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Abstract: Neotropical montane forests are considered biodiversity hotspots, where epiphytic
bryophytes are an important component of the diversity, biomass and functioning of these ecosys-
tems. We evaluated the richness and composition of bryophytes in secondary successional forests
and mixed plantations of Juglans neotropica. In each forest type, the presence and cover of epiphytic
bryophytes was registered in 400 quadrats of 20 cm × 30 cm. We analyzed the effects of canopy
openness, diameter at breast height (DBH) and forest type on bryophyte richness, using a generalized
linear model (GLM), as well as the changes in species composition using multivariate analysis.
Fifty-five bryophyte species were recorded, of which 42 species were in secondary forests and 40
were in mixed plantations. Bryophyte richness did not change at forest level; however, at tree level,
richness was higher in the mixed plantation of J. neotropica compared to the secondary forests, due to
the presence of species adapted to high light conditions. On the other hand, bryophyte communities
were negatively affected by the more open canopy in the mixed plantation of J. neotropica, species
adapted to more humid conditions being less abundant. We conclude that species with narrow
microclimatic niches are threatened by deforestation, and J. neotropica plantations do not act as refuge
for drought-sensitive forest species present in secondary forests.

Keywords: montane forest; epiphyte; canopy openness; richness; deforestation

1. Introduction

Neotropical forests are the most diverse in the world, occupying an area of about
48 million hectares, approximately 50% of which are located in South America [1]. A large
part of this diversity is located in the Andean montane or cloud forests [2,3]. Ecuador is
country with the second largest area of this type of forest in South America (11,200,000 ha),
of which only 1,448,700 hectares are protected [4], despite being considered biodiversity
hotspots [5,6]. These forests support a wide range of biological resources and provide
ecosystem services, mainly related to water, climate regulation and carbon capture and
storage [7,8].

Ecuador has the highest deforestation rates in South America, estimated at 1.8%
during the 2001–2010 period [9]. By 2008, around 46% of southern Ecuador’s original
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forest cover had been converted into other land use types (e.g., pastures) [10], generating
important economic and social consequences [11]. Loss of forest cover, alteration of the
hydric balance [12,13], and habitat fragmentation [14] are the main drivers of changes
in the composition, structure and functionality of these ecosystems [15,16], determining
biodiversity loss [17]. On the other hand, forest plantations occupy about 187 million
hectares worldwide, with an annual increase of 4.5 million hectares [18], with South
America leading in terms of new planted surface. In Ecuador, especially in the mountainous
region (Sierra), pine trees and eucalypts have been widely used for forest plantations [19,20].
As a result, areas of primary and secondary forests are surrounded by these anthropized
ecosystems, including a few areas with Juglans neotropica plantations.

One of the ecological groups most affected by deforestation are epiphytes (both vascu-
lar and non-vascular), because they are very sensitive to environmental changes [21,22].
Epiphytes constitute an essential part of montane forests in terms of diversity and func-
tionality [21,23,24]. An important element of this group are the bryophytes, which play a
key role in the functioning and balance of ecosystems [25]; because of their physiological
and morphological characteristics (poikilohydric organisms), they are narrowly adapted to
humidity, solar radiation and temperature conditions, which is why they have become a
model group to evaluate forest disturbance [22,26,27].

Forest plantations are anthropized ecosystems widely distributed in the tropical An-
des, which is why they have been the subject of different research projects related to flora
diversity. Several studies show that diversity decreases drastically in plantations when
compared to natural forests [28,29]; however, there are also studies indicating that there
are no differences in diversity between primary forests and plantations [30–33], suggesting
that organisms respond differently in these anthropized systems [34]. In some tropical
areas, the relationship of bryophyte diversity in agroforestry systems has been documented
in plantations of Theobroma cacao [35–38] and of the genera Citrus and Mangifera [39]. In ad-
dition, research has been carried out in monospecific forests of the genera Polylepis [40,41],
Quercus [25,42], Nothofagus [43,44] and Alnus [22], but the role of J. neotropica plantations as
reservoirs of bryophyte biodiversity has not been documented to date. Thus, the present
research is aimed at comparing for the first time the diversity of epiphytic bryophytes in
mixed plantations of J. neotropica to secondary montane forests. The hypothesis is based
on the observation that more canopy openness in plantations could determine changes
in the richness and composition of bryophytes, as has been shown in previous research,
comparing agroforestry systems of Theobroma cacao and natural forests [35–38]. To this end,
we established the following research questions: (1) Are the richness and composition of
bryophyte communities influenced by microclimatic changes (i.e., canopy openness) in
plantations and secondary forests? and (2) Can epiphytic bryophytes be used as indicators
of J. neotropica plantations?

