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Abstract: Cancer, as the second leading cause of death worldwide, is a major public health concern
that imposes a heavy social and economic burden. Effective approaches for either diagnosis or
therapy of most cancers are still lacking. Dynamic monitoring and personalized therapy are the
main directions for cancer research. Cancer-derived extracellular vesicles (EVs) are potential disease
biomarkers. Cancer EVs, including small EVs (sEVs), contain unique biomolecules (protein, nucleic
acid, and lipids) at various stages of carcinogenesis. In this review, we discuss the biogenesis of sEVs,
and their functions in cancer, revealing the potential applications of sEVs as cancer biomarkers.

Keywords: cancer; sEVs; liquid biopsy; clinical applications

1. Introduction

Cancer refers to a neoplasm characterized by abnormal and uncontrolled cell growth
and high invasive capability. As the second leading cause of death worldwide [1], cancer is
recognized as a serious public health problem that must be urgently addressed. Recently,
many researchers have discovered evidence that cancer cell activities are largely dependent
on extracellular vesicles (EVs), showing that EVs play a crucial role in the development
of cancer, including the processes of angiogenesis, epithelial-to-mesenchymal transition
(EMT), invasion, metastasis, immunosuppression, and drug resistance [2]. EVs are secreted
to establish a favorable microenvironment for better growth through the transportation
of various cargoes [3]. For example, cancer cells can domesticate their target cells by
transporting RNA and DNA to influence their gene expression [4]. Cancer cells can also
alter cell metabolism by sending specific proteins to cells of normal tissue [3].

Based on biogenetic mechanisms, EVs are divided into two major subtypes: plasma
membrane-derived ectosomes (microvesicles/microparticles) and endosome-origin small
extracellular vesicles (sEVs), with diameter varying from 30 to 100 nm or from 50 to
1000 nm, respectively. A subset of ectosome are referred to as exosomes [5]. Ectosomes
are also known as microvesicles, microparticles, or shedding vesicles [6,7]. Here, we use
‘sEVs’ to refer to EVs less than 200 nm in diameter. The size, and physical and chemical
characteristics of EVs are detailed in Tables 1 and 2.
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Table 1. The size of extracellular vesicles.

Vesicles Size (nm) Origin Reference

Exosomes 30–100 endosomes [5]
Microvesicles 100–1000 Plasma membrane [8]

Apoptotic bodies 500–2000 Plasma membrane, endoplasmic reticulum [9]

Table 2. The chemical characteristics of extracellular vesicles [5].

Characteristics Recommended Nomenclature

Physical characteristics Size Small: diameter <200 nm or <100 nm; Large and/or medium: >200 nm
Density Low; middle; high

Biochemical composition e.g., CD63+/CD81+- EVs, Annexin A5-stained EVs, etc.
Conditions or cell of origin e.g., podocyte EVs, hypoxic EVs, large oncosomes, apoptotic bodies, etc.

Due to their presence and stability in most body fluids [10,11], tumor-derived sEVs
(TEVs) can be used as biomarkers for cancer detection, because the cargo they carry reflects
genetic or signaling changes in the cancer cell of origin [12–14]. In addition, cancer cells
secrete more sEVs than normal cells, which are released into the tumor microenviron-
ment (TME) and circulation [2,15–19]. Furthermore, the contents of sEVs are potential
biomarkers (such as microRNA(miRNAs)) which could improve the specificity of cancer
diagnosis and prognosis [18,20–23], and help to manage and predict treatment responses.
Therefore, further research into TEVs is needed. In this review, we summarize the processes
involved in sEV biogenesis, the roles of sEVs in cancer functions, and their potential clinical
applications as predictive biomarkers in various cancers.

2. Biogenesis of sEVs

Exosomes are a type of nanoscale, endogenously derived vesicle with phospholipid
bilayers, and widely known as mediators of cell-to-cell communication by transferring
cargo from one cell to another [24,25]. Exosome biogenesis begins with invagination of
the endosomal-limiting membrane and the formation of intraluminal vesicles (ILVs). ILVs
move toward the inside of the cell to load cargo, which can include DNA (mitochondrial,
single-stranded, and double-stranded), RNA (messenger RNAs, miRNAs, and non-coding
RNAs), or lipids, resulting in a specialized cell compartment, known as a multivesicular
body (MVB). Extracellular release of ILVs is coordinated by the fusion of MVBs with the
plasma membrane, resulting in the release of ILVs as exosomes [3,26] (Figure 1). Given their
endosomal origin, exosomes are enriched in protein families involved in the construction
of ILVs; for example, tetraspanins, tumor susceptibility gene 101(Tsg101), and ALG-2
interacting protein-X (Alix). Furthermore, exosomes carry non-specific proteins, such as
membrane combination and transfer proteins (e.g., annexins, Rab, and flotillins), major
histocompatibility complex (MHC) proteins (e.g., MHC I and MHC II), heat shock proteins
(e.g., Hsp70 and Hsp90), and cytoskeleton proteins (e.g., myosin, actin and tubulin) [27].

