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Abstract: Cysteine sulfinic acid decarboxylase catalyzes the last step of taurine biosynthesis in
mammals, and belongs to the fold type I superfamily of pyridoxal-5′-phosphate (PLP)-dependent
enzymes. Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in animal
tissues; it is highly present in liver, kidney, muscle, and brain, and plays numerous biological and
physiological roles. Despite the importance of taurine in human health, human cysteine sulfinic acid
decarboxylase has been poorly characterized at the biochemical level, although its three-dimensional
structure has been solved. In the present work, we have recombinantly expressed and purified
human cysteine sulfinic acid decarboxylase, and applied a simple spectroscopic direct method based
on circular dichroism to measure its enzymatic activity. This method gives a significant advantage
in terms of simplicity and reduction of execution time with respect to previously used assays,
and will facilitate future studies on the catalytic mechanism of the enzyme. We determined the
kinetic constants using L-cysteine sulfinic acid as substrate, and also showed that human cysteine
sulfinic acid decarboxylase is capable to catalyze the decarboxylation—besides its natural substrates
L-cysteine sulfinic acid and L-cysteic acid—of L-aspartate and L-glutamate, although with much
lower efficiency.

Keywords: cysteine sulfinic acid decarboxylase; pyridoxal 5′-phosphate; circular dichroism; enzy-
matic assay

1. Introduction

Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in animal
tissues and is highly present in liver, kidney, muscle, and brain, accounting for 25%, 50%,
53%, and 19% of their free amino acid pools, respectively [1]. Many works have shown
that taurine plays numerous biological and physiological roles [2]. In fact, not only does it
conjugate bile acids [3], but it also plays a role as antioxidant [4,5], osmoregulator [6], and
membrane stabilizer [7]. In the central nervous system, taurine acts as neurotransmitter,
neuroprotective agent, and regulator of intracellular calcium homeostasis [8]. Low levels of
taurine are associated with various pathological conditions, including cardiomyopathy [9],
retinal degeneration [10], prenatal and postnatal growth retardation [11], and obesity [12].
Thanks to its beneficial properties on human health, taurine is added in most infant
milks [13], in energy drinks, and in cosmetics [14].

Taurine derives from L-cysteine (Figure 1). The major route for its synthesis is through
the decarboxylation of L-cysteine sulfinic acid (CSA) to hypotaurine by cysteine sulfinic
acid decarboxylase (CSAD; EC 4.1.1.29), and the subsequent oxidation of hypotaurine to
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taurine. An alternative pathway is the oxidation of CSA to L-cysteic acid (CA), followed by
the decarboxylation of CA to taurine catalyzed by a decarboxylase that is to be CSAD as
well [15]. Despite the importance of taurine in human health, human CSAD has been poorly
characterized at the biochemical level. It belongs to the aspartate aminotransferase fold
type I superfamily of pyridoxal-5′-phosphate (PLP)-dependent enzymes [16]. Significantly,
several other PLP-dependent enzymes are involved in taurine biosynthesis (Figure 1).
CSAD is expressed in brain and liver from two tissue-specific mRNAs that differ in their 5′-
untranslated regions due to an alternative splicing, yet result in two identical proteins [17].
In vivo and in vitro studies suggested that CSAD activity increases when the enzyme is
phosphorylated, and it is inhibited when dephosphorylated, with protein kinase C and
protein phosphatase 2C probably involved in this regulation [18]. Among PLP-dependent
decarboxylases, CSAD shows the strongest homology with the two isoforms of glutamate
decarboxylase, GAD65 and GAD67 [17], responsible for the decarboxylation of L-glutamate
to produce γ-aminobutyrate (GABA), the main inhibitory neurotransmitter of the central
nervous system. It has been shown that GAD is able to decarboxylate both CSA and
CA [15], whereas no activity of CSAD was found with L-glutamate [17]. The substrate
selectivity of GAD and CSAD is determined by the identity of amino acids occupying
three specific positions at the active site of the two enzymes [19]. A taurine biosynthetic
pathway has also been found in bacteria, and CSAD from Synechococcus sp. PCC 7335 was
recombinantly expressed and purified [17]. On the other hand, taurine seems not to be
present in plants, although a novel biosynthetic pathway rising from L-serine was quite
recently identified in microalgae [20].
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Figure 1. Taurine biosynthetic pathway in mammals.

