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Abstract: Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to
demyelination and associated functional deficits. Though endogenous remyelination exists, it is only
partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration
as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing
relapse rate during the inflammatory phase of MS, there is presently no therapy available which
significantly impacts disease progression. Remyelination has been shown to favor neuroprotection,
and it is thus of major importance to better understand remyelination mechanisms in order to
promote them and hence preserve neurons. A crucial point is how this process is regulated through
the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current
knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well
as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from
this research field, which might allow to support remyelination and neuroprotection and thus limit
MS progression.
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1. Introduction

Along with species evolution, there is an increasing complexity in the central nervous
system (CNS) organization with, in particular, the acquisition of myelination [1,2], allowing
for the efficient conduction of the nerve influx along myelinated fibers [3]. The choice of
the axon to be myelinated, the thickness and length of the myelinated internode—even the
pattern of myelin deposition along the axon—are not randomly selected but are a rather
complex, carefully orchestrated collaboration of multiple cell types, with the two main
actors in the CNS being the neuron and its myelinating cell—the oligodendrocyte (OL).

OLs enwrap axons with a multilayered lipid-rich membrane, the myelin. Myelin
ensures electrical insulation allowing fast saltatory conduction along the axon [4], but
also provides trophic and energetic support through delivery of lactate and pyruvate by
oligodendrocytes [5,6]. In vitro and in vivo studies have suggested that a single mature
OL can produce 5000 µm2 of myelin per day [7] and myelinate about 15 internodes in
zebrafish [8] and up to 60 in rodents [9,10]. Establishing stable myelin sheaths can take
from 2–3 h in the zebrafish [8] to a few days in rodents [11].

Although myelination can occur in vitro in the absence of axons—even around inert
fibers such as electron-spun nanofibers [6,12]—neurons modulate myelination in vivo,
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where selective myelination has been observed among axons [13]. A typical example is
the presence of the myelinated descending motor neurons in the medial forebrain in close
vicinity to the not myelinated nigrostriatal dopaminergic neurons [14]. Axonal diameter is a
key determinant to whether or not an axon will be myelinated with axons over 0.4 µm being
preferentially myelinated in the CNS [15–17]. Numerous studies show a role of neuronal
activity, growth factors and various signaling pathways in myelination regulation [18–25],
although many aspects of the relationship between neurons and the oligodendroglial
lineage are not fully elucidated yet.

This constant dialog between the CNS myelinating lineage and neurons is not only
crucial for the development of the nervous system but is maintained throughout life and
disease. A clear example of where this dialogue can be impaired is multiple sclerosis (MS),
the most frequent demyelinating, inflammatory and neurodegenerative disease of the
human central nervous system (CNS). MS affects more than two million people worldwide
and is the leading cause of clinical disability and long-term neurological handicap amongst
young adults [26,27]. In MS, myelin and/or the OL lineage are the target of an immune-
mediated injury characterized by attacks disseminated throughout the CNS spatially and
temporally [28]. As a result of these attacks, focal demyelination and neuronal damage are
observed early in the disease course, but various degrees of remyelination do occur and
allow for improved functional outcome [29–34].

In the present review, we summarize the current knowledge on neuron–OL interaction,
in both demyelinating and remyelinating context in MS and its experimental models,
concluding on the therapeutic possibilities resulting from this research field.

2. The Organization and Functioning of the Myelinated Axon

The myelinated axon is organized in internodes—axonal segments electrically in-
sulated by myelin—alternating with small unmyelinated excitable domains enriched in
voltage-gated sodium and potassium channels, called the nodes of Ranvier [35,36]. The
ratio of the axonal diameter to the diameter of the myelin sheath added to the axon is
called g-ratio and is used as an index of axonal myelination. Myelin sheath decreases
membrane capacitance and increases membrane resistance. By doing so, it stabilizes the
ionic charge, as the axolemma is depolarized during action potential regeneration and
propagation at the nodes [4,21,37,38]. This leads to the so called saltatory conduction along
myelinated axons, a function acquired along the evolution of species, allowing for higher
velocities [1,39].

Recent studies suggest that besides this rather passive role on signal conduction,
OLs actively participate in shaping electrical transmission [40,41]. Axonal proteins also
regulate myelin deposition along the axon. Examples of such modulation include inhibition
of myelin ensheathment by PSA-NCAM [42]. Furthermore, genetic deletion of some
molecules implicated in paranodal and internodal axo-glial junctions, such as Cadm4
and Caspr, lead to the formation of axons with multiple layers of myelin sheaths, loose
paranodal junctions or internodes of altered length [43,44].

Besides rapid conduction at the single neuron level, differences in myelin segment
length and thickness may allow to create a synchronized network activity translating
to higher cognitive functions [18,45–50]. Evolution of myelin segment characteristics
and pattern have further been observed within hours following motor training or social
isolation indicating that myelin—much like neurons—is a plastic structure able to adapt
brain function to environmental stimuli [45,51–53].