The endosomal sorting complex (ESCRT) comprises four fundamental complexes,
ESCRT-0, I, II, and III, and is the apparatus with foremost responsibility for conveying
particular cargos into ILVs of MVBs, facilitating protein reuse [28]. In addition to the ESCRT-
dependent pathway, an ESCRT-independent route is also an available mechanism. For
example, a few proteins, such as the Ras-related protein (Rab) family (Rab27a and Rab27b),
four transmembrane-domain proteins (CD9, CD63, and CD81), and sphingomyelinase
within the brain, also appear to be involved in lipid bi-layer formation, endosomal vesicle
traffic, and vesicle release [29].
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Figure 1. Steps in the formation of small extracellular vesicles (sEVs). Abbreviations: MVB, multivesicular body; EMT,
epithelial-to-mesenchymal transition; CAF, cancer-associated fibroblast.

3. Functions of sEVs in Cancer

sEVs are among the most abundant carriers in nearly all body fluids, transporting
different cargoes from an initial cell population to another, nearby or distant, and par-
ticipating in various cell activities [3]. An increasing numbers of reports indicate that
carcinoma-cell-derived sEVs transfer specific cargoes into recipient cells and modulate
cancer processes; for example, angiogenesis, cell transformation, invasion, immune es-
cape, and even drug resistance [30]. The specific roles of sEVs depend on their contents,
including miRNAs, DNAs, tumor-derived proteins, and factors that modulate specific
pathways [31]. The roles of sEVs in carcinogenesis can be categorized into six aspects, the
role of sEVs in angiogenesis, epithelial-to-mesenchymal transition (EMT), invasion and
metastasis, immune escape, cancer-associated fibroblasts (CAF), and drug resistance. As
shown in Figure 2, sEVs derived from different cell populations can regulate different
carcinogenic pathways via their distinct components [32]. We also explore the crucial roles
of sEVs in drug resistance to probe the possibility for clinical application of sEVs against
cancer recurrence and drug resistance [33].
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Figure 2. Six aspects of the roles sEVs in carcinogenesis. EMT/MET, epithelial-to-mesenchymal/mesenchymal-to-epithelial
transition; sEVs, small extracellular vesicles; CAFs, cancer-associated fibroblasts; CSCs, cancer stem cells.

3.1. The Role of sEVs in Angiogenesis

Angiogenesis, characterized as the arrangement of new blood vessels from a pre-
existing vascular system, occurs during tissue development and growth, as well as in
reaction to harm, to reestablish the blood supply of a tissue and facilitate wound heal-
ing [34]. sEVs provide recipient cells with pro- and antiangiogenic factors, to remodel
them for roles in angiogenesis and carcinogenesis [35]. The contents of sEVs differ, as
various cancers have unique angiogenic mechanisms. For example, in glioblastoma, several
proangiogenic molecules are found in TEVs, including angiogenin, fibroblast growth factor,
vascular endothelia growth factor, interleukin-6 (IL-6), among others. These molecules
promote angiogenesis and enhance the malignancy of spongioblastoma [36]. Another
proangiogenic molecule, annexin II, derived from breast cancer cells, can promote tumor
neo-angiogenesis [37]. sEVs in body fluid from patients with pancreatic adenocarcinoma
and colon cancer are loaded with considerable amounts of tetraspanin 8, which facilitates
angiogenesis and metastasis [38,39]. Overall, angiogenesis relies on various proangiogenic
or antiangiogenic molecules in sEVs, and sEVs are required for their transport from cancer
cells to endothelial cells, and finally regulate the TME to enable tumor survival.

3.2. The Role of sEVs in EMT

The more aggressive malignant tumor cells become, the more likely they are to migrate
to distant sites. To help facilitate this, a new metastatic niche is needed at the distant site,
and tumor epithelial cells must go through the process of EMT [33]. In tumors, the local
influence of sEV-mediated cell signaling can promote cancer cell aggression. These features
include morphological changes, which are related to migratory functions (EMT, cytoskeletal
reorganization, and aggressive pseudopodia formation), motility, and basement membrane
remodeling activities. Serum sEVs containing miR-200 can affect the infiltration and
colonization potential of cancer cells, indicating that TEVs are associated with an aggressive
phenotype in cholangiocarcinoma [40]. It is conceivable that, epithelioid cancer cells and
mesenchymal cancer cells can be identified based on the different substances carried by



Life 2021, 11, 1044 5 of 19

their sEVs, which could affect cancer metastasis or resistance to treatment [41]. Although
TEVs can reshape distant, metastasis-prone organs (promoting metastasis [41,42]), the exact
and comprehensive roles of sEVs in metastatic sites are not fully understood [43].