2. Materials and Methods
2.1. Study Area

The research was carried out in two types of forest in the Universitary Park “Francisco
Vivar Castro” (PUFVC), located south of the city of Loja, 5 km from the downtown area. The
average annual temperature ranges between 15.6 and 16.6 ◦C; the average annual rainfall
is 812.6 mm/year; the average relative humidity is 71.96% and the average evaporation
is 111.33 mm. The two forest types occupy an approximate area of 22.41 ha. The mixed
J. neotropica plantation is located in the lower part of the park, at an altitude of 2130 masl
(Figure 1), with an area of 0.7 ha. This plantation is approximately 60 years old [45], where
no thinning operations have been made, and is characterized by a very uniform structure,
the predominant species being J. neotropica, mainly mixed with tree species of Cedrela
montana, Siparuna muricata, Inga fendleriana, Vibumum triphyllum, Streptosolen jamesonii,
Palicourea heterochroma and Oreopanax rosei [45]. The species is cultivated because it is an
important timber species that produces high quality wood [46], and its nuts are edible and
used as a colorant in the textile industry [47].
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Figure 1. Study area in Loja Province, southern Ecuador, showing the location of the mixed Juglans neotropica plantation and
secondary montane forests.

The montane forest is located at an altitude range of 2130–2520 masl, with an area of
99.13 ha and over 60 years of age [48]. The upper canopy is composed of Alnus acuminata,
Palicourea amethystina, Phenax laevigatus and Clethra revoluta [48]. The mixed J. neotropica
plantation and secondary forests are characterized by the absence of management activities.
Fieldwork was carried out between October 2017 and March 2018.

2.2. Design and Data Collection

Five 20 m × 20 m plots were established in each of the two forest types (Table 1);
in each plot, 10 trees with a diameter at breast height (DBH) > 10 cm were selected, for a
total of 100 trees. In each tree, the presence and cover of bryophytes was recorded with
20 cm × 30 cm quadrats established at two heights from the base of the tree (50–100 cm;
and 101–200 cm), and two orientations (north and south), for a total of 400 quadrats.
The samples were identified in the Herbarium of the Universidad Técnica Particular de
Loja (HUTPL), and the Universidad Nacional de Loja (LOJA) using general and specific
keys [49–52]. Light conditions were recorded by measuring percent canopy openness,
using five digital hemispherical photographs per plot. The distance between photographs
within a plot was 5 m. Digital photographs were always taken on overcast days and at
breast height (1.3 m), using a horizontally leveled digital camera (Nikon Coolpix 4500,
Nikon, Madrid, España). The hemispheric photographs were analyzed with Gap Light
Analyzer (GLA) version 2.0 [53].
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Table 1. Means of the environmental variables in the studied mixed Juglans neotropica plantation
(BJN) and secondary montane forests (BS), with five plots of 20 m × 20 m (400 m2) within of each
forest type in Ecuador. MTD = mean tree diameter.

Plot Forests Canopy Openess (%) MTD (cm)

1 BJN 41.76 16.92
2 BJN 38.02 24.08
3 BJN 37.96 26.47
4 BJN 32.11 28.40
5 BJN 28.61 25.32
1 BS 21.86 17.37
2 BS 27.67 19.02
3 BS 26.56 24.17
4 BS 26.72 19.23
5 BS 24.09 14.55