3. Neuronal Activity as a Mediator of Myelin Plasticity

Even prior to becoming myelinating cells, OPCs sense their environment by monitor-
ing electrical activity of surrounding neurons through NMDA, AMPA/kainate and GABA
receptors [20,54–58]. Accumulating evidence suggests that OPCs maintain the capacity to
communicate with neighboring neurons through non-synaptic junctions during different
stages of development and maturation to myelinating oligodendrocytes [24,56,58] (for
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review see [59]). Examples of such a communication are the expression of NMDA receptors
in mature OL, binding axon-released glutamate in the optic nerve of the rat [23], or the
Ca2+ signals modulating myelin sheath length during myelination in zebrafish larvae [60].

Why is it important for the oligodendroglial lineage to maintain the capacity to
monitor neuronal activity? Early in vitro experiments demonstrated that altering the
sensing of neuronal activity interfered with myelination by using neurotoxins such as
tetrodotoxin or α−scorpio toxin, which specifically either block or increase the probability
of opening of voltage-gated sodium channels, respectively, Demerens et al. demonstrated
that myelination was inhibited in electrically silent axons (tetrodotoxin) or enhanced by
increasing neuronal activity (α−scorpio toxin) [19]. Later in vitro experiments in dorsal
root ganglion neurons by Wake et al. showed that OPCs can detect axonal spiking and
glutamate vesicular release and differentiate into myelinating OLs [56]. Further proof
that neuronal activity stimulates OPC differentiation came more recently with the use of
optogenetics in transgenic mice with myelination occurring preferentially on electrically
active axons [21,61]. The development of two photon microscopy has allowed for in vivo
live imaging, further expanding our knowledge. In zebrafish larvae, Mensch et al. have
in particular shown that—similarly to in vitro experiments—individual OLs are generally
capable to detect electrical activity through vesicular release by their neighboring neurons
and, as a response, modulate their myelinating capacity [25].

4. Oligodendrocyte Lineage and Neuron: A Story of Mutual Dependence

Myelination has a dramatic impact on neuronal function and organization, as the
mere act of myelin ensheathment around an axon improves the chances of survival of both
cells. Indeed, OLs that do not manage to ensheath axons degenerate [18,62]. On the other
hand, loss of OLs disrupts the normal nodal and paranodal architecture and leads to severe
axonal pathology [50]. Furthermore, OLs promote neuronal survival though secretion of
neurotrophic factors such as IGF-1 and GDNF [63] and provide metabolic support for the
axon through delivery of lactate [64]. OLs are indeed highly enriched in monocarboxylase
transporter 1 (MCT-1), the most abundant lactate transporter in CNS [17,65]. Lactate fuels
axonal mitochondria, and by doing so, crucially supports highly energy-demanding ax-
onal transport. Highlighting the necessity of this interaction for axonal integrity, MCT-1
knockout mice show age-dependent neuronal loss without evident demyelination [5]. Most
recently, in an in vitro culture of mouse corpus callosum slices, Meyer et al. demonstrated
that OLs fueled neuronal activity through glucose rather than lactate delivery [66], sug-
gesting that OL–neuronal interactions are adapted to their local environment as they vary
among cell types, locations and energetic needs. Interruption of this axo-glial metabolic
support leads to deficits in information processing, even in the absence of demyelination,
as demonstrated in the elegant experiments conducted by Moore et al. [67].

5. Altered Myelin and Axonal Damage: Lessons from the Animal Models

Studies in animal models have provided compelling evidence that axonal damage
can result from an altered myelin. Myelin-associated glycoprotein (MAG) is one of the
four major myelin proteins (along with myelin proteolipid protein—PLP, myelin basic
protein—MBP and 2′,3′-cyclic-nucleotide phosphodiesterase—CNPase). MAG is expressed
in the inner layer of myelin sheath and binds to axonal gangliosides GD1a and GT1b,
establishing the axo-glial contact. In MAG-deficient mice, both motor development and
myelin content appear normal. In closer inspection, subtle changes are observed, such as in
neurofilament phosphorylation and spacing, and these changes ultimately lead to axonal
degeneration in old age [68].

In PLP-deficient mice, myelin is still produced and packed thickly but is highly unsta-
ble. As a result, these mice present with normal early development but after 6–8 weeks they
show focal axonal swellings containing membranous organelles, multivesicular bodies and
mitochondrial dysfunction. By 18 months of age, they have significant motor impairment
and extensive axonal degeneration [69]. Similar findings are reported in some patients with



Life 2021, 11, 231 4 of 20

PLP mutations (Pelizaeus Merzbacher disease), who show CNS white matter disease, with
axonal degeneration as measured by proton magnetic resonance spectroscopy analysis of
N-acetyl-aspartate (NAA) [70].