3.3. The Role of sEVs in Invasion and Metastasis

sEVs play an indispensable role in cancer development, invasion, and metastasis [44].
For example, in gastric cancer (GC), sEVs promote liver-specific metastasis by carrying
and transferring epidermal growth factor receptors [45]. sEVs can also contribute to tumor
metastasis by improving the tumor-cell-establishing premetastatic niche and remodeling
the extracellular matrix. The premetastatic niche is a prerequisite for tumor metastasis, in
which TEVs can advance tumor angiogenesis and thrombosis by stimulation of endothelial
cells [46]. TEVs can also convert mesenchymal stem cells into myofibroblasts, to enhance
tumor metastasis [47]; moreover, sEVs can induce both cell transformation and activation
of specific signaling molecules during the process of metastasis, such as the proto-oncogene
tyrosine-protein kinase, Src, focal adhesion kinase (FAK), and neurotrophic tyrosine kinase
receptor type 1 (TrkA), in recipient cells [48,49].

3.4. The Role of sEVs in Immune Escape

TEVscan act as negative regulators of two molecules that function as T cell receptors,
interleukin 2 receptor (IL-2R) and the T cell receptor, though inhibiting the expression and
phosphorylation of Janus kinase (JAK) [50]. An intact JAK pathway is essential for the
activity of cytokines, such as IL-2, IL-7, and IL-15, which share the gamma chain of IL-2R.
Therefore, TEVs are detrimental to T cell proliferation and induce immune suppression
by promoting regulatory T cell expansion and the demise of antitumor CD8+ effector T
cells, thus contributing to tumor escape [50]. TEV-mediated signals lead to apoptosis of
activated CD8+ T cells, which is related to cytochrome C discharge from mitochondria,
early membrane changes in recipient cells, and DNA fragmentation [51]. TEVs target the
PI3K/AKT pathway in activated CD8+ T cells. When CD8+ T cells are regulated by TEV,
AKT dephosphorylation decreases, as do expression levels of BCL-2, BCL-xL, and MCL-1,
accompanied by increased levels of the pro-apoptotic protein, BAX [52]. In summary, TEVs
have biological activity in tumor immune suppression, which negatively influences the
functions of various immune cells by types via one or more molecular pathways that cause
change in target cells.

3.5. sEVs and Cancer-Associated Fibroblasts (CAFs)

Cellular communications between cancer cells and surrounding stromal cells in the
TME play important roles in regulating cancer progression and therapy responses [53].
Cancer-associated fibroblasts (CAFs) are crucial constituents of the TME that associate
with cancer cells to advance tumorigenesis and movement [54], and sEVs can activate
CAFs to influence the TME. In particular, prostate cancer cell-derived sEVs promote the
activation of myofibroblasts [55]. TEVs also stimulate normal lung fibroblast activation
(myofibroblast differentiation) in vitro [56] and advance the acquisition of myofibroblast-
like characteristics in adipose tissue-derived mesenchymal stem cells [57]. These findings
support that a role for TEVs in inducing CAF tumorigenicity. By contrast, CAF-derived
sEVs can promote cancer progression by contributing to the chemoresistance of colorectal
cancer (CRC) stem cells (CSCs) [58], and increasing the therapeutic resistance of breast
cancer cells [59].

3.6. The Role of sEVs in Drug Resistance

With advances in pharmacology, anticarcinoma drugs have been rapidly developed
and many patients now receive adequate treatment and have improved prognosis; however,
drug resistance has emerged as a new problem. Like antibiological drugs, anticarcinoma
drugs may have no effect in some cases, because of special mechanisms induced by tumor
cells. Multidrug resistance proteins (MRPs) are key factors determining cancer drug
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resistance, which can also be affected by sEVs [60,61]. In one study, mesenchymal stem
cell-derived sEVs were found to confer GC cell drug resistance both ex vivo and in vivo,
mainly through their proteins, including multidrug resistance (MDR), MRP, and lung
resistance-related protein [61]. In addition, the study showed that sEVs from doxorubicin-
resistant osteosarcoma cells are likely taken up into auxiliary cells, where they invoke
a doxorubicin-resistant phenotype, and multidrug-resistant osteosarcoma cells are able
to spread their capacity resist the impact of doxorubicin treatment by exchanging sEVs
carrying MDR-1 mRNA and P-glycoprotein [60].

3.6.1. Transfer of Drug Resistance Mediated by Cancer Stem Cell sEVs

CSCs, a group of tumor cells in the TME with self-renewal and differentiation ability,
are associated with drug resistance [62]. CSCs specifically express surface biomarkers, such
as low levels of CD24 (CD24-/low) and high levels of CD44 (CD44+), allowing their selec-
tion using simple techniques [63,64]. In addition to the strong correlation between CSCs
and tumor expansion, metastasis, and relapse, several molecular mechanisms are mediated
by CSC-derived sEVs, such as activation of CAFs and the induction of EMT [65–67]. CSC-
derived sEV miRNAs can contribute to the transfer of drug resistance to sensitive breast
cancer cells. For example, miR-155 in CSC-derived sEVs may strengthen the resistance of
breast cancer cells to paclitaxel and doxorubicin treatment [68]. Furthermore, the high level
of miR-210 in pancreatic CSC sEVs from gemcitabine-resistant patients could transfer the
resistant phenotype to gemcitabine-sensitive pancreatic cells [69].