2.3. Data Analysis

Species diversity in the two forest types was determined by evaluating the specific
richness at tree level. Species richness was then analyzed using a generalized linear model
(GLM) with a Poisson error distribution and a logarithmic link function [54]. Species
composition was visualized using a non-metric multidimensional scaling analysis (NMDS),
with the purpose of observing the similarity of bryophyte communities based on the Bray-
Curtis distance and 999 Monte Carlo permutations. NMDS were conducted using the R
package “vegan” [55]. Finally, to analyze the effect of environmental variables as forest
type, light and DBH, a correlation between the two fitted axes and the environmental
variables was performed with the “envfit” function. To determine which bryophyte species
was associated with each forest type, we applied the indicator species analysis [56] using
the IndVal function of the “labdsv” package [57]. The indicator value ranges from 0 (the
species was absent from one forest type) to 1 (the species occurred in all trees of one forest
type and was absent from other trees). All analyses were performed using R statistical
software version 3.6.3 [58].

3. Results
3.1. Richness

A total of 55 species of epiphytic cryptogams (33 genera and 21 families) were recorded
(Appendix A). The families with the highest number of species were Lejeuneaceae, Pla-
giochilaceae, Frullaniaceae and Meteoriaceae. At the forest level, the number of recorded
species was similar in the two forest types, with 42 species (18 families and 23 genera) in
the montane secondary forest and 41 species in the J. neotropica plantation (17 families and
22 genera). At tree level, the violin plot showed a higher number of species for the mixed
J. neotropica plantation compared to secondary montane forests (Figure 2).
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Forest type and DBH had significant positive effects on species richness. The mixed
J. neotropica plantation showed the highest coefficients for bryophyte species richness, while
the coefficients for secondary forest had the lowest values (Table 2). Conversely, canopy
openness showed a significant negative effect on bryophyte richness (Table 2).

Table 2. Results of the generalized linear models showing the effects of forest type (BJN—mixed
Juglans neotropica plantation, BS—secondary montane forests), canopy openness and diameter at
breast height (DBH) on the richness of epiphytic bryophytes. Coef.—coefficient, ES.—Stardar error
Z.—z value, P—p-value.

Coef. ES Z p-Value

BJN 2.23537 0.39043 5.725 <0.0001
BS −0.31825 0.12705 −2.505 0.01225

Canopy openness −0.02284 0.01086 −2.104 0.03539
DBH 0.01085 0.00409 2.652 0.00801

3.2. Species Composition

The NMDS ordination showed that the community composition of epiphytic bryophytes
is different in the two forest types (Figure 3).
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Figure 3. Nonmetric multidimensional scaling analysis ordination plot for the samples (trees) from
the two types of forests (BS = Secondary forests; BJN = mixed plantations of Juglands neotropica).

The multivariate statistical analyses showed that epiphytic bryophyte composition
was structured according to microclimatic changes, with a large component of variation
(i.e., 34%) associated with canopy openness, followed by forest type and DBH, with 26%
and 6%, respectively (Table 3).

Table 3. Squared correlation coefficients (r2) fitted on the first two axes of the NMDS ordination for
host tree species, host tree traits and environmental factors. BJN—mixed Juglans neotropica plantation,
BS—secondary montane forests, DBH—diameter at breast height.

NMDS1 NMDS2 r2 p-Value

Forests 0.261 0.000999
BJN −0.2736 −0.0361
BS 0.2792 0.0368

Canopy openness −0.94759 −0.3195 0.3426 0.000999
DBH −0.5131 −0.85833 0.0643 0.042957
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3.3. Indicator Species

The analysis of indicator species determined four indicator species in the mixed
platation of J. neotropica: Radula tectiloba with indicator value of 58.9, Frullania ericoides
with 32, Frullania riojaneirensis with 30 and Lejeunea deplanata with 18, and four species in
secondary forests: Plagiochila raddiana with indicator value of 55.5, Porotrichum longirostre
with 39.4, Pseudomarsupidium decipiens with 15.5 and Lophocolea bidentata with 13.8.

4. Discussion

The results indicate that the richness and composition of epiphytic cryptogams were
affected by forest type, mainly due to changes in canopy openness. Similarly, previous
studies found an effect of canopy cover on the diversity of epiphytic bryophytes in montane
forests [22,37,38,59,60]. We recorded a relatively high number of bryophytes in the mixed
plantation of J. neotropica (41 species), which is similar to the 51 species reported for
Theobroma cacao plantations [30], and higher than the 24 species found in monospecific
forests of Alnus acuminata Kunth [26].

