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Abstract: Capped hock affects the exterior of pedigree pigs, making them unsalable and resulting in
a negative impact on the efficiency of pig-breeding centers. The purpose of this paper was to carry
out pilot studies aimed at finding genomic regions and genes linked to the capped hock in pigs. The
studies were carried out on Landrace pigs (n = 75) and Duroc pigs (n = 70). To identify genomic
regions linked to capped hock in pigs, we used smoothing FST statistics. Genotyping was performed
with GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc, San Diego, CA, USA). The
research results showed 70 SNPs linked to capped hock in Landrace (38 SNPs) and Duroc (32 SNPs).
The identified regions overlapped with QTLs related with health traits (blood parameters) and meat
and carcass traits (fatness). In total, 31 genes were identified (i.e., 17 genes in Landrace, 14 genes in
Durocs). Three genes appeared in both the Landrace and Duroc groups, including A2ML1 (SSC5),
ROBO2 (SSC13), and MSI1 (SSC14). We identified genomic regions directly or indirectly linked to
capped hock, which thus might contribute to identifying genetic variants and using them as genetic
markers in pig breeding.
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1. Introduction

Limb diseases and specifically limb weakness (osteochondrosis) in pigs can lead
to large economic losses due to a decrease in productivity [1–5]. Moreover, one of the
serious problems facing pig farmers is the spread of bursitis of the hock and capped
hock [6–8]. Bursitis of the hock usually occurs beneath the hock of the hind limb; it is
less common in the forelimb. The capped hock is considered to be similar to the hock
joint lesion, and therefore studies of capped hock and bursitis of the hock are commonly
combined [6]. Capped hock is usually only a defect and does not lead to lameness, but
this greatly affects the exterior of breeding pigs. This is because capped hock makes
them unsalable, which has an extremely negative effect on the efficiency of pig breeding
centers. We can consider production technology and genetics as predisposing factors
of capped hock etiology. Revealing genome regions directly or indirectly linked to the
capped hock problem may help identify genetic variants and use them as genetic markers
in the selection of pig breeding stock. One approach for finding candidate genes that can
become selectively valuable traits in farm animals is to identify selection signatures [9].
The discovery of selection signatures and the identification of candidate genes can identify
the main genes responsible for the selected traits. The advantage of this approach is that
it does not depend on the phenotype information for individual animals. Moreover, it is
applicable to relatively small populations [10]. Therefore, we decided to apply the selection
signatures approach to find genomic regions and genes linked to pigs’ capped hock.
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2. Materials and Methods

In this study, we did not implement anesthesia or euthanasia, nor was any animal
sacrificed. Further, this study did not involve any endangered or protected species. Ac-
cording to the standard monitoring procedures and guidelines, the participating holding
specialists collected tissue samples following the ethical protocols outlined in the Direc-
tive 2010/63/EU (2010). The samples of pig ears (ear pluck) were obtained as a general
monitoring procedure, as it is a standard practice in pig breeding [11].

The studies were carried out on Landrace pigs (n = 75) and Duroc pigs (n = 70)
born in 2020. We chose Landrace and Duroc pigs because although they have different
performance traits, they are both subject to capped hock. All pigs on the farm were raised
under the same conditions, i.e., on concrete slotted floors. The animals were evaluated
when they reached a weight of 100–110 kg (via visual inspection). The pigs were divided
into two groups depending on the condition of their limbs. For groups I and II, the
presence/absence of bumps in the hock region on the hind limbs of the pigs were inspected.
Group I included Landrace (n = 37) and Duroc (n = 30), whereas group II included Landrace
(n = 38) and Duroc (n = 40). To study population structure, we performed a singular value
decomposition (SVD) of the GRM in R [12,13]. Figure 1 shows the SVD analysis. Pre-
defined breed groups (Landrace and Duroc) corresponded to well-separated clusters. No
outliers were apparent on the SVD plot and no stratification of pigs with or without capped
hock was detected.
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Figure 1. SVD plot.

To determine selection signatures, we used the FST smoothing approach by comparing
pigs (group I vs. group II)) in accordance with breed (Landrace (L_I vs. L_II) and Duroc
(D_I vs. D_II)).