3.6.2. Macrophage Polarization and Drug Resistance

In addition to inducing CSC activity, drug resistance can also be realized by activation
of tumor-associated macrophages (TAMs). TAMs belong to the most plentiful group of
immune cells in the TME and are involved in immunosuppression, tumor angiogenesis,
and cell resistance to chemotherapy [70,71]. TAM populations in the TME are related to
poor prognosis in various cancers, with a larger population often correlated with worse
prognosis [72]. Furthermore, the sEV-mediated transfer of TAM-derived miR-21 can confer
resistance to cisplatin, and targeting sEV-mediated communication may be a promising
new therapeutic strategy for patients with GC [73]. In colon cancer, miR-1246 with in
carcinoma-derived sEVs induce macrophages to acquire a TAM phenotype [74]. Similarly,
other studies have shown that TEVs can enhance macrophage transition to TAMs via
miRNAs in several types of cancer, including ovarian [75,76], bladder [77], and lung [78]
cancer. In conclusion, TAMs are associated with drug resistance.

4. sEVs as Biomarkers in Cancer

TEVs are both potential biomarkers for monitoring cancer progression and potential
targets for future treatments. Given that TEVs are detectable in all body fluids, includ-
ing blood, urine, and bronchial fluids [79], they can function as biomarkers in liquid
biopsies. Here, we discuss the clinical application of sEVs-derived proteins and nucleic
acids as biomarkers. Due to the limited techniques, lipids or other biomolecules in sEVs
are not available for detection to effectively transform research results into clinical ap-
plication [80]. Moreover, TEVs can also be used as non-invasive biomarkers to manage
treatment responses. Here, we will highlight examples of the potential for use of sEVs as
cancer biomarkers in clinical practice and provide a vision for future clinical diagnosis and
prognosis of cancer.

4.1. sEVs Protein and Nucleic Acid Biomarkers
4.1.1. Nucleic Acids in sEVs

miRNAs are RNA fragments of approximately 21–23 nucleotides that regulate gene
expression in eukaryotic cells [81]. In cancer cells, miRNAs can also serve as biomarkers in
cancer diagnosis. sEVs-derived miRNA can be detected for early cancer diagnosis, which
may enhance both the sensitivity and specificity of tumor detection for lung cancer and
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pancreatic ductal adenocarcinoma (PDAC), for example [82,83]. In patients with hepato-
cellular carcinoma (HCC), researchers found that overexpression of sEV-derived miRNAs
was associated with cancer diagnosis and prognosis [84]. The efficiency of different serum
sEV-derived miRNAs for use in prognosis varies. For example, overexpression of serum
exo-miR-215-5p is closely related to poor disease-free survival of patients with liver can-
cer, and can be used as a prognostic biomarker for HCC [85], however, the mechanisms
underlying the activities of many miRNA remain unknown. Upregulation of circulating
sEV-derived miRNA-373 [86], miRNA-1290, and miRNA-375 may have value for predicting
prognosis of patients with prostate cancer [87].

Long-chain non-coding RNAs (lncRNAs) are a family of non-protein-coding RNAs
(200 nt to 10 kb) with distinct expression in various diseases, including malignant tu-
mors [88]. LncRNAs have vital roles in regulating gene expression, alternative splicing
mechanisms, protein localization and activity, as well as cell substructure and protein
complex formation through various interactions with DNA, RNA, and proteins [89,90].
Several independent studies have demonstrated that sEV-derived lncRNAs are involved in
the proliferation of various cancers [91], as well as chemoresistance [92] and stemness [93]
qualities. It is reported that lncRNA actin filament associated protein 1 antisense RNA
1(AFAP1-AS1) confers trastuzumab resistance of breast cancer cells via packaging into sEVs.
Mechanistically, AFAP1-AS1 promotes AUF1-mediated activation of ERBB2 translation,
causing increased HER-2 expression and trastuzumab resistance [94]. Additionally, the
lncRNA UFC1 (E2-like ubiquitin-fold modifier conjugating enzyme 1) expression level was
increased in the serum sEVs of patients with non-small cell lung cancer (NSCLC). High
levels of UFC1 were associated with tumor infiltration. Importantly, another study found
that sEV-transmitted UFC1 could bind to EZH2 to downregulate PTEN gene expression
and activate PI3K/Akt signaling, thereby promoting NSCLC tumorigenesis [95].

