI for ICi j is expressed

as follows:

CI100(1−α)% = exp

log
(

ˆICi j
)
± z1− α2

√
σ̂2

ˆICi j

.

If the lower bound of CI100(1−α)%> 1, the ith AE can be interpreted as a signal.

2.1.4. Likelihood Ratio Test-Based Method (LRT)

Huang et al. [4] proposed the likelihood ratio test statistic, which controls the type I error and
false discovery rates by using Monte Carlo hypothesis testing. The null and alternative hypotheses to
test whether the ith AE for a specific drug ( j∗) is a signal or not are expressed as follows:

H0 : pi = qi vs. Ha : pi > qi,
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where pi and qi are defined as the reporting rates of ith AE and other AEs for a specific drug, respectively.
The maximum likelihood ratio (MLR) is expressed as follows:

MLR = max
i


(ni j∗

ni.

)ni j(n. j∗−ni j∗

n..−ni.

)n j∗ .−ni j∗(n. j∗

n..

)n. j∗−ni j∗

× I(p̂i > q̂i),

where I() is the indicator function, p̂i = ni j∗/ni., and q̂i =
(
n. j∗ − ni j∗

)
/(n.. − ni.). As the distribution of

MLR under the null hypothesis is unknown, the Monte Carlo hypothesis testing is used to calculate
p-values. For details, see Section 2.3.

2.2. Bayesian Method

2.2.1. Gamma Poisson Shrinker (GPS)

DuMouchel [5] suggested the GPS method, which is an empirical Bayes signal detection method.
The GPS method uses the relative report rate, defined as follows:

λi j =
ni j

Ei j
, where Ei j =

ni. × n. j

n..
.

This indicates the actual frequency compared to the expected frequency. Ei j is calculated under
the null hypothesis that there is no association between the drug-AE pairs. The null and alternative
hypotheses are expressed as follows:

H0 : λi j = 1 vs. Ha : λi j > 1.

The GPS method assumes that the model and prior distributions are as follows:

model : ni j
∣∣∣λi j ∼

iid Poisson
(
µij

)
,

prior : λi j ∼ w×Gamma(α1, β1) + (1−w) ×Gamma(α2, β2),

where the observed report count ni j follows the Poisson distribution with unknown mean µi j = Ei j ×λi j.
The relative report rate follows the mixture gamma distribution where Gamma(α, β) is a gamma
distribution with mean α/β and variance α/β2 and 0 < w < 1 is the prior probability that λi j came
from the first gamma distribution of mixture. The hyperparameters (α1, β1, α2, β2, w) are estimated
by the empirical Bayes method, which is also known as the maximum marginal likelihood.

As gamma distribution is a conjugate prior for Poisson distribution, the posterior distribution of
λi j can be obtained in a closed form as follows:

posterior : λi j
∣∣∣ni j ∼ w∗i j ×Gamma

(
α1 + ni j, β1 + Ei j

)
+(

1−w∗i j

)
×Gamma

(
α2 + ni j, β2 + Ei j

)
,

where w∗i j is the posterior probability that λi j came from the first gamma distribution of the mixture.
This is expressed as follows:

w∗i j =
w× f

(
ni j

∣∣∣α1, β1, Ei j
)

w× f
(
ni j

∣∣∣α1, β1, Ei j
)
+ (1−w) × f

(
ni j

∣∣∣α2, β2, Ei j
) ,
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where f
(
ni j

∣∣∣α, β, Ei j
)

is the marginal distribution. This marginal distribution follows the negative
binomial distribution as follows:

ni j|α, β, Ei j ∼ NB
(
α,

Ei j

Ei j + β

)
,

where NB(x|r, p) =
(

r + x− 1
x

)
px(1− p)r.

The 5th percentile of the posterior distribution of λi j (EB05) is used for decision making. EB05 can
be obtained by solving the equation as follows:

0.05 =

∫ EB05(λi j)

0
f
(
λi j

∣∣∣ni j
)
dλi j.

This integral can be solved easily using iterative techniques such as Newton’s method. If EB05(λi j)
is greater than 2, this drug-adverse effect pair is considered a signal of disproportionate rates (SDR).

2.2.2. Bayesian Confidence Propagation Neural Network (BCPNN)

Bate et al. [6] proposed the BCPNN method based on the IC measure. In the BCPNN method,
the IC measure was defined as follows:

ICi j = log2

(
θi j

θi. × θ. j

)
.

The observed reporting counts and marginal counts are assumed to follow a binomial distribution
with a beta distribution for priors as follows:

ni j
∣∣∣θi j ∼ Bin

(
n.., θi j

)
with θi j ∼ Beta

(
αi j, βi j

)
,

ni.|θi. ∼ Bin(n.., θi.) with θi. ∼ Beta(αi., βi.),

n. j
∣∣∣θ. j ∼ Bin

(
n.., θ. j

)
with θ. j ∼ Beta

(
α. j, β. j

)
,

where αi j = αi. = βi. = α. j = β. j = 1 and βi j =
1

E(ni. |θi.)E(n. j
∣∣∣θ. j)
− 1.

Using the delta method, the posterior mean and variance of ICi j can be obtained as follows:

E
(
ICi j

∣∣∣data
)
= log2

(
ni j + 1

)
(n.. + 1)2

(n.. + γ)(ni. + 1)
(
n. j + 1

) ,

Var
(
ICi j

∣∣∣data
)
=

(
1

log2

)2
 n.. − ni j + γ− 1(

ni j + 1
)
(1 + n.. + γ)

+
n.. − ni. + 1

(ni. + 1)(n.. + 3)
+

n.. − n. j + 1(
n. j + 1

)
(n.. + 3)

,
where γ = β̂i j + 1 =

(n..+2)2

(ni.+1)(n. j+1)
.

The lower limit of the 95% credible interval for ICi j is calculated by:

ICα/2 = E
(
ICi j

∣∣∣data
)
− z1−α/2

√
Var

(
ICi j

∣∣∣data
)
,

and if sBα,i j is greater than 2, this drug-AE pair is a possible signal with a higher reporting rate.
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2.2.3. New IC Method

The new IC is an improved method for posterior inference in IC analysis, including an accurate
estimate for the mode and significantly improved credibility interval estimates. This method also
assumes the number of reports ni j ∼

iid Poisson
(
λi jEi j

)
, where λi j denotes the relative reporting rate.

The prior of parameters λi j is given by λi j ∼
iid Gamma(0.5, 0.5), and the posterior distribution of λi j is

given by λi j
∣∣∣data ∼iid Gamma

(
ni j + 0.5, Ei j + 0.5

)
. Then, the New ICi j is the posterior mean of log2 λi j,

which is E(log2 λi j

∣∣∣∣data) ; log2
ni j+0.5
Ei j+0.5 .

The 95% credible interval limits (λ0.025, λ0.975) are obtained by:∫ λα

0
Gamma

(
y
∣∣∣ni j + 0.5, Ei j + 0.5

)
dy = α

for α = 0.025 and α = 0.975. If the lower limit λ0.025 > 0, the ith AE can be interpreted as a signal.

2.2.4. Simplified Bayesian

For small datasets, the GPS method is usually not recommended because of instability in the
estimation of the hyperparameters. Thus, Huang et al. [9] suggested the simplified Bayesian (sB)
method, which assumes a weaker assumption on prior distribution than the GPS method. The sB
method uses a single gamma distribution as a prior as follows:

prior : λi j ∼ Gamma(α,α),

with mean 1 and variance 1/α. Huang et al. [9] proposed using three values (0.5, 0.01, and 0.0001) for
α. They also called the prior distribution with α = 0.5 a less noninformative prior. The other prior
distributions were called noninformative priors. The posterior distribution is also a single gamma
distribution as follows:

posterior : λi j
∣∣∣ni j ∼ Gamma

(
α+ ni j,α+ Ei j

)
.