2.1. Genotyping

Genomic DNA was extracted from ear samples using a DNA-Extran-2 reagent kit (OOO
NPF Sintol, Russia) following the manufacturer’s protocol. The quantity, quality, and integrity
of DNA were assessed using a Qubit 2.0 fluorometer (Invitrogen/Life Technologies, Carlsbad,
CA, USA) and a NanoDrop8000 spectrophotometer (ThermoFisher Scientific, Waltham, MA,
USA). The samples were genotyped using the GeneSeek® GGP Porcine HD Genomic Pro-
filer v1 (Illumina Inc., San Diego, CA, USA), which includes 68,516 SNPs evenly distributed
genes with an average spacing of 25 kb. Genotype quality control and data filtering were
performed using PLINK 1.9. After excluding SNPs with a missing sample frequency of >2%,
a Hardy–Weinberg equilibrium (HWE) p-value < 1 × 10−7, rel-cutoff 0.75, and LD pruned
(50 5 0.2) 43,118 SNPs for Landrace pigs and 42,256 SNPs for Duroc pigs were retained for
further analysis.
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2.2. Data Processing

To study population structure, we performed a singular value decomposition (SVD)
decomposition of the GRM using the SVD function in R [12,13] (Figure S1). To determine
selection signatures we used smoothing FST statistics based on the proposed model with
pure drift [14]. Individual SNP FST values were grouped into genomic windows (con-
tiguous regions) to determine smoothed FST values that could identify genomic regions
with high FST values. FST was performed by comparing pigs L_I vs. L_II and D_I vs.
D_II. SNP regions with smoothed FST values above the 99th quantile were identified.
Further, the gene and QTL content of each region was analyzed in the Ensembl genome
browser (Sscrofa 11.1) (https://www.ensembl.org/index.html) (assessed on 28 May 2021).
For every identified gene, we performed the PANTHER (http://www.pantherdb.org/)
(assessed on 28 May 2021). enrichment analysis using the Fisher’s exact false detection
rate adjustment (FDR) test. Moreover, we conducted a manual literature search for data on
their associations with any traits in humans and animals.

3. Results

Using the smoothing FST method in pigs L_I vs. L_II, we found genome regions with
strong outliers, which were comprised of 38 SNPs (Table S1 in Supplementary Materials).
These regions overlapped with QTLs1 (n = 147), which represent traits related with health
traits (109 QTLs-blood parameters and immune capacity), meat and carcass traits (15 QTLs-
anatomy, fatness, meat color and texture), reproductive traits (14 QTLs-litter traits and
reproductive organs), exterior traits (7 QTLs-behavioral, defects, conformation, and coat
characteristics) and production traits (2 QTLs-bodyweight and days to 100 kg) (Table S2 in
Supplementary Materials). In these areas, 17 genes were identified (Table 1).

Table 1. Identified genes in L_I vs. L_II.

Symbol Full Name SSC Location

SASH1 SAM and SH3 domain containing 1 1 17306364..17663117
NAV2 Neuron navigator 2 2 39263939..40083539

DTWD2 DTW domain containing 2 2 122680254..122937002
SIL1 SIL1 nucleotide exchange factor 2 140884170..141118201

A2ML1 Alpha-2-macroglobulin like 1 5 62603260..62648170
HS6ST3 Heparan sulfate 6-O-sulfotransferase 3 11 65516180..66193410
MBNL2 muscle blind-like splicing regulator 2 11 66481923..66641653

MSI2 Musashi RNA binding protein 2 12 33537163..33974845
ROBO2 Roundabout guidance receptor 2 13 177365712..179040027
RIMBP2 RIMS binding protein 2 14 24394793..24722237

MSI1 Musashi RNA binding protein 1 14 40331371..40356793
SVOP SV2 related protein 14 41829649..41931359
SART3 Spliceosome associated factor 3, U4/U6 recycling protein 14 42223752..42259992
SGSM1 Small G protein signaling modulator 1 14 42882101..42974755
CDH23 Cadherin related 23 14 74267547..74734623

PID1 Phosphotyrosine interaction domain containing 1 15 130080821..130215548
DNER Delta/notch-like EGF repeat containing 15 130414159..130754043

On the basis of the enrichment analysis, we identified two main pathways. The first
was the cadherin signaling pathway (p-value = 8.95 × 10−2), which is involved in many bio-
logical processes such as development, neurogenesis, cell adhesion, and inflammation. The
second was the Wnt signaling pathway (p-value = 1.88 × 10−1), which is one of the intra-
cellular signaling pathways for animals that regulates embryogenesis, cell differentiation,
and the development of malignant tumors.