4.1.2. Proteins in Cancer sEVs

sEV proteins reflect their cellular origin and may help in cancer diagnosis. The intercel-
lular transfer of oncoproteins by sEVs contributes to facilitating tumorigenesis [96,97]. sEV
proteins are also useful in the dynamic monitoring of cancers. For example, compared with
healthy control subjects or with PDAC who did not deteriorate after diagnosis and treat-
ment, macrophage migration inhibitory factor is elevated in the circulating sEVs of patients
with PDAC whose condition deteriorates [98]. Glypican-1(GPC-1) is a potential biomarker
for pancreatic cancer diagnosis [99], and human leucine rich alpha-2-glycoprotein 1 (LRG1)
in urinary sEVs is a potential biomarker for diagnosis of NSCLC [100].

4.2. Potential of sEVs as Cancer Biomarkers
4.2.1. Lung Cancer

Lung cancer is one of the most dangerous cancers and efficient methods for its diag-
nosis are lacking. Liquid biopsy of sEVs is a method with high accuracy and specificity
for early diagnosis of lung cancer [101], and sEV-derived miR-96 is a potential serum
biomarker for malignant lung cancer [102]. In addition, the LIM-domain-only protein 7
(LMO7) gene is a target of miR-96. Targeting the miR-96-LMO7 axis could be used to
develop new diagnostic or therapeutic strategies [103]. Studies also have been conducted
to identify biomarkers from TEVs that can distinguish between adenocarcinoma (AC)
and squamous cell carcinoma (SCC). The results showed that TEV miRNAs include the
AC-specific molecules, miR-181-5p, miR-30a-3p, miR-30e-3p, and miR-361-5p; as well as
the SCC-specific miR-10b-5p, miR-15b-5p, and miR-320b, which can be isolated from the
plasma of patients with lung cancer. Expression levels of these sEVs miRNAs are reduced
and can distinguish AC from SCC [104]. Further, sEV-mediated transmission of UFC1
expression was upregulated in tumor serum sEVs from patients with NSCLC and high
level of UFC1 were associated with tumor infiltration [95], while LRG1 is expressed at
higher levels in urinary sEVs from patients with NSCLC [100].
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4.2.2. Breast Cancer

Breast cancer is a complex disease which is the second most common cause of cancer-
associated death among women [105]. Therefore, it is fundamental to discover specific or
sensitive biomarkers for early diagnosis and real-time monitoring of breast cancer. In one
study, levels of miR-1246 and miR-21 were elevated in plasma sEVs from 921 patients with
breast cancer compared with healthy patients [106], indicating that miR-1246 and miR-21
levels could potentially serve as a diagnostic biomarker for breast cancer. Furthermore,
sEV-derived miR-1246 may inhibit Cyclin-G2 expression, thereby contributing to breast
cancer progression. Thus, high levels of sEV-derived miR-1246 could be a prognostic
biomarker for metastatic breast cancer [107]. One study revealed that the levels of sEV-
derived endothelial locus-1 (Del-1) were significantly up-regulated in patients with breast
cancer relative to healthy people, and could be used as new diagnostic biomarker for
patients with breast cancer [108].

4.2.3. Prostate Cancer

Prostate cancer is a malignant-epithelial tumor that usually appears in men over
50 years of age [109]. Currently, prostate cancer is most commonly clinically diagnosed
by detecting the prostate-specific antigen (PSA); however, this method may miss some
aggressive prostate cancers, and the diagnosis of prostate cancer requires new biomark-
ers [110]. One miRNA, miR-182, of the miR-183 cluster family, was detected in prostate
cancer cell-derived sEV from serum [111], and miR-375 and miR-1290 have potential to
predict the prognosis of castration-resistant prostate cancer [87]. A study investigating
serum sEV miRNAs from patients with prostate cancer (n = 44) found that miR-1246 has
potential to serve as a diagnostic marker, with a specificity of 100% and sensitivity of 75%,
for differentiating healthy individuals from those with prostate cancer [112].

4.2.4. Colorectal Cancer (CRC)

CRC is one of the most common malignant diseases globally and has a high mortality
rate [113]. Consequently, screening and early detection of CRC are essential, and there
is an urgent need to identify specific biomarkers for this cancer. CRC-cell-derived sEVs
containing the lncRNA RPPH1 is up-regulated in plasma from patients with CRC and
down-regulated after tumor resection [114]. Additionally, the expression of sEV-derived
colorectal neoplasia differentially expressed-h (CRNDE-h) was increased in 148 patients
with CRC [115]. In one sample set, seven miRNAs (let-7a, miR-1229, miR-1246, miR-150,
miR-21, miR-223, and miR-23a) were significantly overexpressed in serum sEVs from
patients with CRC [116]. Tetraspanin 1 (TSPAN1) is a cancer-related protein with a role
in cell mitosis and leads to abnormal cell differentiation; TSPAN1 expression levels are
significantly higher in patients with CRC than in healthy controls [117]. Hence, there is
evidence that sEVs may be useful as effective diagnostic or prognostic tools in CRC.