The lower bound of the 95% credible interval for λi j (sBα, i j) is used for detecting signals of SDR.
sBα, i j is expressed as follows:

E
(
λi j

∣∣∣ni j
)
=
α+ ni j

α+ Ei j

Var
(
λi j

∣∣∣ni j
)
=

α+ ni j(
α+ Ei j

)2

sBα, i j = E
(
λi j

∣∣∣ni j
)
− 1.645

√
Var

(
λi j

∣∣∣ni j
)
.

If sBα,i j is greater than 2, this drug-AE pair is a possible signal with a higher reporting rate. With
α = 0.5, the sB method is identical to the new IC method [10]. Hence, we only included the sB method
in the simulation.

2.3. Tree-Based Scan Statistic

In a medical dictionary, all AEs are categorized into a hierarchical tree structure. Kulldorff
et al. [13,14] proposed the tree-based scan statistic, which simultaneously searches for signals at any
level (or layer) of AEs in a hierarchical structure. We call the last cell of the tree a leaf and the rest
a node. That is, the higher level of leaves is the node. A higher-level node is defined as the parent
node; the lower level node is defined as the child node. ci is the observed number of AEs for each leaf
I and C =

∑
i ci =

∑
i ni j is the total observed number of AEs reported in patients who have taken a

specific drug j and X =
∑

i xi =
∑

i ni. is the total number of AEs reported in patients who have taken
any drugs.
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When the branches of a tree are cut, the sum of the observed and total number of AEs in the leaves
of each cut, G, cG =

∑
i∈G ci and xG =

∑
i∈G xi, respectively, are obtained. G includes both the child

nodes and parent nodes as a unit of AE. For each cut G, we can calculate the log likelihood ratio and
test statistic:

LR(G) = cG log
(

cG
xG

)
+ (C− cG) log

(
C− cG
X − xG

)
.

T = max
G

LR(G) × I
(

cG
xG

>

(
C− cG
X − xG

))
,

where I() is the indicator function. The cut G that maximizes LR(G) is the most likely cut of related
AEs. The null hypothesis implies that the group defined by cut G has the same ratio of observed to
expected AEs as the rest of the tree. In inference, Monte Carlo hypothesis testing is used, calculating
the most likely cut in each random dataset. Firstly, the likelihood of the most likely cut in a real dataset
is calculated. Secondly, 9999 random datasets are generated under the null hypothesis and the test
statistic for each random dataset calculated. Then, the p-value is calculated as R/(9999 + 1), where R is
the rank of the test statistic of real dataset compared with random datasets.

The LRT and TreeScan methods basically use the same test statistic. Because the TreeScan considers
the hierarchical structure in nature, the distribution of the test statistic is also obtained by comparing all
possible cuts in the hierarchical structure. Even if the two methods detected the same signal, p-values
could be different.

3. Simulation Study

3.1. Data Generation and Evaluation Measures

We generated datasets that reflect WHO-ART’s hierarchical structure, which can be expressed
as system-organ classes (SOC), preferred terms (PT), and included terms (IT) for AEs [16]. In the
simulation study, we included only SOC and PT levels. To reduce the computation time, we only
considered 500 drugs and 300 AEs, which were randomly selected from a total of 2161 PT levels.
We followed the approach in the study by Huang et al. [4] to generate our simulation data.

First, we generated marginal counts of AEs n1., . . . , nI. (I = 300) and drugs n.1, . . . , n.J (J = 500)
as follows:

(n1., . . . , nI.)|n.. ∼ Multinomial
(
n..,

(
u1∑I

i=1 ui
, . . . , uI∑I

i=1 ui

))
(
n. j, . . . , n.J

)
|n.. ∼ Multinomial

(
n..,

(
u1∑J

j=1 u j
, . . . ,

uJ∑J
j=1 u j

))
,

where u ∼ Uni f orm(0, 1) with n.. =
∑I

i=1 ni..
Next, we generated the number of cases reported for a specified drug ( j∗), n1 j∗ , . . . , nI j∗ using(

n1 j∗ , . . . , nI j∗
)∣∣∣∣n. j∗ ∼ Multinomial

(
n. j∗ , prr

)
,

where prr =
(
rr1 j∗ × r0 ×

n1.
n..

, . . . , rrI j∗ × r0 ×
nI.
n..

)
is a vector of probabilities with rr1 j∗ , . . . , rrI j∗ as the

relative reporting rates. When r0 is considered as the baseline risk, prr has the constraints that
0 ≤ rri j∗ × r0 ×

ni.
n..
≤ 1, i = 1, . . . , I, and

∑I
i=1 rri j∗ × r0 ×

ni.
n..

= 1. Note that the number of reported cases
was generated for a specific drug, and hence the true signals are signals for each drug. This means
that the relative reporting rate for the AE with a true signal is higher than those for all the other AEs
for one fixed drug. If an AE is a true signal, the relative reporting rate is greater than 1, while the
relative reporting rate is equal to 1 when the AE is a false signal [11]. The cells for the true signals
were randomly selected first depending on the assumed proportion of true signals. The relative
reporting rate for each of the selected cells as true signals was generated from Uni f orm(1.2, 10) and
Uni f orm(1.2, 4).
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While the TreeScan method detected signals simultaneously for both SOC and PT levels, all the
other methods detected signals from SOC and PT levels separately. To evaluate the performances of
the methods considering the hierarchical data structure, we merged two separate results from each
level for all methods except the TreeScan method.

We generated 1000 datasets for each of nine different settings with three different total sample
sizes (300,000, 500,000, 1,000,000) and three different percentages of true signals (3%, 5%, 10%). We used
five different cutoffs, which are the criteria for signal detection for each method. Different criteria have
been used depending on the organization for different methods [17]. In practice, one may change the
criteria based on experience. We used the same criterion of the lower bound of the 95% CI for fair
comparison in our simulation.

To compare the performance, we calculated the type I error rate, sensitivity, positive predicted
value (PPV), and power for specific drugs. Under the null hypothesis, the type I error is estimated
as follows:

Type I error =
# of times detecting at least one false− positive signal

total # of simulated datasets
.

The sensitivity, PPV, and power are estimated as:

Sensitivity =
1
S

S∑
s=1

# of true− positive signals in sth simulated dataset
# of true signals in the sth simulated dataset

PPV =
1
S

S∑
s=1

# of true− positive signals in sth simulated dataset
# of detected signals in the sth simulated dataset

Power =
# of times detecting at least one signal

total # of simulated datasets
,

where S is the total number of simulated datasets with at least one signal detected. We used R software
3.5.2 version (Vienna, Austria) for all simulations and data analyses.

3.2. Results

3.2.1. Comparison of Type I Error Rate

To compare the type I error rate of each method and cutoff, all relative reporting rates were set
to 1 for each total sample size (Table 2). The type I error rates of the ROR, PRR, and IC methods
were relatively high for the standard cutoff and for all total sample sizes, which means that spurious
detection could frequently occur even when there are no actual signals. The type I error rates of the
GPS and sB methods were close to 0 for the standard cutoff and all total sample sizes. The type I error
rates of the ROR, PRR, IC, GPS, BCPNN, and sB methods varied depending on how the cutoff was set.
On the other hand, the type I error rates of the LRT and TreeScan methods were close to the prespecified
significance level in most cases, although the LRT method had slightly higher type I error rates.

Table 2. Comparison of type I error rates at various cutoff points when rr = 1.