In total, 32 SNPs were identified in the genome region with strong outliers in D_I vs.
D_II pigs (Table S3 in Supplementary Materials). These areas overlapped with 49 QTLs.
Similar to Landrace, we distinguished QTLs for meat and carcass trait: 32 QTLs, 21 of
which were associated with fatness (intramuscular fat content); reproductive traits (7 QTLs-

https://www.ensembl.org/index.html
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litter traits and reproductive organs), Health traits (5 QTLs-blood parameters and disease
susceptibility), production traits (3 QTLs-growth and feed intake), and exterior traits
(2 QTLs-conformation) (Table S4 in Supplementary Materials). In these regions, we identi-
fied 14 genes (Table 2).

Table 2. Identified genes in D_I vs. D_II.

Symbol Full Name SSC Location

RBFOX1 RNA binding fox-1 homolog 1 3 34938703..37209772
A2ML1 Alpha-2-macroglobulin like 1 5 62603260..62648170
NUMB NUMB endocytic adaptor protein 7 96624270..96798690
KCNK2 Potassium two pore domain channel subfamily K member 2 9 128429232..128659662

DTL Denticleless E3 ubiquitin protein ligase homolog 9 131225840..131275426
FLT1 FMs-related receptor tyrosine kinase 1 11 5620698..5797095
MSI2 Musashi RNA binding protein 2 12 33537163..33974845

ZNF385D Zinc finger protein 385D 13 8234734..9214628
SCN10A Sodium voltage-gated channel alpha subunit 10 13 23481537..23570454
SCN11A Sodium voltage-gated channel alpha subunit 11 13 23602378..23692281
WDR48 WD repeat domain 48 13 23735566..23786312
TTC21A Tetratricopeptide repeat domain 21A 13 23797518..23830334
ROBO2 Roundabout guidance receptor 2 13 177365712..179040027
MYO10 Myosin X 16 5907111..6145485

(SSC–Sus scrofa chromosome).

On the basis of the enrichment analysis, two pathways were identified. The first was
the notch signaling pathway (NUMB) (p-value = 2.55 × 10−2), which provides local inter-
cellular communication and coordinates the signaling cascade. Moreover, it plays a certain
role in embryogenesis and somitogenesis. The second was the nicotinic acetylcholine
receptor signaling pathway (p-value = 5.81 × 10−2), which participates in two main types
of neurotransmission: synaptic (e.g., neurotransmitter release) and paracrine transmission.

Overall, 31 genes were identified in the genome region with strong outliers (17 genes
in Landrace pigs and 14 genes in Duroc pigs). The A2ML1 (SSC5), ROBO2 (SSC13), and
MSI1 (SSC14) genes manifested in both the Landrace and Duroc groups.

4. Discussion

Capped hock does not affect the welfare of pigs, but it does damage farming in terms
of the sales of pedigree animals. The emergence and spread of capped hock is associated
with changes in keeping technology, specifically with the type of floors [2]. There is little
data that investigates the prevalence of capped hock in pig farms, but the available data
proves that it does not exceed 20% [1,6,15].

Here, we conducted pilot studies to identify genomic loci and candidate genes that
might be linked to the capped hock. The identified regions overlapped with QTLs loci,
which is related with meat and carcass traits. Landrace pigs exhibited the most intra-
muscular fat content in this category. Intramuscular fat content is associated with higher
nutritional qualities of pork, and therefore this trait is relevant for selection [16]. One of
the factors that influences lipid accumulation and fatty acid composition is adipogenetic
capacity [17]. In general, adipose tissue plays a key role in various metabolic processes and
affects food intake, inflammatory response, and the meat and reproductive performance in
pigs [18,19]. Therefore, lipid and fatty acid composition have a direct or indirect relation-
ship with capped hock. Our results show that the identified regions also overlapped with
QTLs responsible for health traits and mainly blood parameters. This may indicate that
a predisposition to capped hock can be realized through genetic variants associated with
hematological signs (concentration and content of corpuscular hemoglobin, platelet count),
liver function (bilirubin concentration), kidneys (serum urea level), and susceptibility to
the PRRS virus.
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Among the identified genes, A2ML1 (SSC5), which encodes the protein of the alpha-
macroglobulin superfamily, was identified in Landrace and Duroc pigs. The protein
represents an N-glycosylated monomeric protein that behaves as an inhibitor of several
proteases. These proteins display a unique trapping inhibition mechanism. Mutations
in the A2ML1 gene cause the Noonan-like syndrome with a different phenotype ranging
from severe (leading to intrauterine fetal death) to mild [20], as well as some cases of otitis
media [21]