4.2.5. Gastric Cancer (GC)

GC is the fourth most common malignant tumor globally and the most common cause
of cancer-related death [118]. A recent study demonstrated that sEVs miRNAs are effective
biomarkers in GC, where the up-regulation of miR-374a-5p in serum from patients with GC
is an indicator of poor prognosis [119]. Furthermore, miR-217 overexpression enhances GC
cell proliferation and reduces sEV CDH1 levels; hence, the imbalance of miR-217 in plasma
sEVs can be used as a biomarker for GC diagnosis and classification [120]. Similarly, the
sEV-derived lncRNA, undifferentiated-type early GC (UEGC), is remarkably up-regulated
in patients with early GC, and can assist in early diagnosis of GC [121].

4.2.6. Liver Cancer

Liver cancer is classified into primary and metastatic types. HCC, the most common
form of liver cancer, is a malignant tumor with high mortality rates [122]. Since liver cancer
generally has no particular signs in its early stage, the optimal treatment period is often
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missed [123], as early diagnosis is imperative for effective HCC treatment. Clinical studies
have demonstrated that serum sEV miR-9-3p levels in patients with HCC are significantly
higher than those in healthy people; miR-9-3p can induce HCC cells by down-regulating the
expression of fibroblast growth factor 5 (FGF-5), inhibiting ERK1/2-mediated proliferation,
and repressing apoptosis [124]. Serum levels of miR-21 were higher in patients with
HCC than those with chronic hepatitis B and healthy volunteers; however, the sensitivity
of detection was much lower than that of sEV-derived miR-21. In addition, elevated
serum sEV miR-21 levels were positively correlated with tumor stage in patients with
HCC [125]. Furthermore, levels of the lncRNA HEIH were significantly higher in serum
sEVs from patients with HCC than in those with chronic hepatitis C and liver cirrhosis [126].
Moreover, levels of the lncRNA, activated by tumor growth factor-β (lncRNA ATB), in
serum sEVs from patients with HCC are also positively correlated with tumor TNM stage
and volume [126]. Hence, there is potential for use of sEV components as tools for diagnosis
or prognosis of liver cancer.

4.2.7. Cervical Cancer

Cervical cancer remains a leading cause of cancer-related deaths among women in
developing countries [127]. Accurate and effective early screening methods are conducive
to the prevention and early detection of cervical cancer, thereby improving patient survival
rates [128]. In one study, 121 plasma samples from patients with cervical cancer and patients
with precancerous signs were subjected to sEV miRNA sequencing, which demonstrated
reduced expression of let-7d-3p and miR-30d-5p in patients with cervical cancer. Those sEV
miRNAs may be useful for early detection of cervical cancer [129]. In addition, researchers
collected cervicovaginal lavage specimens from patients with cervical cancer and found
that expression levels of the lncRNAs, HOTAIR, MALAT1, and MEG3 differed significantly
in cervical-TEVs relative to controls, and thus, may be useful for early detection and
diagnosis [130].

4.2.8. Bladder Cancer (BC)

BC is the sixth most common malignant tumor in men and the seventeenth in women.
Compared with healthy subjects, patients with BC have higher levels of sEVs in urine and
serum samples. At different stages of disease, the sensitivity of TEVs in urine is higher than
that of serum; however, serum is more specific and urine is more sensitive [131], which may
be due to the high stability over time of sEVs, especially in the blood [132]. In one study,
miR-21-5p, miR-141-3p, and miR-205-5p were detected as potential specific, non-invasive
diagnostic tools for BC [133]. Similarly, the urine sEVs miRNAs, miR-19b1-5p, 136-3p, and
139-5p, are potential candidates for use in BC diagnosis [134].

4.2.9. Diffuse Large B Cell Lymphoma

Diffuse large B cell lymphoma (DLBCL) is an aggressive malignant lymphoma [135]
and the standard prognostic assessment tool, the international prognostic index (IPI), can
only anticipate survival time, not the impact of treatment [135]. However, analysis of the
miRNA profiles of specific sEVs derived from DLBCL cells show that levels of sEV-derived
miR-99a-5p and miR-125b-5p were significantly increased in the serum of patients with
DLBCL [136]. In addition, circulating sEV-derived miR-451a is down-regulated in DLBCL
compared with healthy controls (P<0.000 1) [137], while expression of miR-210, miR-155,
and miR-21 is high in DLBCL serum [138]. These sEVs miRNAs may be new targets for
diagnosis or treatment.

4.2.10. Pancreatic Cancer

Pancreatic cancer is the fourth leading cause of cancer deaths in the United States [1].
The high mortality rate is mainly due to late diagnosis and the aggressiveness of pancre-
atic cancer. At present, treatment options are limited [139,140]. Therefore, finding new
strategies for early detection is key to improve the prognosis of patients with pancreatic can-
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cer, especially those with localized disease. Glypican-1+ circulating sEVs (GPC1+crExos)
showed 100% sensitivity and specificity for each stage of pancreatic cancer (carcinoma in
situ, stage I, and stage II–IV), and has the potential for use as a noninvasive diagnosis and
screening tool to detect the early stages of pancreatic cancer and promote curative surgical
treatment [141]. Furthermore, miR-196a and miR-1246 are highly selectively enriched in
sEVs derived from pancreatic cancer cells, and can be used as biomarkers for different local
pancreatic cancer subtypes [142].