Total Sample Size 300,000 500,000 1,000,000

Method Cutoff * Type I Error

ROR

1 1.000 1.000 0.999
1.5 1.000 0.999 0.991
2 0.999 0.979 0.914

2.5 0.978 0.931 0.790
3 0.939 0.861 0.679
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Table 2. Cont.

Total Sample Size 300,000 500,000 1,000,000

Method Cutoff * Type I Error

PRR

1 1.000 1.000 0.999
1.5 1.000 0.998 0.991
2 0.999 0.978 0.910

2.5 0.974 0.929 0.786
3 0.934 0.860 0.676

IC

log2(1) 0.995 0.998 1.000
log2(1.5) 0.992 0.994 0.993
log2(2) 0.828 0.717 0.546

log2(2.5) 0.607 0.499 0.335
log2(3) 0.284 0.212 0.121

LRT

0.2 0.241 0.215 0.207
0.1 0.124 0.107 0.117
0.05 0.068 0.063 0.053

0.025 0.044 0.039 0.029
0.01 0.031 0.012 0.020

GPS

1 0.567 0.615 0.656
1.5 0.009 0.010 0.005
2 0.000 0.000 0.000

2.5 0.000 0.000 0.000
3 0.000 0.000 0.000

BCPNN

log2(1) 0.371 0.949 0.959
log2(1.5) 0.024 0.113 0.078
log2(2) 0.000 0.003 0.003

log2(2.5) 0.000 0.000 0.001
log2(3) 0.000 0.000 0.000

sB

1 0.741 0.842 0.917
1.5 0.088 0.090 0.079
2 0.009 0.005 0.004

2.5 0.000 0.000 0.000
3 0.000 0.000 0.000

TreeScan

0.2 0.194 0.240 0.219
0.1 0.103 0.124 0.097
0.05 0.052 0.050 0.047

0.025 0.025 0.029 0.029
0.01 0.008 0.010 0.009

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic; * Cutoff values for the lower bound of the 95% CI for ROR, PRR, IC,
BCPNN, and sB, for EB05 for GPS, and for the p-value for LRT and TreeScan.

3.2.2. Comparison of Sensitivity, PPV, and Power

Tables 3 and 4 present the results for sensitivity, PPV, and power of each method when the total
sample size is equal to 300,000. The other results are presented in Appendix A. For all simulation
settings and the standard cutoff for each method, the ROR, PRR, and IC methods had relatively higher
sensitivity and power than the other methods. However, the LRT, GPS, BCPNN, sB, and TreeScan
methods had relatively higher PPV than the other methods. This means that the ROR, PRR, and IC
methods may detect too many signals regardless of whether they are actually true, so these methods
could detect many false signals as well as true ones. On the contrary, the LRT, GPS, BCPNN, sB,
and TreeScan methods detected much fewer signals, but more true signals than false ones.
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Table 3. Summary of performance for each method at various cutoff points when the total sample size
= 300,000 and rr ∼ U(1.2, 10).

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

ROR

1 0.996 0.753 0.251 0.997 0.728 0.394 0.999 0.680 0.649
1.5 0.996 0.704 0.388 0.997 0.678 0.534 0.999 0.621 0.744
2 0.996 0.655 0.503 0.997 0.624 0.628 0.999 0.561 0.800

2.5 0.996 0.608 0.587 0.997 0.569 0.692 0.999 0.498 0.833
3 0.996 0.559 0.646 0.997 0.519 0.737 0.999 0.438 0.854

PRR

1 0.996 0.753 0.251 0.997 0.728 0.394 0.999 0.680 0.649
1.5 0.996 0.704 0.389 0.997 0.678 0.535 0.999 0.621 0.744
2 0.996 0.654 0.504 0.997 0.623 0.629 0.999 0.560 0.800

2.5 0.996 0.607 0.588 0.997 0.568 0.693 0.999 0.497 0.833
3 0.996 0.557 0.647 0.997 0.516 0.738 0.999 0.436 0.855

IC

log2(1) 0.991 0.687 0.309 0.995 0.660 0.479 0.995 0.613 0.748
log2(1.5) 0.986 0.612 0.614 0.991 0.579 0.757 0.992 0.526 0.904
log2(2) 0.980 0.541 0.825 0.984 0.507 0.881 0.990 0.448 0.951

log2(2.5) 0.976 0.500 0.877 0.982 0.467 0.917 0.989 0.405 0.963
log2(3) 0.963 0.413 0.938 0.977 0.375 0.956 0.986 0.311 0.978

LRT

0.2 0.939 0.462 0.962 0.956 0.417 0.983 0.973 0.338 0.990
0.1 0.929 0.432 0.981 0.945 0.388 0.990 0.969 0.312 0.995

0.05 0.915 0.409 0.990 0.930 0.365 0.992 0.961 0.289 0.996
0.025 0.901 0.387 0.994 0.922 0.341 0.995 0.947 0.267 1.000
0.01 0.881 0.359 0.997 0.908 0.314 0.999 0.932 0.240 1.000

GPS

1 0.891 0.417 0.997 0.926 0.395 0.998 0.951 0.378 0.997
1.5 0.888 0.415 0.998 0.925 0.393 0.998 0.951 0.378 0.997
2 0.888 0.414 0.998 0.925 0.391 0.998 0.950 0.369 0.998

2.5 0.888 0.406 0.998 0.924 0.373 0.998 0.945 0.312 1.000
3 0.886 0.369 0.999 0.911 0.315 0.999 0.913 0.204 1.000

BCPNN

log2(1) 0.948 0.578 0.731 0.951 0.539 0.857 0.972 0.474 0.957
log2(1.5) 0.914 0.443 0.984 0.924 0.398 0.992 0.950 0.323 0.998
log2(2) 0.867 0.335 0.998 0.893 0.291 0.999 0.911 0.216 1.000

log2(2.5) 0.808 0.246 1.000 0.831 0.204 1.000 0.837 0.139 1.000
log2(3) 0.719 0.174 1.000 0.753 0.138 1.000 0.754 0.081 1.000

sB

1 0.934 0.488 0.866 0.942 0.448 0.939 0.939 0.387 0.988
1.5 0.921 0.414 0.992 0.932 0.363 0.996 0.919 0.293 0.999
2 0.900 0.347 1.000 0.908 0.292 1.000 0.894 0.217 1.000

2.5 0.864 0.288 1.000 0.875 0.231 1.000 0.856 0.156 1.000
3 0.807 0.241 1.000 0.826 0.180 1.000 0.797 0.110 1.000

TreeScan

0.2 0.942 0.477 0.964 0.954 0.444 0.981 0.975 0.369 0.992
0.1 0.930 0.457 0.983 0.949 0.417 0.991 0.968 0.343 0.996

0.05 0.917 0.437 0.990 0.942 0.393 0.997 0.955 0.322 0.998
0.025 0.904 0.422 0.994 0.935 0.373 0.999 0.948 0.301 1.000
0.01 0.887 0.400 0.997 0.914 0.352 0.999 0.924 0.280 1.000

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic; * Cutoff values for the lower bound of the 95% CI for ROR, PRR, IC,
BCPNN, and sB, for EB05 for GPS, and for the p-value for LRT and TreeScan.

When the relative reporting rates were low (Table 4), all the methods had lower performance
compared to when the relative reporting rates were high (Table 3). The GPS, BCPNN, and sB methods
had a significant decrease in power and sensitivity, especially the GPS method.