In the present work, we have recombinantly expressed and purified human CSAD,
and applied a simple spectroscopic, direct method to measure its enzyme activity with
CSA and CA. This method gives a significant advantage in terms of simplicity and re-
duction of execution time, with respect to previously used assays such as that based on
o-phthalaldehyde derivatization of products and high-performance liquid chromatography
detection [19]. We also showed that human CSAD is capable to catalyze the decarboxylation
of L-aspartate and L-glutamate, although with much lower efficiency.

2. Materials and Methods
2.1. Materials

Ingredients for bacterial growth, chemicals, and enzyme substrates (CSA, CA, L-
glutamate, and L-aspartate) in pure form were purchased from Sigma-Aldrich (St. Louis,
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MO, USA). HisTrap affinity columns (Ni-NTA) for purification of the 6xHis-tagged protein
were purchased from GE Healthcare (Chicago, IL, USA).

2.2. Purification of CSAD

The plasmid pNIC28-Bsa4 containing the cDNA of CSAD (UniProt entry code Q9Y600)
was a gift from Nicola Burgess-Brown (Addgene plasmid # 42387). It is derived from the
pET28a vector. In this vector, the cDNA of CSAD (GenBank: AAH98342.1) is fused to an
N-terminal tag of 23 residues (MHHHHHHSSGVDLGTENLYFQS) including a hexahis-
tidine (His6) and a TEV-protease cleavage site. The plasmid was transformed into E. coli
Rosetta(DE3) cells, containing pLys helper plasmid.

An overnight culture of these cells was used to inoculate 2 L of Vogel-Bonner medium
E containing kanamycin (40 mg·L−1), chloramphenicol (35 mg·L−1), and pyridoxine
(30 mg·L−1). Bacteria were allowed to grow for approximately 5 h at 37 ◦C (until their
OD600 reached ~0.6), then the growing temperature was lowered to 25 ◦C and the expres-
sion of CSAD was induced with 0.1 mM isopropyl thio-β-D-galactopyranoside (IPTG).
Bacteria were harvested after 18 h of growth at 25 ◦C and suspended in 50 mL of 100 mM
NaHEPES, pH 8, containing 500 mM NaCl, 5% glycerol, 0.2 mM dithiothreitol (DTT), and
an ethylenediaminetetraacetic acid (EDTA)-free protease inhibitor (Sigma-Aldrich). Cell
lysis was carried out by sonication on ice (5 min in short 10 s pulses, with 5 s intervals).
Lysate was centrifuged at 12,000× g for 30 min to remove insoluble debris. The super-
natant was loaded onto a column of Ni-NTA agarose resin pre-equilibrated with buffer
A (20 mM NaHEPES, pH 7.5, containing 500 mM NaCl, 5% glycerol, and 0.2 mM DTT).
The column was washed with 10 volumes of buffer A, 10 volumes of buffer A containing
10 mM imidazole, and eluted with buffer A containing 500 mM imidazole. Pooled fractions
containing CSAD, as detected by SDS-PAGE analysis, were concentrated and washed in
20 mM NaHEPES, pH 7.5, containing 300 mM NaCl, 5% glycerol, and 0.2 mM DTT, using
centrifuge ultrafiltration devices (Sartorius).