4.2.11. Endometrial Cancer

Endometrial cancer (EC) is the sixth most common cancer among women world-
wide [143], and most ECs are diagnosed early due to symptoms of postmenopausal uterine
bleeding [144]. In one study that evaluated miRNA content in urine-derived sEVs miR-200c
from isolated sEVs showed the largest fold-change value; hence, sEV-derived miR-200c
may be useful as a preliminary diagnostic marker for EC [145]. In a meta-analysis of
patients with EC, serum miR-21 was identified as a novel biomarker for EC, where higher
serum miR-21 levels were detected in patients with benign lesions and EC than in healthy
controls [146].

5. sEVs and Future Perspectives in the Clinic

As a subgroup of extracellular vesicles, sEVs play vital roles in intercellular com-
munication and information transmission. Furthermore, sEVs from different origins reg-
ulate tumorigenesis via distinct mechanisms in almost all types of cancers. First, sEVs
promote tumor angiogenesis and metastasis; sEV uptake up-regulates the expression of
angiogenesis-related genes and enhances endothelial cell proliferation, migration, and
growth [147]. Second, sEVs contribute to CAF transformation [148]. Third, sEVs can lead to
the immune escape of tumor cells; the generation of an immunosuppressive environment
is significant for cancer pathogenesis. Finally, sEVs protect cancer cells from the cytotoxic
effects of chemotherapy drugs and transfer drug resistance to nearby cells [149]. TEVs are
also necessary for regulation of immune cell physiological activity [150,151]. Circulating
sEVs, derivedfrom the TME, contain proteins that promote immune tolerance, and thereby
immune escape (Figure 3).

Through the analysis of cancer patient body fluids, sEVs have been shown to have
huge potential as noninvasive markers applicable to cancer diagnosis, screening, and mon-
itoring, particularly using miRNAs and miRNA clusters (Table 3). sEV-derived miRNAs
have the potential to be noninvasive biomarkers that indicate disease progression; for
example, a group of sEVs miRNAs, including let-7a, miR-1229, miR-1246, miR-150, miR-21,
miR-223, and miR-23a, can be used as diagnostic biomarkers for colon cancer [116]. In ad-
dition, among various sEVs, miRNA clusters are vital in cancer diagnosis. For example, the
miR-17/92 cluster, which includes six miRNAs (miR-17-5p, miR-18a-5p, miR-19a-3p, miR-
19b-1-5p, miR-20a-5p and miR-92a-1-5p) was selected as a potential diagnostic candidate
marker for the diagnosis of non-NSCLC [152]. In many studies, sEVs containing specific
miRNA clusters were genetically engineered for use in clinical practice, indicating the huge
potential for the use of miRNA clusters in clinical cancer diagnosis and treatment [153].

As biomarkers, sEVs can provide rich, stable, sensitive, and specific biological informa-
tion; they are a type of liquid biopsy specimen with high translational clinical value. Hence,
the establishment of highly sensitive and rapid EV analysis technology is necessary for the
development of liquid biopsies and methods for treatment with EVs. A highly sensitive
and rapid analytic technology, termed ExoScreen, has been established to analyze surface
proteins in extracellular vesicles from patient blood samples to identify CRC biomarkers.
ExoScreen can monitor circulating EVs in serum without the need for purification steps. In
addition to being a new liquid biopsy platform for detecting circulating EVs, ExoScreen
can also help to diagnose various diseases and to identify biomarkers are important for
new drug development [154].
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Figure 3. sEVs play an important role in cell communication, tumor development, and immune response.

Table 3. The potential of sEVs as cancer biomarkers in clinical practice.

Cancers sEVs Biomarkers Analysis Application Sample Source Reference

Bladder Cancer miR-21-5p, miR-141-3p and miR-205-5p qRT-PCR diagnostic urine [133]
Bladder Cancer miR-19b1-5p, 136-3p, 139-5p qRT-PCR diagnostic urine [134]

Breast cancer miR-21 qRT-PCR diagnostic plasma [106]

Breast cancer miR-1246 qRT-PCR diagnostic and
prognosis plasma [107]

Breast cancer miR-106a-5p, miR-106a-363 cluster
(miR-19b-3p, miR-20b-5p and miR-92a-3p) qRT-PCR diagnostic plasma [155]

Breast cancer miR-1280, miR-1260, and miR-720 qRT-PCR diagnostic serum [156]
Breast cancer Endothelial Locus-1 (Del-1) ELISA diagnostic plasma [108]