Species richness was influenced by forest type, with a higher number of species being
recorded in the mixed J. neotropica plantation at the tree level compared with secondary
forest. This is mainly due to the fact that the J. neotropica plantation presented more canopy
openness compared to the secondary forest, which implies alterations in the microclimate
with lower humidity and higher light availability. These changes favored the establishment
of sun epiphytes of the genera Frullania, Lejeunea and Radula, which are better adapted
to these environments, having functional characteristics adapted to conditions of excess
light. Similar to our findings, several studies have documented that disturbed forests
have a higher number of sun epiphytes, so the total richness is equal or even increases
in disturbed forests when compared to natural forests [22,25]. On the other hand, the
J. neotropica plantation appeared to be of minor conservation importance for the bryophytes
with narrow microclimatic niches (drought-sensitive species: Plagiochila raddiana and
Porotrichum longirostre). Similar results have been shown in cacao agroforests [35–38].
In addition, the studied J. neotropica plantation was established around 60 years ago,
making it a mixed system with native species from secondary forests, which possibly
explains why there is a similar number of species in the two forests. The composition of
epiphytic bryophyte communities changes significantly in the secondary forest with respect
to the mixed J. neotropica plantation, mainly related to more canopy openness, which is in
accordance with several studies carried out in tropical areas [21,22,26,59]. Following the
same pattern, the indicator species analysis (ISA) showed that Radula tectiloba, Frullania
ericoides and Frullania riojaneirensis are good indicator species for J. neotropica plantations.
Corroborating the findings, Acebey et al. [59] and Benitez et al. [26] point out that sun
epiphytes are more dominant in secondary or disturbed forests, and they replace shade
epiphytes. Thus, Gradstein [51] points out that these species are most common in open
woodlands (i.e., drought tolerant epiphytic liverworts).

A different pattern can be seen in the secondary forest, which is characterized by
more canopy cover, where the shade epiphytes (e.g., Porotrichum and Plagiochila) were
dominant, due to the fact that these forests have higher humidity and less light availability.
Thus, Plagiochila raddiana and Porotrichum longirostre were the best indicator species for
secondary forests. Corroborating this pattern, several studies have documented that shade
epiphytes are restricted to native and secondary forests that provide optimal microclimate
conditions [21,22,25,26,60], because these species are sensitive to microclimatic changes
due to their need for high humidity levels. In our case, the mixed plantation of J. neotropica
presented a higher percentage of light (33.69%) that passes to the understory compared
to the secondary forest (25.38%), which explains the absence of species with higher water
needs. Similarly, Sporn et al. [37] and Ariyanti et al. [36] showed singnificant changes in
bryophyte composition between cacao agroforests and natural forests, related to micro-
climatic changes (e.g., canopy cover). Finally, tree diameter had a significant effect on
the richness and composition of bryophyte communities, related to increased substrate
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availability for species distribution and establishment. Similar to our results, Guerra
et al. [60] and Gradstein and Culmsee [61] found that tree diameter is a key factor for the
establishment and distribution of bryophytes in tropical forests, because large trees offer
more surface area for the colonization of epiphytic bryophyte communities [26].

5. Conclusions

The diversity of bryophytes in mixed plantations of J. neotropica and secondary forests
was conditioned by the canopy openness. Although the two habitat types showed a similar
total richness at forest level, at tree level a higher richness of bryophytes (especially sun
epiphytes) was recorded in the plantations compared with secondary forests. Although
older mixed plantations (circa 60 years) of J. neotropica are colonized by native species and
have a similar richness of bryophytes compared with secondary forests, these plantations
do not harbour communities of species adapted to high humidity conditions in the same
way secondary forests can. Since J. neotropica plantations do not provide a refuge for the
local epiphytic bryophyte species with narrow microclimatic niches, natural forests are
crucial to the conservation of the drought-sensitive forest bryophyte species.
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Appendix A

Table A1. Number of trees on which each species appears in two types of forests. (BS = Secondary forests; BJN = mixed
plantations of Juglans neotropica). * denote threatened species in Ecuador [62].