On the other side of the spectrum, mutations of MBP result in unmyelinated axons
or thin non-compacted myelin sheaths. Life span is reduced in MBP mutant rodents (up
to 4 months for the Shiverer mice and up to 9 months for the Evans Shaker rats) [71,72];
nonetheless, even in terminal stages, demyelination is not followed by axonal damage. In
these models, upregulation of neurotrophic factor expression in the remaining OLs and
astrocytes is found [73], suggesting that degeneration may be prevented by compensatory
mechanisms through axo-glial communication.

6. Myelin Insult and Neuronal Damage in Multiple Sclerosis

Focal demyelination of the CNS white matter is the hallmark of MS, as described by
Charcot over 150 years ago [74,75]. Regardless of the perspective from which it is viewed
(disease pathology, clinical and radiological findings, histopathological findings, outcomes),
MS remains a highly complex disease. Clinically, the majority of patients will initially
present with a single, self-limited, neurological episode, described as a clinically isolated
syndrome, that typically involves the optic nerve, brainstem, or spinal cord. MS diagnosis
is possible even at this early stage in the presence of typical findings on an abnormal MRI
scan and/or positive oligoclonal bands in the cerebrospinal fluid [76].

In MS, 85% of the patients present with a relapsing remitting form of the disease [27].
Active demyelination is considered the histopathological equivalent of the clinical re-
lapse [77]. Four patterns of active lesions have been described (pattern I–IV) [78], all
sharing demyelination as a common denominator with various degrees of inflammatory
cell infiltration (peripheral macrophages, activated microglia, T lymphocytes, complement,
plasma cells) and OL loss. OL loss or myelin destruction will lead to a conduction block,
which can translate to a neurological deficit, and if prolongated, will also lead to neuronal
damage [79] (Figure 1). Depending on the number of adjacent internodes being demyeli-
nated, nerve conduction velocity can be decreased or completely blocked. So far and to
the best of our knowledge, how many internodes need to be demyelinated to cause a
conduction block still remains to be established.

However, axonal loss and demyelination in absence of macrophage infiltration can be
found in about 15% of patients who develop progressive onset MS described as primary
progressive MS (PPMS) [27,77]. Furthermore, focal changes have been documented in
normal-appearing white matter of MS months to years before the appearance of MRI
gadolinium-enhanced lesions. Altered axonal organization with changes in the distribution
of sodium and potassium channels, early alterations of paranodal structures [35,80–83],
focal axonal swelling or degeneration can be found prior to OL loss [84]. Such findings
opened the discussion on whether axonal degeneration is a direct consequence of demyeli-
nation, an independent mechanism or even the prime event leading to demyelination.
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appearing white matter) (2), with macrophage attack, paranodal axo-glial junction disruption and the appearance of re-
versible focal axonal damage (FAD). In demyelinating lesions (3), myelin degradation and nodal marker redistribution 
are associated with reduced conduction velocity or conduction blocks and associated functional deficits. These insults can 
lead to neurodegeneration with time (4), but an endogenous remyelination process exists (5), which is promoted by neu-
ronal activity, and can lead to the restoration of myelinated fiber organization and efficient axonal conduction (6). AIS: 
axon initial segment. 
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Figure 1. Schematic representation of myelin and axonal domain alteration and reformation in MS and its experimental
models. Compared to normal condition (1), myelinated axon first undergo alteration at the nodal area in NAWM (normal
appearing white matter) (2), with macrophage attack, paranodal axo-glial junction disruption and the appearance of
reversible focal axonal damage (FAD). In demyelinating lesions (3), myelin degradation and nodal marker redistribution are
associated with reduced conduction velocity or conduction blocks and associated functional deficits. These insults can lead
to neurodegeneration with time (4), but an endogenous remyelination process exists (5), which is promoted by neuronal
activity, and can lead to the restoration of myelinated fiber organization and efficient axonal conduction (6). AIS: axon initial
segment.

7. Endogenous Remyelination Occurs in MS and Its Animal Models

Alongside with demyelinated axons, lesions with evidence of remyelination, also
known as “shadow plaques”, are characterized by the presence of thinner myelin sheaths
and shorter internodes. Post-mortem human MS tissue studies have shown that 20% of
the patients showed fully remyelinated lesions [33]. For a brief history on discovery of
remyelination and discussion on whether shadow plaques are signs of remyelination or, on
the contrary, of ongoing demyelination, see [31,85]. Shorter internodal segments, absence
of immune cell infiltration and only few microglia/macrophages within the lesion help to
distinguish shadow plaques from early demyelinating lesions.