As the percentage of true signals increased for all settings of total sample size, the sensitivity
decreased but the PPV and power increased for all methods. As the total sample size increased for all
settings of the percentage of true signals, the sensitivity, PPV, and power increased for all methods.
However, depending on the cutoff of each method, the sensitivity, PPV, and power varied. No single
method was superior to the others overall for all settings.
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Table 4. Summary of performance for each method at various cutoff points when the total sample size
= 300,000 and rr ∼ U(1.2, 4).

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

ROR

1 0.987 0.518 0.164 0.997 0.510 0.262 0.995 0.464 0.437
1.5 0.984 0.419 0.250 0.997 0.408 0.364 0.995 0.362 0.531
2 0.971 0.323 0.316 0.996 0.313 0.437 0.995 0.268 0.581

2.5 0.934 0.243 0.348 0.984 0.231 0.468 0.994 0.190 0.597
3 0.864 0.177 0.353 0.943 0.163 0.467 0.984 0.133 0.591

PRR

1 0.987 0.518 0.164 0.997 0.510 0.262 0.995 0.464 0.437
1.5 0.984 0.419 0.250 0.997 0.408 0.364 0.995 0.361 0.532
2 0.971 0.322 0.317 0.996 0.312 0.437 0.995 0.267 0.582

2.5 0.933 0.241 0.349 0.984 0.229 0.469 0.994 0.189 0.597
3 0.861 0.175 0.354 0.940 0.162 0.467 0.983 0.132 0.591

IC

log2(1) 0.944 0.472 0.182 0.984 0.469 0.290 0.984 0.413 0.486
log2(1.5) 0.901 0.334 0.378 0.969 0.331 0.527 0.976 0.284 0.702
log2(2) 0.835 0.222 0.582 0.942 0.217 0.696 0.965 0.179 0.811

log2(2.5) 0.782 0.175 0.662 0.905 0.165 0.759 0.946 0.129 0.850
log2(3) 0.569 0.087 0.744 0.716 0.077 0.820 0.828 0.056 0.882

LRT

0.2 0.673 0.149 0.867 0.785 0.136 0.917 0.859 0.111 0.955
0.1 0.602 0.122 0.911 0.725 0.111 0.948 0.815 0.089 0.981
0.05 0.554 0.104 0.939 0.670 0.091 0.975 0.748 0.071 0.988

0.025 0.509 0.088 0.966 0.609 0.077 0.984 0.679 0.057 0.992
0.01 0.444 0.071 0.977 0.534 0.060 0.987 0.612 0.044 0.999

GPS

1 0.430 0.079 0.983 0.611 0.095 0.989 0.704 0.090 0.992
1.5 0.051 0.008 1.000 0.250 0.026 0.996 0.561 0.047 0.999
2 0.028 0.005 1.000 0.165 0.017 1.000 0.465 0.034 0.999

2.5 0.015 0.002 1.000 0.065 0.005 1.000 0.057 0.002 1.000
3 0.003 0.000 1.000 0.008 0.001 1.000 0.003 0.000 1.000

BCPNN

log2(1) 0.864 0.306 0.477 0.914 0.292 0.624 0.943 0.259 0.802
log2(1.5) 0.640 0.135 0.915 0.745 0.121 0.937 0.824 0.098 0.976
log2(2) 0.339 0.048 0.984 0.426 0.040 0.996 0.507 0.028 1.000

log2(2.5) 0.113 0.013 1.000 0.140 0.010 1.000 0.166 0.006 1.000
log2(3) 0.022 0.003 1.000 0.026 0.002 1.000 0.025 0.001 1.000

sB

1 0.669 0.171 0.860 0.743 0.161 0.927 0.778 0.133 0.969
1.5 0.472 0.080 0.991 0.569 0.072 0.995 0.628 0.052 0.997
2 0.247 0.031 0.996 0.294 0.024 1.000 0.345 0.015 1.000

2.5 0.084 0.009 1.000 0.094 0.006 1.000 0.098 0.003 1.000
3 0.016 0.002 1.000 0.021 0.001 1.000 0.018 0.001 1.000

TreeScan

0.2 0.671 0.148 0.866 0.772 0.137 0.919 0.843 0.110 0.945
0.1 0.619 0.125 0.930 0.726 0.114 0.965 0.792 0.088 0.964
0.05 0.573 0.107 0.961 0.671 0.096 0.982 0.729 0.073 0.983

0.025 0.520 0.092 0.970 0.614 0.082 0.990 0.685 0.061 0.991
0.01 0.452 0.074 0.985 0.550 0.065 0.993 0.609 0.048 0.995

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic; * Cutoff values for the lower bound of the 95% CI for ROR, PRR, IC,
BCPNN, and sB, for EB05 for GPS, and for the p-value for LRT and TreeScan.

4. Example

4.1. Korea Adverse Event Reporting System (KAERS)

The KAERS is a spontaneous reporting system that receives and manages adverse drug events
reported by patients, manufacturers, or medicine experts, provided by Korea Institute of Drug Safety and
Risk Management. It consists of drugs, AEs, basic demographic, and causality assessment information.
When reported, a drug and an AE should be reported together in a pair. These can be reported several
times depending on the dose and time. If the same drugs and AEs were reported in duplicate, depending
on dose or time, only the first report was counted. Therefore, drugs and AEs are paired only one time.

Causality was assessed at six levels: certain, probable, possible, unlikely, unclassified, and unassessable.
The assessment criteria are shown in Table 5. We used all drug-AE pairs except for ones with an unassessable
level. Not only the reported information on a possible causal relationship between an AE and a drug,
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but also previously unknown or incompletely documented relationships can be a signal. The causality
assessment was performed by a reporter, such as a medical institution, expert, manufacturer, pharmacy, or
public health center.

Table 5. Causality assessment criteria.

Criterion Level

The context of administration and use of medicines is reasonable. Certain, Probable, Possible
It is not described as another medication, chemical, or accompanying illness. Certain, Probable
In case of administration interruption, there is a clinically reasonable response. Certain, Probable
In case of readministration, there is a pharmacologically conclusive response. Certain
It could be described as another medication, chemical, or accompanying illness. Possible, Unlikely
It is a temporary condition, not related to the administration and use of medicines. Unlikely
It requires more information to assess or it is under examination. Unclassified
It is not assessable and cannot be supplemented. Unassessable

In KAERS, AEs were organized under the WHO-ART’s hierarchical structure [16]. This consists
of four hierarchical levels: system-organ class (SOC), high-level terms (HLT), preferred terms (PT),
and included terms (IT). SOC is the highest level. IT represents various expressions about the same AE
in the PT level. HLT is a set of PTs related to each other or having some similar symptoms. HLT may or
may not exist and therefore are excluded from the analysis. A small subset of the hierarchical structure
is listed in Table 6. However, in the KAERS database, more than half of the reports were reported up
to the PT level. Thus, we used the PT level as the lowest level of AEs. In the following illustration,
we used the SOC and PT levels in the WHO-ART’s hierarchical structure.

Table 6. Subset of WHO-ART’s hierarchical structure of adverse events.