Cervical cancer DEmiR (miR-30d-5p and let-7d-3p) ddPCR diagnostic plasma [129]

Cervical cancer lncRNA HOTAIR, MALAT1 qRT-PCR diagnostic and
therapeutic

cervicovaginal
lavage specimens [130]

Cervical cancer lncRNA MEG3 qRT-PCR diagnostic and
therapeutic

cervicovaginal
lavage specimens [130]

Colorectal cancer lncRNA CRNDE-h qRT-PCR diagnostic serum [115]
Colorectal cancer lncRNA RPPH1 qRT-PCR diagnostic plasma [114]

Colorectal cancer let-7a, miR-1229, miR-1246, miR-150,
miR-21, miR-223and miR-23a qRT-PCR diagnostic plasma [116]

Colorectal cancer TSPAN1 qRT-PCR diagnostic plasma [117]
Diffuse large B cell

lymphoma miR-99a-5p and miR-125b-5p qRT-PCR prognosis serum [134]

Diffuse large B cell
lymphoma miR-451a qRT-PCR therapy serum [137]

Diffuse large B cell
lymphoma miR-155 and miR-21 qRT-PCR diagnostic serum [138]

Endometrial
cancer miR-200c qRT-PCR diagnostic urine [145]
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Table 3. Cont.

Cancers sEVs Biomarkers Analysis Application Sample Source Reference

Endometrial
cancer miR-21 meta-analysis prognosis serum [146]

Gastric cancer miR-374a-5p; qRT-PCR prognosis serum [119]
Gastric cancer miR-217 qRT-PCR diagnostic serum [119]
Gastric cancer lnc UEGC qRT-PCR diagnostic plasma [121]
Liver cancer miR-21 qRT-PCR diagnostic serum [125]
Liver cancer lncRNA HEIH qRT-PCR diagnostic serum [126]

Liver cancer lncRNA ATB qRT-PCR diagnostic and
prognosis serum [126]

Lung cancer miR-96 qRT-PCR diagnostic or
therapeutic serum [103]

Lung cancer (AC) miR-181-5p, miR-30a-3p, miR-30e-3p
and miR-361-5p qRT-PCR diagnostic serum [104]

Lung cancer (SCC) miR-10b-5p, miR-15b-5p and miR-320b qRT-PCR diagnostic serum [104]
Lung cancer lncRNA UFC1 qRT-PCR prognostic serum [95]

Lung cancer leucine-rich α-2-glycoprotein (LRG1) proteomic
identification diagnostic urinary [100]

Pancreatic cancer GPC1 + crExos qRT-PCR diagnostic serum [141]
Pancreatic cancer miR-196a and miR-1246 qRT-PCR prognosis plasma [142]
Prostate cancer miR-82 of miR-183 cluster qRT-PCR prognostic serum [111]
Prostate cancer miR-1290 qRT-PCR prognostic plasma [87]
Prostate cancer miR-1246 NanoString diagnostic serum [112]

6. Conclusions

With advances in precision medicine, traditional solid biopsy has shown considerable
limitations, while the emergence of liquid biopsy has substantially compensated for these,
providing a promising platform for non-invasive diagnosis and prognosis techniques. In
this review, we described the biogenesis of sEVs and the main mechanisms of sEV-mediated
transfer and chemical resistance. Understanding the molecular mechanisms involved in
sEV biogenesis, and their roles in metastasis and chemoresistance, will provide insights
into the design of new therapies for sEV-mediated tumor metastasis and chemoresistance.
Nevertheless, sEVs are involved in numerous pathophysiological conditions. Currently,
cancer treatment research based on sEVs still needs to solve the problem of sEV loading
with therapeutic agents (including functional proteins, miRNAs and various chemother-
apeutics). Furthermore, more clinical trials are needed to verify the feasibility of sEVs
disease screening and monitoring biomarker.
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Abbreviations

AC adenocarcinoma
SCC squamous cell carcinoma
LRG1 leucine rich alpha-2-glycoprotein 1
AFAP1-AS1 actin filament associated protein 1 antisense RNA 1
Del-1 Endothelial Locus-1
PCA3 prostate cancer antigen 3
RPPH1 ribonuclease P RNA component H1
CRNDE-h colorectal neoplasia differentially expressed-h
TSPAN1 Tetraspanin 1
HOTTIP HOXA transcript at the distal tip
lnc UEGC lncRNA up-regulated in the sEVs of gastric cancer
HEIH hepatocellular carcinoma up-regulated 51 EZH2-associated
ATB activated by tumor growth factor-β
HOTAIR HOX transcript antisense RNA
MALAT1 Metastasis associated in lung adenocarcinoma transcript 1
MEG3 Maternally expressed gene 3
LNMAT2 lymph node metastasis-associated transcript 2
GPC1 + crExos glypican-1 + circulating exosomes
LGALS3BP lectin galactoside-binding soluble 3 binding protein
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