2.3. Spectroscopic Measurements

All spectroscopic measurements were carried out at 20 ◦C in 20 mM NaHEPES buffer,
pH 7.5, containing 300 mM NaCl, 0.2 mM DTT, and 5% glycerol. UV-visible spectra were
recorded with a Hewlett-Packard 8453 diode-array spectrophotometer (Agilent Technolo-
gies). The growth of bacterial cultures was monitored by determining the optical density at
600 nm (OD600), using the same diode array spectrophotometer. Protein subunit (molecular
weight 57.576 kDa) concentration was calculated using an extinction coefficient at 280 nm
of 63,576 M−1 cm−1 (calculated with the Gill and Von Hippel method; [21]). Circular
dichroism measurements were carried out using a Jasco 710 spectropolarimeter. Acquisi-
tion parameters were as follows: start 250 nm–end 190 nm; data pitch: 0.5 nm; scanning
speed: 10 nm/min, response: 0.25 s; bandwidth: 2 nm; accumulation: 3.

2.4. Thin Layer Chromatography

Samples of 2 µL of reaction mixtures were spotted on silica plates (Merck) with CSA,
CA, glutamate, aspartate, and β-alanine as standards. The mobile phase was a mixture
of butanol:acetic acid:H2O in the 3:1:1 ratio. After chromatography, amino acids were
revealed upon treatment with 0.5% ninhydrin in acetone, followed by heating at 90 ◦C.

2.5. Activity Assay of CSAD with CSA and CA

The activity of CSAD versus CSA and CA was assayed by circular dichroism (CD)
measurements. Decarboxylation of CSA and CA was followed by measuring the decrease
of the CD signal at 220 nm due to the conversion of these L-amino acids into an achiral
amine (taurine and hypotaurine, respectively). Far-UV (190–250 nm) CD spectra of CSA
and other potential amino acid substrates (CA, L-glutamate, and L-aspartate), measured
using a Jasco 710 spectropolarimeter equipped with a DP 520 processor and a 1 cm path
length quartz cuvette, are shown in Figure 3b. All amino acids show a positive CD band,
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although of different intensity. CSAD has a negative CD band that does not interfere
with the measurement since the enzyme concentration keeps constant during the assay.
The reactions were started by adding 0.5 mM CSA or 2 mM CA to a solution of 0.65 µM
CSAD in 20 mM potassium phosphate buffer, pH 7.2, containing 0.2 mM DTT, 0.1 mM
EDTA, and 0.06 mM PLP. The decrease of CD signal at 220 nm was monitored over time.
This wavelength was chosen so as to maximize the signal, while maintaining a linear
relationship between CD signal and amino acid substrate concentration. The reaction rate
was expressed as variation of ellipticity per minute (mdeg min−1).

2.6. Activity Assay of CSAD with Glutamate

The reaction of CSAD with L-glutamate was assayed using GABase (Sigma-Aldrich,
St. Louis, Mo, USA), a commercial preparation containing GABA aminotransferase and
succinic semialdehyde dehydrogenase, which is normally employed to measure GAD
activity [22]. CSAD (30 µM) was incubated at 30 ◦C with 50 mM sodium L-glutamate in
20 mM potassium phosphate buffer, pH 7.2, containing 0.2 mM DTT, 0.1 mM EDTA, and
0.6 mM PLP. Aliquots of this reaction mixture were taken at time intervals (5–90 min) and
halted by boiling for 5 min. After centrifugation, each aliquot (50 µL) was mixed with
0.2 mL of GABase solution (0.1 M NaHEPPS, pH 8.6, containing 1 mM NADP+, 1 mM
α-ketoglutarate, 3 mM mercaptoethanol, and 0.6 unit/mL of GABase), pre-activated at
room temperature for 20 min. After 40 min at 37 ◦C, the reaction mixture was diluted to
1 mL with water, and the amount of NADPH formed—which is equimolar to the GABA
produced—was determined by measuring the absorbance at 340 nm using an extinction
coefficient of 6220 M−1cm−1.

2.7. Data Analysis

All data analyses were carried out using the software Prism (GraphPad Software Inc.,
San Diego, CA, USA). Steady-state kinetic parameters were obtained by nonlinear least
squares fitting of initial velocity data to the Michaelis–Menten equation.