Although often extensive in animal models of demyelination, the degree to which
remyelination occurs in MS patients is variable. It differs among locations, with a higher
degree of remyelination in cortical and subcortical lesions compared to periventricular
or cerebellar lesion [86], and among patients, as shown in histopathological studies and
PET-MRI studies using myelin markers ([11C]PIB) [32,33,87,88]. Subgroups of MS patients
with either extensive or limited remyelination with variable myelin content are identified,
suggesting that inter-individual myelination capacity may further influence the ability of
lesions to remyelinate.
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Whether remyelination occurs from surviving OLs or newly differentiated OLs de-
rived from OPCs have been studied over the last two decades and is comprehensively
discussed in a recent review by [89]. The notion that remyelination requires OPC recruit-
ment and differentiation comes from multiple observations: 1. After OL and OPC depletion
by ethidium bromide induced demyelination in rodents, OPCs appear in the lesion site
prior to mature OLs [90]; 2. Transitioning phenotypes of OPCs have been observed in
demyelinating lesions in adult rat brain after toxic-induced demyelination. Different sur-
face or nuclear markers can help differentiate OL lineage cells, as the proteoglycan NG2,
the platelet derived growth factor receptor α (PDGFRα), OLIG1, OLIG2 and Nkx2.2 are
expressed early in OPC development, while O4 and glycolipid galactocerebrosidase (GalC)
appear later in immature or pre-myelinating OL and so on [91,92]; 3. After single cell OL
laser ablation, an homeostatic replacement takes place by a newly differentiated OPC who
produces myelin with thinner and shorter internodal sheaths, as observed by live two
photon imaging, but sufficient to restore function [93]; 4. Newly differentiated OLs in a
capsaicin-induced model of demyelination in zebrafish were more efficient in myelin sheath
formation than OL survivors [94]; 5. In post-mortem analysis of MS brains, there was an
increased density of OPCs in the subventricular zones compared to controls, which would
further increase in active lesions compared to normal appearing white matter (NAWM) [95].
Furthermore, in the cuprizone model, experimental conditions favoring differentiation of
subventricular zone neural stem cells into oligodendrocytes resulted in remyelination with
normal thickness myelin sheath restoring normal nerve conduction [96,97].

The role of mature OLs in remyelination has been debated, since these cells do not
seem to have migrating nor proliferating capacities. Nonetheless, almost 30 years ago,
this notion was challenged when mature OLs grafted into newborn shiverer mouse brain
produced new myelin sheaths around denuded axons [98]. The use of multiphoton imaging
to track OL lineage response following cuprizone-induced demyelination in mice cerebral
cortex [11] and capsaicin-induced demyelination in zebrafish [94] have provided more
insight into myelin regeneration. In both studies, newly differentiated OLs produced large
number of myelin sheaths forming internodes along the axon. Surviving OLs could only
occasionally produce new myelin sheaths, often misplacing them to neuronal soma [94].
Although this process was less efficient, it occurred over protracted periods of time and
was enhanced by training [11]. These observations in the animal models suggest that even
though both mature and newly differentiated OLs can produce myelin sheaths, it is newly
differentiated OLs, rather than mature OLs, that orchestrate remyelination in adult brain
following injury in these models.

In humans, given the low level of oligodendrocyte generation in adult CNS tis-
sue [99,100], it is unlikely that newly generated OLs alone can respond to the demand in
myelin production. Recent works have indeed shown a very low rate of new OL generation
in shadow plaques of MS patients [100], further favoring a role of pre-existing OLs for
remyelination in MS. However, remyelination by mature OLs happens only at low levels
in mice [11,94], underlying a potential difference in remyelination mechanism in MS and
its animal models.

8. Remyelination Failure in MS

Even though remyelination is possible in MS, the majority of lesions show only
partial remyelination or no remyelination at all [33], despite sufficient number of OL-
lineage cells were present at the lesion sites [101], suggesting that other mechanisms than
paucity of myelinating cells participate in successful remyelination. Repetitive rounds
of demyelination-remyelination is a characteristic feature of the disease in humans [102].
Using lesion segmentation from MTR images, MRI studies have demonstrated recurrent
rounds of inflammatory demyelination in pre-existing lesions, associated with lower
capacities of recovery [79,88]. Furthermore, ageing has been associated with reduced
ability to remyelinate [103–105]. Although mechanisms that lead to remyelination failure
are not yet fully elucidated, what has been made obvious is that remyelination failure
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correlates with increased clinical disability and extensive axonal loss (Figure 1) [30,103].
This paradigm is seen in 15–30% of RRMS patients, who, over time, develop progressive
disability described as secondary-progressive MS [27]. These patients show extensive
axonal degeneration and little evidence of remyelination, although a subset of them may
still exhibit inflammatory activity as shown clinically by relapses, and by areas with sharp
limits of demyelination and a rim of macrophages at the lesion edge in pathology [77],
that mediate active ongoing myelin breakdown and axonal damage [88]. The rim is also
identifiable in MRI studies as a persistent phase rim [106] or an iron rim at the lesion
edge [107], which can provide a useful prognostic tool in MS patients [108].