Code Level Adverse Event

100 SOC Skin and appendages disorders
100.0001.001 PT ACNE
100.0001.003 IT ACNEIFORM DERMATITIS
100.0001.004 IT RASH ACNEIFORM
100.0001.005 IT ACNE CYSTIC
100.0001.006 IT ACNE PUSTULAR
100.0001.007 IT ACNE AGGRAVATED
100.0001.008 IT ACNE CONGLOBATA
100.0002.001 PT ALOPECIA
100.0002.003 IT HAIR THINNING
100.0002.004 IT ALOPECIA AREATA
100.0002.005 IT ATRICHIA
100.0002.006 IT BALDNESS
100.0002.007 IT HAIR LOSS
100.0002.008 IT ATRICHOSIS
100.0002.009 IT LOSS OF EYELASHES
100.0002.010 IT ALOPECIA TOTALIS
100.0002.011 IT ALOPECIA SCARRING
100.0002.012 IT ALOPECIA UNIVERSALIS
100.0002.013 IT DEFLUVIUM
100.0002.014 IT LOSS OF EYEBROWS
100.0002.015 IT AGGRAVATED HAIR LOSS

4.2. Data

We used drug-adverse effects pair data from KAERS between 2012 and 2016. Between 2012
and 2016, there were approximately 3.1 million drug-AE pairs with 1615 kinds of PT-level AEs and
1950 kinds of drugs. Restricting the causality assessment information to certain, probable, possible,
unlikely, or unclassified levels, approximately 2.5 million drug-AE pairs with 1484 kinds of PT level
AEs and 1716 kinds of drugs were left. These data contained 32 SOC levels, 1484 PT levels, and 3557 IT
levels. Analyses were done with these drug-AE pairs.
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4.3. Analysis

We selected two diabetes drugs, voglibose and acarbose, to compare specific results. Both are
hypoglycemic agents that are used for type 2 diabetes, along with diet and exercise. These two drugs
were selected because of their substantial exposure and comparable characteristics. Voglibose has a
simple structure relative to acarbose. Moreover, it is known to be more economical and safer because
its absolute administration dose is 1000 times lower than that of acarbose. However, some severe
AEs tend to be more reported in voglibose [17,18]. Therefore, we found specific AEs in acarbose and
voglibose using KAERS data by the signal detection methods previously described.

First, we compared the number of signals detected by each method from all drug-adverse effect
pairs with 1484 kinds of PT level AEs and 1716 kinds of drugs. Second, the specific signals detected by
each method were compared for the two diabetes drugs mentioned above. The detection criteria for
each method are shown in Table 7 and the TreeScan method was performed with a simple cut.

Table 7. Signal detection criterion for each method.

Method Detection Criterion

ROR, PRR 95% CI lower bound > 2
IC, BCPNN 95% CI lower bound > log2(2)

GPS EB05 > 2
BCPNN 95% CI lower bound > log2(2)

sB 95% CI lower bound > 2
LRT, TreeScan p-value < 0.05

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic.

4.4. Results

Table 8 provides the overall signal detection results of all methods. We used the signal detection
criteria presented in Table 7. We summarized the number of detected signals separately for PT and SOC
levels. The GPS, BCPNN, and sB methods detected relatively fewer signals than the other methods.
The ROR and PRR detected the most signals.

The results of applying all methods to two drugs, voglibose and acarbose, are summarized in
Table 9. We report only the AEs that were detected by more than two of the signal detection methods.
Voglibose had a higher reported count of all AEs than acarbose. The number of AEs detected by
at least one method was higher for voglibose (36 AEs) than for acarbose (31 AEs). For both drugs,
the common AEs detected were diarrhea, flatulence, and hypoglycemia at the PT level, and metabolic
and nutritional disorders at the SOC level. There was only one common AE detected by all methods
in acarbose and voglibose: flatulence at the PT level. Both drugs signaled strongly for flatulence,
which is an AE commonly observed in patients with type 2 diabetes [19,20]. In addition, the common
AEs detected by all methods were dyspepsia and hypoglycemia at the PT level, and metabolic and
nutritional disorders at the SOC level in voglibose.

Table 8. Overall detection: the number of signals detected by each method in the 2012–2016 Korea
adverse event reporting system (KAERS) database contained 1615 kinds of adverse events and 1716
kinds of drugs.

Method (# of Pairs) ROR & PRR IC LRT GPS BCPNN sB TreeScan

PT levels (2,546,544) 43,960 25,714 8324 6147 5290 4397 9175
SOC levels (54,912) 4142 2147 2238 1342 1256 1163 1380

Total (2,601,456) 48,102 27,861 10,562 7489 6546 5560 10,555

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic.
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Table 9. Detected signals by each method for voglibose and acarbose.

Adverse Event Obs Exp ROR PRR IC LRT GPS BCPNN sB TreeScan

Voglibose

500_165 Anorexia 8 2.62 2.42 * 2.42 * 0.59 0.940 1.12 0.35 1.37 0.504

600 Gastrointestinal system disorders 115 73.73 1.83 1.83 0.32 0.001 * 1.28 0.31 1.46 0.001 *
600_204 Constipation 11 3.96 2.26 * 2.26 * 0.60 0.782 1.24 0.43 1.47 0.336
600_205 Diarrhea 12 6.43 1.33 1.33 0.06 1.000 0.92 0.00 1.23 0.980
600_268 Abdominal pain 10 3.63 2.20 * 2.20 * 0.55 0.910 1.17 0.37 1.43 0.447
600_279 Dyspepsia 35 7.22 5.16 * 5.15 * 1.77 * 0.001 * 3.11 * 1.62 * 3.64 * 0.001 *
600_285 Flatulence 15 0.39 40.28 * 40.00 * 4.49 * 0.001 * 20.89 * 2.79 * 10.76 * 0.001 *

800 Metabolic and nutritional disorders 37 5.07 8.11 * 8.10 * 2.37 * 0.001 * 4.67 * 2.15 * 6.11 * 0.001 *
800_389 Hypoglycemia 24 0.55 48.25 * 47.86 * 4.84 * 0.001 * 27.47 * 3.41 * 17.12 * 0.001 *
800_392 Hyponatremia 2 0.18 9.67 * 9.65 * 1.44 * 0.996 0.49 −0.30 0.03 0.772
800_407 Weight decrease 2 0.21 8.19 * 8.18 * 1.24 * 0.998 0.47 −0.34 0.04 0.860

1100 Respiratory system disorders 16 9.46 1.23 1.23 0.03 1.000 0.94 −0.02 1.21 0.981
1100_515 Epistaxis 2 0.21 8.18 * 8.17 * 1.24 * 0.998 0.47 −0.34 0.04 0.861
1100_523 Pharyngitis 4 0.85 3.79 * 3.79 * 0.81 0.992 0.85 0.15 0.80 0.745

1810_401 Edema peripheral 3 0.71 3.15 * 3.15 * 0.44 1.000 0.60 −0.20 0.43 0.973

Acarbose

500_172 Depression 2 0.08 25.07 * 25.02 * 2.68 * 0.638 0.66 −0.18 0.04 0.209

600_205 Diarrhea 7 3.01 1.65 1.64 0.11 1.000 0.84 −0.05 0.90 0.924
600_285 Flatulence 12 0.18 72.43 * 72.02 * 5.16 * 0.001 * 31.93 * 2.62 * 10.06 * 0.001 *
600_336 Tooth disorder 2 0.01 180.65 * 177.84 * 5.43 * 0.010 * 1.88 −0.10 0.02 0.008 *

800 Metabolic and nutritional disorders 6 2.38 1.79 1.79 0.15 1.000 0.81 −0.06 0.89 0.920
800_383 Hyperkalemia 2 0.11 17.08 * 17.06 * 2.16 * 0.846 0.58 −0.22 0.03 0.390
800_389 Hypoglycemia 3 0.26 10.77 * 10.76 * 1.88 * 0.632 0.91 0.23 0.64 0.202

1210 Red blood cell disorders 4 0.62 5.70 * 5.70 * 1.26 * 0.798 1.00 0.33 0.98 0.326
1210_544 Anemia 4 0.51 7.13 * 7.13 * 1.54 * 0.556 1.10 0.43 1.05 0.176

1300 Urinary system disorders 6 2.16 2.06 * 2.06 * 0.29 0.998 0.87 0.04 0.91 0.819
1300_619 Renal function abnormal 2 0.11 16.52 * 16.50 * 2.12 * 0.860 0.57 −0.23 0.03 0.396

1810_711 Abdomen enlarged 2 0.08 25.76 * 25.71 * 2.72 * 0.632 0.66 −0.18 0.02 0.197

Obs, Observed count; Exp, Expected count; ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio test; GPS, Gamma Poisson
Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified Bayes; TreeScan, Tree-based Scan Statistic; * signal.