ROBO2 (SSC13) was also identified in the two groups. The ROBO2 gene encodes
a transmembrane receptor and is a member of the immunoglobulin superfamily [22].
Four Robo homologs have been identified in mammals: Robo1 (Dutt1), Robo2, Robo3
(Rig1), and Robo4 (magic roundabout). ROBO receptor expression is crucial for axon
control, cell migration, and SLIT/ROBO signaling [23]. The SLIT/ROBO complex is
involved in regulating the central nervous system and is involved in lung, kidney, and
heart development [24–26]. In addition, the SLIT/ROBO signals affect the respiratory,
reproductive, immune, and circulatory systems [27]. Several studies have shown that
ROBO2 gene variants are associated with immunity traits in chickens [27]. Whole-genome
association studies of hematological and clinical/biochemical blood traits in large white
pigs have identified a number of genes, one of which was ROBO2. It therein showed an
association with hemoglobin [28]. Overall, based on our functional characterization and
literature data, we determined that genetic variants of the ROBO2 gene may be associated
with the capped hock phenotype in pigs.

The MSI1 (SSC14) and MSI2 (SSC12) genes are extremely interesting. The MSI2
gene is found both in Landrace and Duroc pigs, and the MSI1 gene is found only in
Landrace pigs. These genes belong to a unique family of RNA-binding proteins (Musashi
family) and are involved in RNA metabolism [29]. In addition, proteins of the Musashi
family are considered to perform important functions in the nervous system, as well as
hematopoietic systems and systems in the gastrointestinal tract (e.g., neural, hematopoietic,
and gastrointestinal) in various species [30–32]. MSI1 functions as a regulator to maintain
stem cell condition, differentiation, and tumorigenesis [33]. Excessive expression of MSI1
leads to cell proliferation and apoptosis [34]. In addition, MSI1 is associated with many
malignant neoplasms in humans [35]. Many studies have recently sought to determine the
molecular basis of MSI2 activity and its physiological manifestations. According to Bennett
et al. [32], MSI2 is a regulator of keratinocyte migration and epithelial growth. It is also
involved in regulating focal adhesion and apoptosis.

Dysregulation of adhesion molecules often leads to various diseases, including inflam-
mation [36,37]. Cadherins play an important role in regulating adhesion because they are
calcium-dependent glycoproteins. Our studies identified the CDH23 gene (cadherin 23)
and the cadherin signaling pathway in Landrace pigs. In addition to the formation of
strong intercellular contacts, cadherins initiate various intracellular signaling cascades and
may be associated with tumor progression and inflammatory arthritis in humans [38].

Moreover, MSI showed transducing MSI/NUMB/Notch signals (Notch signaling
pathway). Our studies also identified the NUMB gene (NUMB endocytic adapter protein,
SSC7) and the Notch signaling pathway in Duroc pigs. Notch signaling is evolutionarily
conservative and is critical during the development and homeostasis of mature tissues by
regulating cell proliferation, differentiation, and cell apoptosis. In addition, the interaction
of MSI/NUMB/Notch is considered to be associated with many malignant neoplasms in
humans [39].

The research results showed 70 SNPs associated with the capped hock in Landrace
(38 SNPs) and Duroc (32 SNPs), as well as 31 genes involved in various physiological
processes in the body, including those related with inflammation, the formation of various
neoplasms, and tumors. However, further research is needed to confirm the obtained
results, especially research that examines other breeds and populations. The use of various
methods, including the genome-wide association study, will contribute to the identification
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of genomic regions and candidate genes associated with capped hock, which will thus
promote the production of highly productive pigs free from various defects.

5. Conclusions

Here, pilot studies aimed at searching for genomic loci and candidate genes linked to
the capped hock in Landrace and Duroc pigs were carried out. The identified genes are
involved in various physiological processes in the organism. However, it is interesting
to note that the identified regions overlap with QTLs related with health traits (blood
parameters), as well as in meat and carcass traits (Fatness). This may indicate that the
predisposition to the capped hock can be realized through genetic variants related with
composition of lipids and fatty acids, as well as in hematological traits and susceptibility
to disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11060510/s1, Table S1: SNPs with the most significant signals in L_I vs. L_II, Table S2:
QTLs, determined in L_I vs. L_II, Table S3: SNPs with the most significant signals in D_I vs. D_II,
Table S4: QTLs, determined in D_I vs. D_II.
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