3. Results
3.1. Expression, Purification, and Spectrophotometric Analysis of Human CSAD

Human CSAD (EC 4.1.1.29), whose cDNA was cloned in pNIC28-Bsa4, was expressed
in the E. coli Rosetta(DE3) strain with an N-terminal tag of 23 residues including a hexa-
histidine stretch. The recombinant protein was purified to homogeneity, as judged by
SDS-PAGE analysis (Figure 2a, original figure is in Supplementary Materials). Although
most of the expressed protein was found in the inclusion bodies (lane 4 vs. 3 in Figure 2a),
the purification yield was of about 3 mg of soluble protein per liter of bacterial culture. The
absorption spectrum of the purified CSAD suggested that only a very small amount of PLP
was bound to the protein. The addition of exogenous PLP—in equimolar concentration
with respect to the protein—restored the holo-form of the enzyme, as demonstrated by
the measurement of a neat increase in catalytic activity (see below for details on the
assay method). After extensive dialysis, the presence in the absorption spectrum of two
absorption bands at 330 and at 400 nm (Figure 2b) suggested that PLP was retained by the
protein, although absorption bands with maxima at these wavelengths usually correspond
to free PLP [23]. However, aldimines absorbing between 385 and 400 nm have been
reported in the literature in different PLP-dependent decarboxylases [24–26]. In order to
keep the protein in the holo-form, excess PLP was added to the purified protein sample
and to all reaction mixtures during activity assays. In these conditions, the protein was
stable for several weeks at 4 ◦C.
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Figure 2. Purification of CSAD. (a) SDS-PAGE analysis of total protein extract (2); soluble (3) and
insoluble (4) fractions of lysate; 1 µg (4) and 5 µg (5) of purified human CSAD. Molecular weight
standards are indicated in kDa (lane 1 and 7). The black line indicates that the image was assembled
from two different gels, whereas the white line separates different parts of the same gel that were
combined, excluding lanes that were not of interest; (b) Absorption spectrum of purified human
CSAD. UV–VIS absorption spectrum was recorded in 20 mM NaHEPES buffer pH 7.5, containing
300 mM NaCl, 0.2 mM DTT, and 5% glycerol.

3.2. Activity Assay: Decarboxylation of CSA and CA

The activity of CSAD was first checked by thin-layer chromatography analysis. From
Figure 3a, it is clear that the purified enzyme is able to use both CSA and CA as substrates,
converting them to hypotaurine and taurine, respectively. These results demonstrate that
recombinant human CSAD is active. In order to quantitatively assay the decarboxylase
activity of CSAD, we set up a method based on CD measurements. This method has
been previously used to determine the activity of other decarboxylases such as ornithine
decarboxylase [27] and diaminopimelate decarboxylase [28]. It is based on the fact that
amino acid substrates have a chiral center (the α-carbon) and show a far-UV CD spectrum
(Figure 3b), whereas their decarboxylation products do not. Therefore, as the irreversible
decarboxylation reaction proceeds, the CD signal decreases as a result of the conversion of
the amino acid into an achiral amine. As shown in Figure 3c, the complete decarboxylation
of 0.5 mM CSA (into hypotaurine), monitored at 220 nm in the presence of 0.66 µM CSAD
at 20 ◦C, was accomplished in less than 400 s. We also tested 3 mM CA, L-glutamate,
and L-aspartate, but we observed activity only with CSA (−0.080 mdeg min−1 per µM of
CSAD) and CA (−0.0045 mdeg min−1 per µM of CSAD). Possibly, with this method and
under such conditions, the reaction rates of L-glutamate and L-aspartate decarboxylation
were too low to be measured. The kinetics parameters of CSA decarboxylation were
determined. In order to convert the observed ellipticity changes into the concentration
of CSA consumed in the decarboxylation reaction, a calibration curve was constructed,
relating CSA concentration to CD signal. CD spectra of CSA at concentrations ranging
from 0.125 to 1 mM are shown in Figure 4a. Figure 4b shows that the CD signal at 220 nm
was linear up to 1 mM CSA concentration. The initial rate of CSA decarboxylation was
measured as a function of CSA concentration, obtaining a saturation curve from which a
kcat of 5.6 ± 0.2 s−1 and a KM equal to 0.20 ± 0.02 mM were determined (Figure 4c).