Furthermore, in remyelinated lesions, axonal density is higher with a less extensive
degree of axonal damage than in non-remyelinated lesions (as measured by β-amyloid-
precursor protein staining), suggesting a positive effect of new myelin sheath formation
to axonal preservation [109]. Similar findings are reported in experimental autoimmune
encephalomyelitis (EAE), an inflammatory animal model of MS, in which remyelination
confers preservation of axonal density and improvement of functional recovery and out-
come [110].

It is thus essential to better understand how to promote an adequate neuro-glial
crosstalk to support remyelination and limit the progression of the disease.

9. After a Demyelinating Insult, What Are the Required Steps for New Myelin
Sheath Formation?

In order to promote repair in MS, it would be of interest to increase OPCs recruitment
to the lesions and favor their differentiation in myelinating OLs, as well as promote
remyelination by surviving OLs. Indeed, the prevailing opinion is that efficient myelin
repair requires activation and recruitment of OPCs to demyelinated areas, followed by
their differentiation into mature OLs and target recognition of the axon to remyelinate
(Figure 2). At the lesion site, newly differentiated OLs along with surviving OLs proceed
to new myelin sheath formation and production of stable myelin sheaths [30,89]. As
discussed below, each of these steps requires the interaction between neurons and the
oligodendroglial lineage.

Following activation, OPCs migrate to the lesion site attracted by guidance cues [47,111].
Growth factors like insulin-like growth factor 1 (IGF-1) and glial cell line-derived neu-
rotrophic factor (GDNF) have also been shown to act in OPC recruitment [47,89]. Among at-
tractant cues, Semaphorin 3F has been identified both in in vitro and in vivo models. In con-
trast, Netrin was shown to act as a repellent for OPCs [112], as well as Semaphorin 3A [111].
Neurons further secrete adenosine and stimulate neighbor astrocytes to produce leukemia
inhibitory factor or CNTF to promote OPC differentiation into myelinating OLs [113,114].
The next step to remyelination is careful selection of the axon to remyelinate [18,62]. As
previously stated, neuronal activity also plays a role in remyelination [20,61]. OPCs are not
only sensitive to the presence of neuronal activity, but also to the pattern of activity, which
modulates differently their proliferation and differentiation [55]. Furthermore, following
a demyelinating insult, dispersion of voltage-gated sodium channels is observed along
the axon [80,81,115]. In a very recent study, it has been shown, using a cuprizone-induced
demyelination model, that βIV spectrin, which forms a complex with Ankyrin-G to link
voltage-gated channels to actin cytoskeleton at the nodes of Ranvier, remains however
clustered after demyelination in the cortical layers of the somatosensory cortex of adult
mice, which could provide reclustering cues for nodal voltage-gated ionic channels [116].
Interestingly, multiple studies conducted by us and others reported nodal reclustering
can occur prior to (re)myelination and suggest they could impact conduction velocity and
myelin initiation guidance [35,117–119].

In contrast, pathways inhibiting OPC maturation and recruitment have also been iden-
tified such as axonal expressed Jagged-1. Jagged-1 protein binds OPC expressed NOTCH-1,
inhibiting their differentiation [119]. More recently, the Wnt pathway and the mechano-
responsive ion channel Piezo1 activation have also been identified as OPC differentiation
inhibitors, possibly involved in age-related remyelination capacity decline [30,89].
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Moreover, the perineuronal extracellular matrix (ECM) could also modulate remyeli-
nation abilities in MS. Indeed, hyaluronan, as well as chondroitin sulfate proteoglycans
(CSPGs) are described to accumulate at the border of actively demyelinating plaques, where
they inhibit the migration and differentiation of oligodendrocyte precursor cells (OPCs)
and remyelination [120]. Enhanced OPC differentiation and remyelination were further
observed in cuprizone and EAE mice models when suppressing CSPGs activity [121,122].

Better understanding the complex dialogue between neurons and the oligodendroglial
lineage and how it is balanced in the context of their direct environment will thus be
required to adequately promote axon remyelination in MS.

10. Other Cellular Contributors to Successful Remyelination

It is now clear from the abundant literature on the subject that the process of myelin
repair requires a carefully orchestrated collaboration between multiple players (Figure 2).

Whether astrocytes bring more damage or inhibit repair is still under debate [123],
although evidence from studies using ethidium bromide-induced demyelination speaks
favorably for their role during remyelination, as elimination of astrocytes resulted in
absence of CNS remyelination [124]. In addition, phagocytosis of myelin debris by sur-
rounding microglia/macrophages promotes remyelination [125–127]. Their role further
extends beyond phagocytosis, as microglial switch to a pro-regenerative profile promotes
remyelination, and maintenance of a more pro-inflammatory phenotype is deleterious for
repair. Microglia secrete various factors that can modulate the oligodendroglial lineage
and promote (re)myelination [128–131] (Figure 2). The CXCL12 chemokine is expressed by
microglia in MS lesions and has been described to modulate OPCs chemoattraction and
differentiation [132]. Microglia is also described as a major source of iron for OPCs during
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developmental myelination, promoting their proliferation and differentiation and could
further play a role in remyelination [133]. Furthermore, both astrocytes and microglia
can perceive neuronal activity, suggesting they could participate in an indirect dialogue
between neurons and the oligodendroglial lineage (for review, see [59]).