Life 2020, 10, 138 16 of 21

5. Discussion

A number of disproportionality methods for data mining and the TreeScan method were compared
for signal detection during drug surveillance for AEs data grouped into hierarchical structures.
We included various frequentist methods such as ROR, PRR, IC, LRT, and TreeScan as well as Bayesian
methods such as GPS, BCPNN, and sB. The LRT, GPS, BCPNN, sB, and TreeScan methods detected
fewer signals than the ROR, PRR, and IC methods. The power and sensitivity of the GPS, sB, LRT,
and TreeScan methods tended to be lower than those of others, which implies that these methods are
more conservative. The higher power and sensitivity of the ROR, PRR, and IC methods seemed to be
due to the higher type I error rates. The three methods had lower PPV. The TreeScan method controls
the type I error rate at the desired level, while other methods cannot control this or find appropriate
cutoffs for the desired type I error rate. However, no method was superior to the others in relation to
all performance measures.

We observed similar patterns in the analysis results of the KAERS data. The GPS and sB methods
detected much fewer signals than the others overall. For the two specific drugs, some common AEs
were detected by all methods. The ROR, PRR, and IC methods detected additional signals that were
not detected by the GPS, sB, LRT, or TreeScan methods. The ROR and PRR methods detected rather
too many signals, even if the number reported was small. Thus, the restriction of three or more cases
for the reported count to be a signal for the ROR and PRR methods, which is usually imposed in
practice [3], might be sensible.

In terms of computation time, the GPS, LRT, and TreeScan methods are more intensive relative
to the other methods. Other methods have a closed form for the confidence interval of each statistic,
so only the cell count (ni j) and marginal count (ni. or n. j) of the matrix are required to calculate the
confidence interval. On the other hand, the GPS method requires all cell counts in the matrix to estimate
the parameters of prior distribution. For the LRT and TreeScan method, a Monte Carlo simulation is
required to obtain p-values.

The methods considered in this paper are approaches that can be applied to an existing database.
In some cases, one may want to continuously or sequentially monitor to detect a signal as early
as possible. The sequential probability ratio test (SPRT) [21,22] can be used. The method has also
been applied to a spontaneous adverse event reporting system [23,24]. However, the result of the
SPRT method is highly dependent on the relative risk used to specify the alternative hypothesis [25].
Although we did not include the SPRT in this study for these reasons, it would be interesting to
compare the method in appropriate situations in future research.

The drug safety databases such as KAERS are constructed by a spontaneous reporting system and
very few AEs that occur were reported, so it has a large number of zero-count cells. In this situation,
a zero-inflated Poisson model could be considered. Hu et al. [11] proposed ZIP-sB and ZIP-DP (Dirichlet
process). Huang et al. [26] proposed a zero-inflated Poisson (ZIP) model based on the likelihood ratio
test. According to these research findings, ZIP models detected fewer signals in data containing a large
number of zero-counts. This means that they are more conservative by considering zero-counts. In a
further study, we will evaluate the performance of ZIP models and apply them to real data to compare.

Huang et al. proposed extending the likelihood ratio test-based (LRT) methods [9] that can
detect signals for including a single AE or several AEs within one AE group. The extended LRT
method could be used for hierarchical structures of AEs for a fixed drug. The threshold for a signal for
multiple-layer analysis should be higher than that for single-layer analysis. It will be very interesting to
see the simulation results by comparing the Extended LRT vs. TreeScan with multiple layers (PT, SOC,
or others). This is a future research topic.

Currently, some drug companies have different AE detection criteria. For example, AstraZeneca
detects an AE when the EB05 is greater than 1.8, whereas GlaxoSmithKline detects AE when it is
greater than 2 [12]. In our study, it was confirmed that the performance of each method could vary
depending on the cutoff, which is the criteria for signal detection in simulation. Therefore, how to set
the cutoff for signal detection is very important and worth noting.
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6. Conclusions

In summary, the LRT, GPS, BCPNN, sB, and TreeScan methods are more conservative than the
ROR, PRR, and IC methods. Only the TreeScan method controls the type I error rate at the desired
level. No method is superior to the others in relation to all performance measures. It is recommended
that those conducting drug-AE surveillance use not just one method, but make a decision based on
several methods.
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Appendix A

Table A1. Summary of performance for each method at various cutoff points when the total sample
size = 500,000 and rr ∼ U(1.2, 10).

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

ROR

1 0.996 0.799 0.303 0.995 0.764 0.462 0.998 0.728 0.729
1.5 0.996 0.747 0.493 0.995 0.709 0.631 0.998 0.663 0.821
2 0.995 0.696 0.621 0.995 0.651 0.726 0.998 0.596 0.865

2.5 0.994 0.641 0.694 0.995 0.595 0.780 0.998 0.532 0.888
3 0.994 0.590 0.740 0.995 0.539 0.813 0.998 0.465 0.904

PRR

1 0.996 0.799 0.303 0.995 0.764 0.462 0.998 0.728 0.729
1.5 0.996 0.747 0.495 0.995 0.708 0.631 0.998 0.663 0.821
2 0.995 0.695 0.622 0.995 0.650 0.727 0.998 0.596 0.865

2.5 0.994 0.639 0.695 0.995 0.593 0.781 0.998 0.530 0.889
3 0.994 0.588 0.741 0.995 0.537 0.813 0.998 0.462 0.904

IC

log2(1) 0.993 0.758 0.285 0.994 0.735 0.468 0.992 0.682 0.760
log2(1.5) 0.992 0.689 0.663 0.992 0.658 0.810 0.991 0.593 0.927
log2(2) 0.990 0.619 0.866 0.992 0.586 0.922 0.987 0.512 0.967

log2(2.5) 0.983 0.583 0.910 0.988 0.540 0.944 0.987 0.466 0.978
log2(3) 0.975 0.494 0.952 0.987 0.446 0.973 0.984 0.366 0.985

LRT

0.2 0.958 0.558 0.962 0.974 0.527 0.989 0.974 0.440 0.994
0.1 0.955 0.535 0.979 0.967 0.502 0.994 0.966 0.414 0.997

0.05 0.946 0.515 0.988 0.961 0.477 0.997 0.959 0.392 1.000
0.025 0.938 0.495 0.995 0.955 0.456 0.999 0.959 0.370 1.000
0.01 0.935 0.471 0.999 0.944 0.433 0.999 0.949 0.344 1.000

GPS

1 0.926 0.511 0.998 0.934 0.493 0.999 0.968 0.478 0.999
1.5 0.925 0.509 0.998 0.934 0.491 0.999 0.968 0.476 0.999
2 0.925 0.506 0.999 0.934 0.482 0.999 0.967 0.447 0.999

2.5 0.922 0.487 0.999 0.932 0.439 0.999 0.965 0.355 0.999
3 0.918 0.430 0.999 0.926 0.353 1.000 0.947 0.242 1.000

sB

1 0.940 0.593 0.845 0.962 0.552 0.937 0.961 0.491 0.987
1.5 0.929 0.505 0.990 0.948 0.462 0.997 0.954 0.388 0.999
2 0.910 0.426 0.998 0.938 0.373 1.000 0.948 0.301 1.000

2.5 0.880 0.362 1.000 0.920 0.298 1.000 0.934 0.226 1.000
3 0.841 0.310 1.000 0.889 0.234 1.000 0.902 0.162 1.000

BCPNN

log2(1) 0.964 0.670 0.737 0.972 0.646 0.870 0.972 0.568 0.964
log2(1.5) 0.947 0.542 0.982 0.960 0.509 0.996 0.958 0.422 0.999
log2(2) 0.930 0.435 1.000 0.936 0.396 1.000 0.937 0.305 1.000

log2(2.5) 0.893 0.342 1.000 0.907 0.299 1.000 0.914 0.215 1.000
log2(3) 0.837 0.268 1.000 0.875 0.223 1.000 0.865 0.142 1.000
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Table A1. Cont.