Life 2021, 11, 438 6 of 10

Life 2021, 11, x FOR PEER REVIEW 6 of 10 
 

 

Figure 3. Decarboxylation of CSA and CA. (a) Thin-layer chromatography of reaction Scheme 10. 

mM) with CSAD (30 μM) at 30 °C for 1 h in 50 mM potassium phosphate buffer, pH 7.5, containing 

0.2 mM DTT, 0.1 mM EDTA, and 0.08 mM PLP. Samples of CSA, CA, hypotaurine, and taurine 

were run as references; (b) CD spectra of 0.5 mM CSA (black line), CA (red line), L-glutamate (blue 

line), and L-aspartate (green line). As control, the CD spectrum of 3 µM CSAD (dotted line) was 

also recorded; (c) The decarboxylation reaction of CSA was monitored as change of ellipticity at 220 

nm as a function of time. The CD signal was measured as a function of time upon mixing CSAD 

(0.66 μM) with 0.5 mM CSA in 20 mM potassium phosphate buffer, pH 7.2, containing 0.2 mM 

DTT, 0.1 mM EDTA, and 0.06 mM PLP at room temperature. 

Figure 4. Determination of kinetic parameter for CSA decarboxylation by circular dichroism. (a) 

CD spectra of CSA at 0.125 mM (green), 0.25 mM (red), 0.5 mM (black), and 1 mM (blue); (b) De-

pendence of ellipticity (θ) at 220 nm as a function of CSA concentration. The θ was measured at 

different concentration of CSA. The fitting of data with a linear regression gives a value of 50 ± 0.7 

mdeg per 1 mM of CSA; (c) Ellipticity at 220 was measured as a function of time upon mixing 

CSAD (0.33 μM) with CSA (0.06–1 mM) in 20 mM potassium phosphate buffer, pH 7.2, containing 

0.2 mM DTT, 0.1 mM EDTA, and 0.06 mM PLP. The continuous line through the experimental 

points is the result of least squares fitting of data to the Michaelis–Menten equation, which yielded 

estimated kcat and KM values of 5.6 ± 0.2 s−1 and 0.2 ± 0.02 mM, respectively. 

3.3. Decarboxylation of L-Aspartate and L-Glutamate 

CSAD-catalyzed decarboxylation of L-aspartate was observed by thin-layer chro-

matography analysis after a prolonged incubation of a 10 mM solution of this amino acid 

with 30 μM of CSAD, at 20 °C for 16 h (Figure 5A). Decarboxylation of L-glutamate could 

instead be monitored using the GABase assay, as explained in the Material and Methods 

section. Using this assay, 30 μM of CSAD was incubated with 50 mM sodium 

L-glutamate at 20 °C, and the product GABA was measured at time intervals (Figure 5B). 

These results clearly show that CSAD is able to decarboxylate L-glutamate, with a rate of 

0.003 μM·min−1 per μM of CSAD, but is also able to slowly decarboxylate L-aspartate. 