It has further been shown that failure in OPCs recruitment and differentiation increases
with age [105,134,135], and the Franklin laboratory showed this could be reverted using
a heterochronic parabiosis experiment, in which old mice shared systemic circulation
with younger mice. After LPC induction of spinal cord demyelination, they observed
a higher rate of remyelination in these mice comparing to the isochronic controls (old
mice sharing systemic circulation with their age homologues), due to the recruitment of
“younger” blood-derived monocytes from their partners. Moreover, the importance of
monocyte/macrophage recruitment in remyelination was highlighted using mice deficient
in CCR2, a major player in macrophage recruitment, in which a significant decrease of
proliferating OPC was observed when compared to controls [104].

11. Myelin Repair: From Animal Models to Human Translation
11.1. The Challenges of Myelin Repair Strategies.

The past two decades have been an era of exponential growth of disease-modifying
immunotherapies acting on the inflammatory component of the disease, preventing these
recurrent episodes of inflammation [27]. As a result, patients experience fewer or no
relapses, show less or no gadolinium-enhanced lesions and less disease progression (de-
scribed as NEDA-3 status) [136]. The recent epidemiological studies have shown that the
rate of conversion to secondary progressive MS has been reduced from 50% to less than
30% over the last 10 years [27].

However, these therapies are still insufficient to block this progressive phase, and
half of the patients will suffer a disability accumulation [27,30,137,138]. In the light of
this unmet need, the scientific community is now focusing its efforts on ways to promote
remyelination in an effort to ensure neuroprotection [139].

A key challenge will be that at any given time point of the disease, the patterns of
demyelination and axonal degeneration are different among patients or even in different brain
regions of a given patient [140]. This heterogeneity in MS brain with variable—but without a
doubt concomitant—presence of OL, OPC and axonal dysfunction from early on, defines
the therapeutic challenge of the disease. Regarding this aspect, a better understanding of
the basic mechanisms underlying MS pathology and repair is required.

In parallel, in the quest of remyelination candidate therapies, an important step
is coming up with the development of screening strategies that are both adapted and
available. In vitro assays of rodent-derived OPCs or micropillar arrays [141] provide a fast
way to test the promyelinating effect of bioactive molecules but they offer little insight
in the molecules’ physiological mechanism of action. Animal models including toxin or
chemically-induced demyelination followed by spontaneous remyelination bypass the
aforementioned problem. Among them, zebrafish larvae and Xenopus laevis, allow for a
robust large screening platform, while EAE models have the advantage of resembling the
closest to the human MS disease but are not suitable for the screening of large numbers of
compounds (for review, see [30]).

Using these different approaches, a multitude of compounds has been tested fol-
lowing two strategies: revisiting existing drugs for their potential role on myelination
or developing new molecule-targeting pathways of OPC differentiation and axo-glial
interaction.

11.2. Repurposing Existing Drugs for Their Remyelinating Potential

A great example of a molecule repurposed for its promyelinating potential is clemas-
tine fumarate. Clemastine is a first-generation histamine H1 receptor antagonist used since
the early 1990s in the treatment of allergies. Clemastine crosses the blood–brain barrier and
was found to promote OPC differentiation and myelination in a high-throughput in vitro
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screening and its efficiency in remyelination was confirmed in mouse in vivo following
LPC-induced focal demyelination [141]. The molecule was then tested in the cuprizone-
induced model of demyelination, with similar results [142]. Its effect on OPC maturation is
thought to be mediated by an antimuscarinic action in the M1 muscarinic acetylcholine
receptor Chrm1 [110]. From clinical biology to human pathology, clemastine was tested
in chronic optic neuritis patients in a phase II trial [143] (ReBUILD trial) where it met its
primary outcome and showed a small reduction in evoked potential latency but failed
to improve clinical outcome. The drug is now tested in acute neuritis patients in the
ReCOVER trial (NCT02521311).

Other than clemastine, a large number of molecules have been tested in preclini-
cal studies for their potential benefit in myelination. Less than 20 have demonstrated
significantly enhanced remyelination in animal models, either by promoting OPC differ-
entiation or by reducing microglial and astrocyte activation [139]. Such drugs involve
anticholinergics and antimuscarinics (GSK239512 [144], benzatropine [145]), antiemetics
(domperidone [146], antipsychotic drugs (quetiapine [147]), selective estrogen modula-
tors (progesterone, tamoxifen [148]), hormones (ACTH [149]), antifungal drugs (micona-
zole [150]), antidiabetic drugs (metformin [151]), immunomodulatory drugs (glatiramer
acetate, siponimod, teriflunomide [151–153] and statins [154]. Simvastatin, a widely used
statin, is one of the few of these molecules being tested in clinical trials (Table 1). In a phase
II study including 70 SPMS patients (MS-STAT study), the authors report a 43% reduction
of annual brain atrophy rate and a 63% reduction in the number of black holes with simvas-
tatin treatment [155]. Less promising results were obtained in the phase IV SIMCOMBIN
trial in RRMS patients, as an add-on therapy to interferon-beta, where simvastatin failed
to further reduce annualized relapse rate [156] underlying a pro-regenerative rather than
anti-inflammatory role of the drug.