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

TreeScan

0.2 0.956 0.569 0.970 0.960 0.525 0.981 0.981 0.464 0.996
0.1 0.951 0.550 0.985 0.957 0.504 0.992 0.976 0.440 0.997

0.05 0.942 0.534 0.990 0.951 0.485 0.995 0.968 0.419 0.999
0.025 0.932 0.519 0.996 0.940 0.471 0.998 0.961 0.400 1.000
0.01 0.921 0.495 0.999 0.929 0.450 1.000 0.957 0.376 1.000

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic; * Cutoff values for the lower bound of the 95% CI for ROR, PRR, IC,
BCPNN, and sB, for EB05 for GPS, and for the p-value for LRT and TreeScan.

Table A2. Summary of performance for each method at various cutoff points when the total sample
size = 1,000,000 and rr ∼ U(1.2, 10).

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

ROR

1 0.997 0.853 0.391 0.996 0.829 0.569 1.000 0.779 0.810
1.5 0.997 0.800 0.649 0.996 0.772 0.755 1.000 0.711 0.886
2 0.997 0.745 0.763 0.996 0.710 0.834 1.000 0.645 0.916

2.5 0.997 0.691 0.818 0.996 0.645 0.871 1.000 0.575 0.932
3 0.997 0.640 0.852 0.996 0.587 0.892 1.000 0.502 0.941

PRR

1 0.997 0.853 0.391 0.996 0.829 0.569 1.000 0.779 0.810
1.5 0.997 0.800 0.650 0.996 0.772 0.755 1.000 0.711 0.886
2 0.997 0.745 0.763 0.996 0.709 0.835 1.000 0.644 0.916

2.5 0.997 0.691 0.819 0.996 0.645 0.871 1.000 0.574 0.932
3 0.997 0.638 0.852 0.996 0.585 0.893 1.000 0.501 0.941

IC

log2(1) 0.994 0.837 0.263 0.992 0.817 0.451 1.000 0.777 0.794
log2(1.5) 0.992 0.766 0.748 0.990 0.739 0.859 1.000 0.686 0.960
log2(2) 0.989 0.694 0.912 0.988 0.663 0.954 1.000 0.600 0.983

log2(2.5) 0.986 0.651 0.943 0.988 0.622 0.967 0.998 0.550 0.987
log2(3) 0.983 0.556 0.971 0.987 0.525 0.983 0.994 0.438 0.991

LRT

0.2 0.969 0.664 0.982 0.982 0.642 0.992 0.988 0.571 0.997
0.1 0.966 0.645 0.992 0.978 0.623 0.996 0.986 0.550 0.999

0.05 0.959 0.625 0.996 0.971 0.605 1.000 0.982 0.532 0.999
0.025 0.953 0.607 0.998 0.971 0.589 1.000 0.977 0.513 0.999
0.01 0.949 0.584 1.000 0.967 0.567 1.000 0.972 0.492 1.000

GPS

1 0.954 0.641 0.998 0.967 0.621 0.999 0.980 0.590 0.999
1.5 0.954 0.639 0.998 0.967 0.619 0.999 0.979 0.583 0.999
2 0.953 0.625 0.998 0.967 0.587 0.999 0.978 0.524 1.000

2.5 0.953 0.577 0.998 0.965 0.522 1.000 0.974 0.422 1.000
3 0.952 0.501 0.998 0.964 0.428 1.000 0.963 0.314 1.000

sB

1 0.976 0.756 0.753 0.983 0.743 0.892 0.990 0.683 0.977
1.5 0.958 0.640 0.991 0.968 0.617 0.998 0.976 0.545 1.000
2 0.941 0.537 1.000 0.962 0.515 1.000 0.970 0.426 1.000

2.5 0.921 0.450 1.000 0.949 0.420 1.000 0.958 0.324 1.000
3 0.889 0.372 1.000 0.938 0.334 1.000 0.939 0.237 1.000

BCPNN

log2(1) 0.970 0.716 0.825 0.971 0.681 0.937 0.968 0.609 0.989
log2(1.5) 0.961 0.635 0.994 0.966 0.583 0.997 0.961 0.508 1.000
log2(2) 0.953 0.545 1.000 0.962 0.491 0.999 0.955 0.411 1.000

log2(2.5) 0.941 0.472 1.000 0.955 0.409 1.000 0.943 0.326 1.000
log2(3) 0.926 0.406 1.000 0.948 0.335 1.000 0.932 0.247 1.000

TreeScan

0.2 0.972 0.688 0.980 0.979 0.651 0.992 0.985 0.574 0.999
0.1 0.966 0.673 0.988 0.977 0.632 0.996 0.983 0.553 0.999

0.05 0.964 0.658 0.992 0.974 0.615 0.997 0.983 0.533 1.000
0.025 0.959 0.646 0.996 0.966 0.603 1.000 0.977 0.518 1.000
0.01 0.955 0.627 0.997 0.963 0.581 1.000 0.968 0.500 1.000

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic; * Cutoff values for the lower bound of the 95% CI for ROR, PRR, IC,
BCPNN, and sB, for EB05 for GPS, and for the p-value for LRT and TreeScan.
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Table A3. Summary of performance for each method at various cutoff points when the total sample
size = 500,000 and rr ∼ U(1.2, 4).

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

ROR

1 0.991 0.592 0.204 0.997 0.571 0.313 0.996 0.522 0.510
1.5 0.989 0.471 0.341 0.997 0.452 0.465 0.996 0.403 0.637
2 0.979 0.360 0.434 0.996 0.340 0.547 0.996 0.294 0.686

2.5 0.954 0.260 0.465 0.989 0.238 0.576 0.996 0.198 0.693
3 0.859 0.174 0.453 0.948 0.158 0.564 0.990 0.128 0.673

PRR

1 0.991 0.592 0.204 0.997 0.571 0.313 0.996 0.522 0.510
1.5 0.989 0.470 0.342 0.997 0.451 0.465 0.996 0.403 0.638
2 0.978 0.359 0.434 0.996 0.339 0.548 0.996 0.292 0.686

2.5 0.954 0.258 0.466 0.989 0.237 0.576 0.996 0.197 0.694
3 0.852 0.172 0.450 0.944 0.156 0.563 0.989 0.126 0.673

IC

log2(1) 0.968 0.578 0.177 0.979 0.556 0.281 0.987 0.511 0.493
log2(1.5) 0.948 0.430 0.457 0.966 0.402 0.592 0.981 0.358 0.771
log2(2) 0.914 0.296 0.698 0.944 0.274 0.777 0.965 0.231 0.866

log2(2.5) 0.880 0.229 0.777 0.922 0.210 0.829 0.956 0.171 0.897
log2(3) 0.647 0.106 0.850 0.769 0.093 0.881 0.857 0.068 0.909