Figure 3. Decarboxylation of CSA and CA. (a) Thin-layer chromatography of reaction Scheme 10.
(mM) with CSAD (30 µM) at 30 ◦C for 1 h in 50 mM potassium phosphate buffer, pH 7.5, containing
0.2 mM DTT, 0.1 mM EDTA, and 0.08 mM PLP. Samples of CSA, CA, hypotaurine, and taurine were
run as references; (b) CD spectra of 0.5 mM CSA (black line), CA (red line), L-glutamate (blue line),
and L-aspartate (green line). As control, the CD spectrum of 3 µM CSAD (dotted line) was also
recorded; (c) The decarboxylation reaction of CSA was monitored as change of ellipticity at 220 nm as
a function of time. The CD signal was measured as a function of time upon mixing CSAD (0.66 µM)
with 0.5 mM CSA in 20 mM potassium phosphate buffer, pH 7.2, containing 0.2 mM DTT, 0.1 mM
EDTA, and 0.06 mM PLP at room temperature.
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Figure 4. Determination of kinetic parameter for CSA decarboxylation by circular dichroism. (a) CD
spectra of CSA at 0.125 mM (green), 0.25 mM (red), 0.5 mM (black), and 1 mM (blue); (b) Dependence
of ellipticity (θ) at 220 nm as a function of CSA concentration. The θ was measured at different
concentration of CSA. The fitting of data with a linear regression gives a value of 50 ± 0.7 mdeg
per 1 mM of CSA; (c) Ellipticity at 220 was measured as a function of time upon mixing CSAD
(0.33 µM) with CSA (0.06–1 mM) in 20 mM potassium phosphate buffer, pH 7.2, containing 0.2 mM
DTT, 0.1 mM EDTA, and 0.06 mM PLP. The continuous line through the experimental points is the
result of least squares fitting of data to the Michaelis–Menten equation, which yielded estimated kcat

and KM values of 5.6 ± 0.2 s−1 and 0.2 ± 0.02 mM, respectively.

3.3. Decarboxylation of L-Aspartate and L-Glutamate

CSAD-catalyzed decarboxylation of L-aspartate was observed by thin-layer chro-
matography analysis after a prolonged incubation of a 10 mM solution of this amino acid
with 30 µM of CSAD, at 20 ◦C for 16 h (Figure 5a). Decarboxylation of L-glutamate could
instead be monitored using the GABase assay, as explained in the Material and Methods
section. Using this assay, 30 µM of CSAD was incubated with 50 mM sodium L-glutamate
at 20 ◦C, and the product GABA was measured at time intervals (Figure 5b). These results
clearly show that CSAD is able to decarboxylate L-glutamate, with a rate of 0.003 µM·min−1

per µM of CSAD, but is also able to slowly decarboxylate L-aspartate.
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Figure 5. Decarboxylation of L-aspartate and L-glutamate. (a) Thin-layer chromatography of reaction
samples obtained by incubation of L-aspartate (mM) with CSAD (30 µM) at room temperature
overnight in 20 mM potassium phosphate buffer, pH 7.2, containing 0.2 mM DTT, 0.1 mM EDTA,
and 0.08 mM PLP. Samples of L-aspartate and β-alanine were run as references; (b) Determination of
GABA formation in the reaction of 32 µM CSAD with 50 mM sodium glutamate, in 20 mM potassium
phosphate buffer, pH 7.2, containing 0.2 mM DTT and 0.1 mM EDTA. Measurements of amounts
of GABA were carried out using the GABase assay, as described in Materials and Methods. Linear
regression of data gave a velocity value of 0.09 µM·min−1.

4. Discussion

Human CSAD with an N-terminal hexahistidine tag could be expressed very well in
the E. coli Rosetta(DE3) strain, although most of the protein was insoluble. By growing bac-
teria in minimal medium at low temperature we were able to purify up to 3 mg of soluble
enzyme per liter of bacterial culture (Figure 2). The enzyme was active towards different
substrates, such as CSA, CA, L-aspartate, and L-glutamate (Figures 3–5). CSAD activity
with CSA as substrate was assayed by other authors using different methods, such as a ra-
dioisotope assay that uses L-[1-14C]CSA and measures the formation of 14CO2 [15], and the
measurement of the hypotaurine reaction product, derivatized with o-phthalaldehyde and
detected by high-performance liquid chromatography [17,19,29]. The CD assay method is
simple and direct, because it does not require any step after the decarboxylation reaction.
It has been applied to other enzymes [27,28,30], but it has never been used for CSAD.
By applying this method, we determined the kinetics constants of CSA decarboxylation
(Figure 4). The KM value of 0.2 mM found for human CSAD is very similar to the KM mea-
sured for the enzyme extracted from bovine brain [15]. Moreover, the kcat value of 5.6 s−1

is similar to that observed with other human decarboxylases, such as GAD (6–7 s−1; [31])
and DOPA decarboxylase (3–9 s−1; [32]). Our method allowed us to demonstrate that
human CSAD can also decarboxylate CA, although at a slower rate with respect to CSA
(−0.0045·mdeg min−1 vs. −0.08 mdeg min−1). This result is in line with the hypothesis
that CSAD is also responsible of the decarboxylation of CA to taurine in the alternative
pathway of taurine biosynthesis (Figure 1; [15]).