On the other hand, not all molecules tested had a null or positive impact on myelina-
tion. Some seemed to hasten remyelination after a demyelinating insult, such as valproic
acid, a first generation antiepileptic drug [157].

11.3. Strategies Promoting OPC Differentiation

The second approach involves molecules that have been designed to target a specific
pathway in OPC differentiation or maturation. Multiple monoclonal antibodies have been
developed the last two decades and are being tested in clinical studies. Studies showed that
Semaphorin 4D is upregulated in OPCs upon spinal cord injury and inhibits remyelination
in EAE [158,159], while using an anti-Semaphorin 4D rescues oligodendroglial differentia-
tion, with a strong reduction of inflammatory activity in EAE. A humanized monoclonal
anti-Semaphorin 4D antibody (VX15/2503) was tested in a phase I study with no major
side effects [160].

Similar “from bench to clinical translation” examples include temelimab/GNbAC1, a
humanized antibody directed against the envelope protein (ENV) of the human endoge-
nous retrovirus (HERV) [161] and opicinumab, an anti-LINGO-1 monoclonal antibody [162].
Following observations in in vitro OPC cultures that ENV protein inhibited OPC differenti-
ation via activation of Toll-like receptor 4 [163], temelimab testing completed successfully a
phase I trial in 21 individuals. As a consequence, the phase IIa CHANGE-MS trial [161]
and phase IIb ANGEL-MS trial (Hartung et al., presented in ECTRIMS 2019) investigated
efficacy of variable regimens of temelimab on over 200 MS patients. The authors report
a reduction in cortical and thalamic atrophy and a benefit in magnetization transfer ratio
(MTR) in both NAWM and cerebral cortical bands, suggesting an effect on remyelination.
However, although loss of LINGO-1 enhanced myelin sheath formation and myelination in
preclinical studies [162] and showed a small efficacy in reducing evoked potential latency in
patients with acute optic neuritis (RENEW trial) [164], two follow up phase II studies (SYN-
ERGY, AFFINITY) failed to reach their primary endpoints (Biogen Press Communication
in October 2020) [165].
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Table 1. Molecules tested in clinical trials for their remyelinating potential. AAR: Annualized Atrophy Rate in MRI; ARR: Annualized Relapse Rate; ACTH: Adrenocorticotropic Hormone;
BTK: Bruton’s Tyrosine Kinase; CDP: 6 month Confirmed Disability Progression; EAE: Experimental Autoimmune Encephalomyelitis; EDSS: Expanded Disability Status Scale; HERV:
Human Endogenous Retrovirus; IFN: Interferon Gamma; MTR: Magnetization Transfer Ratio; MWF: Myelin Water Fraction; LPC: Lysophosphatydilcholine-Induced Demyelination; mAb:
Monoclonal Antibody; NfL: Neurofilament; ODRS: Overall Disability Response Score; OL: Oligodendrocyte; OPC: Oligodendrocyte Progenitor Cell; RNFL: Retinal Nerve Fiber layer;
T25FW: Timed 25 Feet Walk Test; VEP: Visual Evoked Potential. Clinical trial data listed from ClinicalTrials.gov accessed on 7 March 2021.

Drug Name Mode of Action Preclinical Studies Clinical Studies
Model Effect Study Population Outcome Results

ACTH Corticotropin
hormone Cell culture

OPC
differentiation/OL

maturation

Phase IV
(NCT02446886) RMS MWF over 12 months Completed; results

pending

Bexarotene/IRX4204 Retinoid X receptor γ
agonist EAE

OPC differentia-
tion/reduced EAE

severity

Phase IIa
ISRCTN14265371 RMS MTR; VEP latency

Improvement in
MTR in a lesion

subset; reduction in
VEP latency ; serious

side effects

Clemastine
fumarate

H1 and M1/M3
receptors antagonist

Micropillar array
screen; LPC;
cuprizone

OPC
differentiation/OL

maturation/reduced
EAE severity

Phase II ReBUILD
trial

Phase II Recover Trial

Chronic optic
neuritis

Acute optic neuritis

P100 VEP latency
P100 VEP latency;
RNFL thickness;

EDSS; MWF

Reduced P100 VEP
latency in chronic
optic neuropathy
without clinical
improvement