LRT

0.2 0.810 0.230 0.910 0.860 0.210 0.940 0.918 0.179 0.968
0.1 0.763 0.202 0.951 0.827 0.183 0.966 0.889 0.154 0.982

0.05 0.721 0.180 0.973 0.794 0.159 0.982 0.860 0.134 0.991
0.025 0.684 0.161 0.987 0.769 0.140 0.991 0.833 0.117 0.996
0.01 0.639 0.139 0.995 0.722 0.119 0.992 0.784 0.097 0.999

GPS

1 0.650 0.163 0.979 0.745 0.179 0.984 0.792 0.185 0.990
1.5 0.164 0.025 0.994 0.360 0.047 1.000 0.529 0.047 1.000
2 0.062 0.009 1.000 0.150 0.018 1.000 0.170 0.011 1.000

2.5 0.019 0.002 1.000 0.056 0.004 1.000 0.016 0.001 1.000
3 0.006 0.001 1.000 0.005 0.000 1.000 0.001 0.000 1.000

sB

1 0.917 0.421 0.511 0.942 0.386 0.652 0.969 0.351 0.833
1.5 0.790 0.210 0.947 0.841 0.186 0.968 0.894 0.155 0.979
2 0.533 0.090 0.999 0.607 0.071 0.997 0.709 0.055 0.999

2.5 0.210 0.025 1.000 0.276 0.021 1.000 0.300 0.012 1.000
3 0.051 0.005 1.000 0.056 0.003 1.000 0.048 0.002 1.000

BCPNN

log2(1) 0.807 0.279 0.860 0.841 0.260 0.924 0.851 0.222 0.980
log2(1.5) 0.655 0.140 0.991 0.716 0.127 0.995 0.747 0.100 0.997
log2(2) 0.384 0.057 0.999 0.502 0.051 0.999 0.548 0.033 1.000

log2(2.5) 0.150 0.017 1.000 0.208 0.015 1.000 0.201 0.007 1.000
log2(3) 0.044 0.004 1.000 0.049 0.003 1.000 0.029 0.001 1.000

TreeScan

0.2 0.815 0.230 0.918 0.855 0.214 0.945 0.891 0.181 0.965
0.1 0.776 0.202 0.948 0.833 0.187 0.966 0.852 0.156 0.982

0.05 0.736 0.177 0.971 0.792 0.162 0.978 0.820 0.135 0.989
0.025 0.691 0.157 0.983 0.749 0.143 0.988 0.784 0.118 0.990
0.01 0.632 0.133 0.992 0.693 0.120 0.991 0.748 0.098 0.994

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic; * Cutoff values for the lower bound of the 95% CI for ROR, PRR, IC,
BCPNN, and sB, for EB05 for GPS, and for the p-value for LRT and TreeScan.

Table A4. Summary of performance for each method at various cutoff points when the total sample
size = 1,000,000 and rr ∼ U(1.2, 4).

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

ROR

1 0.993 0.677 0.266 0.996 0.662 0.401 0.999 0.629 0.633
1.5 0.993 0.541 0.512 0.996 0.520 0.621 0.999 0.477 0.774
2 0.985 0.406 0.607 0.996 0.382 0.692 0.999 0.337 0.818

2.5 0.960 0.279 0.633 0.991 0.257 0.715 0.999 0.212 0.821
3 0.860 0.175 0.611 0.950 0.153 0.694 0.979 0.120 0.795

PRR

1 0.993 0.677 0.266 0.996 0.662 0.401 0.999 0.629 0.633
1.5 0.993 0.541 0.513 0.996 0.520 0.621 0.999 0.476 0.774
2 0.985 0.403 0.608 0.996 0.380 0.692 0.999 0.336 0.818

2.5 0.959 0.277 0.633 0.991 0.255 0.715 0.999 0.210 0.822
3 0.855 0.172 0.610 0.945 0.149 0.694 0.978 0.117 0.793



Life 2020, 10, 138 20 of 21

Table A4. Cont.

True Signal Ratio 0.03 0.05 0.1

Method Cutoff * Power Sensitivity PPV Power Sensitivity PPV Power Sensitivity PPV

IC

log2(1) 0.986 0.705 0.164 0.989 0.687 0.272 0.996 0.660 0.508
log2(1.5) 0.975 0.537 0.585 0.981 0.517 0.704 0.994 0.479 0.856
log2(2) 0.953 0.383 0.818 0.970 0.359 0.870 0.992 0.318 0.934

log2(2.5) 0.932 0.300 0.869 0.957 0.277 0.906 0.986 0.234 0.947
log2(3) 0.760 0.140 0.922 0.855 0.116 0.942 0.924 0.086 0.960

LRT

0.2 0.899 0.382 0.941 0.925 0.347 0.964 0.952 0.312 0.988
0.1 0.885 0.357 0.964 0.907 0.316 0.985 0.941 0.284 0.995

0.05 0.871 0.333 0.979 0.897 0.291 0.994 0.935 0.259 0.996
0.025 0.855 0.310 0.992 0.885 0.270 0.998 0.918 0.236 0.999
0.01 0.837 0.285 0.997 0.859 0.244 0.999 0.895 0.211 1.000

GPS

1 0.838 0.298 0.995 0.866 0.292 0.995 0.902 0.330 0.991
1.5 0.813 0.262 0.999 0.841 0.253 0.999 0.811 0.177 0.999
2 0.768 0.191 1.000 0.771 0.156 1.000 0.583 0.064 1.000

2.5 0.362 0.049 1.000 0.372 0.032 1.000 0.136 0.006 1.000
3 0.033 0.003 1.000 0.038 0.002 1.000 0.004 0.000 1.000

sB

1 0.961 0.562 0.561 0.963 0.525 0.707 0.967 0.491 0.872
1.5 0.892 0.338 0.967 0.917 0.300 0.983 0.944 0.261 0.996
2 0.764 0.179 1.000 0.797 0.138 1.000 0.855 0.106 0.999

2.5 0.449 0.063 1.000 0.509 0.046 0.998 0.544 0.027 1.000
3 0.124 0.013 1.000 0.132 0.009 1.000 0.121 0.004 1.000

BCPNN

log2(1) 0.915 0.441 0.860 0.929 0.417 0.921 0.927 0.383 0.979
log2(1.5) 0.843 0.265 0.996 0.863 0.239 0.998 0.885 0.205 1.000
log2(2) 0.655 0.131 1.000 0.719 0.112 1.000 0.788 0.083 1.000

log2(2.5) 0.355 0.048 1.000 0.426 0.037 1.000 0.460 0.021 1.000
log2(3) 0.094 0.010 1.000 0.114 0.007 1.000 0.086 0.003 1.000

TreeScan

0.2 0.913 0.378 0.956 0.932 0.346 0.967 0.955 0.313 0.986
0.1 0.899 0.348 0.977 0.913 0.319 0.988 0.935 0.285 0.992

0.05 0.879 0.323 0.988 0.896 0.297 0.991 0.910 0.261 0.995
0.025 0.854 0.300 0.993 0.877 0.273 0.996 0.905 0.241 0.997
0.01 0.834 0.273 0.997 0.846 0.245 0.999 0.885 0.215 0.997

ROR, Reporting Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; LRT, Likelihood ratio
test; GPS, Gamma Poisson Shrinker; BCPNN, Bayesian Confidence Propagation Neural Network; sB simplified
Bayes; TreeScan, Tree-based Scan Statistic; * Cutoff values for the lower bound of the 95% CI for ROR, PRR, IC,
BCPNN, and sB, for EB05 for GPS, and for the p-value for LRT and TreeScan.
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