In contrast to what was previously reported in literature, namely, that CSAD is unable
to decarboxylate L-glutamate [17], we observed a slow reaction also with L-glutamate
and L-aspartate. The decarboxylation of L-glutamate is rather expected, because CSAD
is highly homologous to GAD [17], which, on the other hand, can decarboxylate CSAD
substrates, CSA and CA [15,31,33].

The comparison of the catalytic features of human CSAD with its paralogs human
glutamate decarboxylases (GAD65 and GAD67) and DOPA decarboxylase (DDC) might
take advantage of the three-dimensional structure of CSAD, which has been solved to a
resolution of 1.6 Å by the Structural Genomics Consortium (SGC) (PDB accession code
2jis). The overall structure of human CSAD is shown in Figure 6a. The enzyme crystallized
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as a homo-dimer with the PLP cofactor bound through a Schiff base to lysine 305 in
both monomers. A nitrate molecule is clearly seen in the electron density, coordinated to
His431, Trp415, Gly462, and Arg461; this nitrate molecule may stabilize the loop containing
the latter two amino acids. The active site cavity is formed by both monomers. Within
both active sites, the loop containing Cys190/His191/Tyr192 can be modelled in two
alternative conformations. In the “closed” conformation, the His191 at the center of
this loop coordinates with the PLP. Cys356 is also found in two conformations, possibly
influenced by the proximity of His191 (Figure 6b). An important structural feature of
PLP-dependent decarboxylases is a putative catalytic loop that covers the active site. Part
of this loop, from residue Ser331 to Lys341, is unstructured in chain A, while in chain B it
is modelled in a much more open conformation when compared to the structurally and
functionally similar GAD67 (Figure 6c). This overall relaxed conformation of the active site
may reflect the absence of a bound substrate or product molecule in the CSAD structure.
In GAD67, this loop has been proposed to bring catalytically important residues into the
proximity of PLP and substrate [34]; for instance, a highly conserved tyrosine residue
present in this loop is responsible for substrate and reaction specificity in human DOPA
decarboxylase [35].
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Figure 6. Structure of CSAD. (a) Overall structure of the dimeric form of the enzyme. The protein
backbone is depicted as cartoon. Chain A and chain B are shown in cyan and slate, respectively. The
PLP (in yellow color) bound to the active site residue Lys305, and the nitrate are shown as sticks. (b)
Close-up of the active site loop comprising residues 190–192. The loop was modelled in two different
conformations. Residues Cys190, His191, Tyr192, and Cys356 are shown as sticks; (c) Comparison
between the putative catalytic loop of CSAD—comprising residues Ser331 to Lys341—with the
structurally related loop of human GAD67 (PDB 2okj). The catalytically relevant tyrosine residues
present on this loop are shown as sticks. Chain A and chain B of CSAD are shown in cyan and slate,
respectively. Chain A and chain B of GAD 67 are shown in salmon and orange. For clarity, only PLP
bound to CSAD is shown, yellow sticks. GABA bound to GAD67 is shown as pink sticks.

The novel activity assay described in the present work will help site-directed mutage-
nesis investigations on the structural bases of substrate specificity and catalytic mechanism
of human cysteine sulfinic acid decarboxylase.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11050438/s1, Figure S1: SDS-PAGE gels. Lane numbering shown in Figure S1 is the same
shown in Figure 2a. The lanes that are not part of Figure 2a are red-crossed in Figure S1.
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