Taxa Forest of Juglans neotropica (BJN) Secondary Forests (BS)

Liverworts

Aneuraceae
Riccardia digitiloba (Spruce) Pagan 1

Adelanthaceae
Pseudomarsupidium decipiens (Hook.) Grolle 1 8

Frullanieaceae
Frullania brasiliensis Raddi 6 1
Frullania caulisequa (Nees) Mont. 2 1
Frullania ericoides (Nees) Mont. 16
Frullania riojaneirensis (Raddi) Ångstr. 15
Frullania subtilissima (Nees ex Mont.) Lindenb. 1
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Table A1. Cont.

Taxa Forest of Juglans neotropica (BJN) Secondary Forests (BS)

Lejeuneaceae
Bryopteris filicina (Sw.) Nees 1
Cheilolejeunea filiformis (Sw.) W. Ye, R.L. Zhu & Gradst. 1
Dicranolejeunea axillaris (Nees & Mont.) Schiffn. 1
Drepanolejeunea cutervoensis (Loitl.) Grolle 1
Frullanoides densifolia Raddi subsp. densifolia. 1
Lejeunea cerina (Lehm. & Lindenb.) Lehm. & Lindenb. 9 15
Lejeunea deplanata Nees 9
Lejeunea flava (Sw.) Nees 1 1
Lejeunea laetevirens Nees & Mont. 17 12
Lejeunea ramulosa Spruce 3
Marchesinia brachiata (Sw.) Schiffner 1
Microlejeunea acutifolia Steph. 1
Microlejeunea bullata (Taylor) Steph. 1

Lophocoleaceae
* Leptoscyphus autoicus (J.J. Engel & Gradst.) Vanderp.

1
and Gradst.
Lophocolea bidentata (L.) Dumort. 1 7
Lophocolea muricata (Lehm.) Nees 4

Metzgeriaceae
Metzgeria dorsipara (Herzog) Kuwah. 2 1
Metzgeria leptoneura Spruce 1 3

Plagiochilaceae
Plagiochila aerea Taylor 1
Plagiochila bifaria (Sw.) Lindenb. 1
Plagiochila cristata (Sw.) Lindenb. 9 4
Plagiochila diversifolia Lindenb. & Gottsche 6 3
Plagiochila gymnocalycina (Lehm. & Lindenb.) Mont. and Nees 2 1
Plagiochila raddiana Lindenb. 29 36

Porellaceae
Porella brachiata (Taylor) Spruce 2 2
Porella crispata (Hook.) Trevis. 3 3

Radulaceae
Radula episcia Spruce 3 7
Radula gottscheana Taylor 7 8
Radula tectiloba Steph. 34 7

Mosses

Bryaceae
Bryum apiculatum Schwägr 1

Calymperaceae
Syrrhopodon incompletus Schwägr. 7 5

Cryphaeaceae
Cryphaea jamesonii Taylor 3
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Table A1. Cont.

Taxa Forest of Juglans neotropica (BJN) Secondary Forests (BS)

Daltoniaceae
Adelothecium bogotense (Hampe) Mitt. 1

Dicranaceae
Campylopus flexuosus (Hedw.) Brid. 1

Fabroniaceae
Fabronia ciliaris (Brid.) Brid. 1

Meteoriaceae
Meteoridium remotifolium (Müll. Hal.) Manuel 6 5
Squamidium leucotrichum (Taylor) Broth. 3 5
Squamidium nigricans (Hook.) Broth. 2 3
Zelometeorium recurvifolium (Hornsch.) Manuel 13

Mniaceae
Plagiomnium rhynchophorum (Hook.) T.J. Kop. 1

Neckeraceae
Neckeropsis undulata (Hedw.) Reichardt 12 11
Porotrichum filiferum Mitt. 4
Porotrichum longirostre (Hook.) Mitt. 15 26

Orthotrichaceae
Macromitrium richardii Schwägr. 2

Sematophyllaceae
Acroporium pungens (Hedw.) Broth. 1 2
Sematophyllum subsimplex (Hedw.) Mitt. 14 7

Thuidiaceae
Thuidium peruvianum Mitt. 35 25
Thuidium tomentosum Schimp. 2 2
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