Ongoing

Domperidone D2/D3 dopamine
receptor antagonist LPC OL maturation

Phase II
NCT02308137

Phase II
NCT02493049

SPMS
RRMS

T25WF
MRI lesions; EDSS

Completed; results
pending

Completed; results
pending

GSK239512 H3 receptor
antagonist Cuprizone

OPC
differentiation/OL

maturation

Phase II
NCT01772199 RRMS MTR activity

Small improvement
in lesion

remyelination

Opicinumab mAb against LINGO
1 EAE; LPC

OPC
differentiation/OL

maturation

Phase IIa RENEW
trial

Phase IIb SYNERGY
trial

Phase II AFFINITY
trial

Acute optic neuritis
RMS
RMS

P100 VEP latency;
RNFL thickness; MRI

lesions
EDSS progression

ODRS; MTR

Minor reduction in
P100 VEP latency

No improvement vs.
placebo

No improvement vs.
placebo

ClinicalTrials.gov
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Table 1. Cont.

Drug Name Mode of Action Preclinical Studies Clinical Studies
Model Effect Study Population Outcome Results

Quetiapine Antipsychotic drug Cuprizone
OL maturation;

inhibition of
activated microglia

Phase I/II
NCT020087631 RMS Tolerance; EDSS Completed; results

pending

Temelimab/GNbAC1 mAb against HERV
envelope protein In vitro OPC cultures OPC differentiation

Phase IIa
CHANGE-MS trial

Phase IIb
ANGEL-MS trial

RMS
RRMS

MRI lesions;
morphometry

Significant reduction
on cortical and

thalamic atrophy; no
decrease in new

lesions

SAR442168
Evobrutinib/M2951 BTK inhibitor LPC demyelinized

cultures

1.7× improved
remyelination

comparing to placebo

Phase III HERCULES
trial

Phase III PERSEUS
trial

2 PHASE III
GEMINI1 and

GEMINI2
Phase II

NCT02975349

SPMS
PPMS
RMS
RMS

CDP;AAR; NfL
MRI, ARR, EDSS

Ongoing
Reduction in

enhancing lesions
and ARR, no effect

on EDSS,
transaminase

elevation

Simvastatin HMG-CoA reductase
inhibitor EAE

OPC differentia-
tion/prevent

EAE

Phase II
MS-STAT trial

Phase III MS-STAT2
trial

Phase IV
SIMCOMBIN trial

SPMS
SPMS
RRMS

AAR
EDSS

Multiparameter
clinical outcomes

ARR; MRI

43% reduction of
brain atrophy

Ongoing
No additional benefit

to IFN treatment
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Inhibition of Bruton’s tyrosine kinase (BTK), a member of the Tec family of kinases,
expressed by cells of hemopoietic origin and microglia has moreover been shown to favor
remyelination [166] and a phase II clinical trial in MS using a BTK inhibitor has shown
beneficial outcome [167]. As a result, four phase III trials (GEMINI I & II, PERSEUS,
HERCULES) are ongoing examining BTKs’ efficacy in different MS populations (relapsing,
primary and secondary progressive).

More recently, new approaches directed against the immune component in relation
to its impact on OL lineage have emerged. Among them bexarotene/IRX4204, a specific
agonist of retinoic acid receptor gamma (RXR-γ), reduced EAE severity by decreasing Th17
responses and boosting OPC differentiation [168]. The results of the phase IIa study includ-
ing 52 active MS patients randomized to receive either bexarotene or placebo were recently
communicated (ECTRIMS, September 2020). The investigators reported an advantage of
bexarotene over placebo in reducing mean magnetization transfer ratio in a subset of MRI
lesions, although drug-treated patients experienced serious side effects.

Furthermore, the use of anacardic acid improved the clinical scores of both cuprizone-
induced demyelination and EAE through induction of IL-33 and upregulation of genes
involved in myelin protein synthesis [169]. Melero-Jerez et al. very recently showed in
the EAE model that myeloid-derived suppressor cells directly influence OPC survival,
proliferation, and differentiation through upregulation of osteopontin [170].

These data highlight a crucial pathogenic interaction between innate immunity and
the CNS myelination potential, opening new ways to promote effective myelin preservation
and repair in MS patients. Along with the results of the ongoing studies, future directions
include translation to clinical trials for the molecules showing remyelinating potency
in the animal models of demyelination, as well as potential for cell grafts promoting
remyelination, including fascinating approaches such as administration of encapsuled
OPCs within hydrogel particles via the nose-to-brain pathway [171].

12. Conclusions

Even if a solid conclusion from our current knowledge on remyelination strategies
is premature, the results of this research field are exciting for therapeutic development
in multiple sclerosis. Understanding the complex interaction of neurons with the oligo-
dendroglial lineage throughout development and disease and how it is modulated by
surrounding glial cells may be the key determinant to successfully promote remyelination,
ensure neuroprotection and reduce disability progression, which is the main unmet need
in multiple sclerosis.
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