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Abstract: The increasing dynamic functions of post-translational modifications (PTMs) within protein
molecules present outstanding challenges for plant biology even at this present day. Protein PTMs
are among the first and fastest plant responses to changes in the environment, indicating that the
mechanisms and dynamics of PTMs are an essential area of plant biology. Besides being key players
in signaling, PTMs play vital roles in gene expression, gene, and protein localization, protein stability
and interactions, as well as enzyme kinetics. In this review, we take a broader but concise approach
to capture the current state of events in the field of plant PTMs. We discuss protein modifications
including citrullination, glycosylation, phosphorylation, oxidation and disulfide bridges, N-terminal,
SUMOylation, and ubiquitination. Further, we outline the complexity of studying PTMs in relation
to compartmentalization and function. We conclude by challenging the proteomics community to
engage in holistic approaches towards identification and characterizing multiple PTMs on the same
protein, their interaction, and mechanism of regulation to bring a deeper understanding of protein
function and regulation in plants.

Keywords: plant post-translational modifications; phosphorylation; N-glycosylation; methionine
oxidation; N-terminal acetylation; SUMOylation; ubiquitination

1. Introduction

In their native environment, the growth and survival of plants are often threatened by
biotic stress including plant pathogens such as bacteria, fungi, and viruses. In addition,
plants are constantly subjected to abiotic environmental stresses such as drought, heat,
and salinity that are becoming more prevalent with the increasing global warming. Plant
resistance to biotic stress, plant acclimation, and tolerance to abiotic stresses have been
associated with significant changes in the post-translational modifications (PTMs) of spe-
cific proteins. PTMs are among the earliest and most rapid plant responses to changes
in the environment and trigger downstream molecular and cellular responses including
fundamental plant growth, development, and immunity in an appropriate and timely
manner [1]. This makes the mechanisms and dynamics of PTMs an essential component
for maintaining the housekeeping functions of the cells and a crucial niche of plant biol-
ogy. PTMs involve the addition of functional groups or small proteins to specific amino
acids within a protein and examples of such PTMs in plants include phosphorylation,
acetylation, methionine oxidation, methylation, glycosylation, ubiquitination, lipidation,
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and SUMOylation [2]. PTMs have been noted as regulating protein function, solubility,
conformation, subcellular localization, interactions, and protein activity and stability to
induce or attenuate specific plant responses. PTMs also enhance signaling events, protein
degradation, and consequently play a vital role in cell growth [3,4]. Various recent studies
demonstrate how plants utilize PTMs to promote the relay of signals upon biotic stress.
Plant fungal and bacterial pathogens utilize these PTMs to facilitate development, host
infection, and stress responses (reviewed in [5]). These discoveries are key to investigating
the primary mechanisms of infection of plant pathogens and subsequently novel strategies
for plant immunity [1,5]. It is also important to note that differential proteomics and PTMs
studies complement each other. For example, previous studies have observed that some
proteins do not change when plants are exposed to various biotic or abiotic stress conditions
but at the PTM level differential changes were noted. These studies provide an important
element in understanding the sequence of events during signal transduction (e.g., [3]). At
the level of post-transcriptional gene regulation, it has been reported that PTMs play a
vital role in the assembly and disassembly of stress granules, which are supra-complex
cytoplasmic foci (reviewed in [6]).

Overall, various PTMs have been reported in plants making it too complex to review
all possible protein modifications. However, it is worth noting that PTMs dictate protein
function to be realized beyond that of its structure as affirmed by the primary amino
acid sequence to regulate numerous characteristics of protein function. Therefore, PTMs
are notably important to investigate. This mini-review will focus on phosphorylation,
citrullination, glycosylation, redox modification, acetylation, SUMOylation, and ubiquitina-
tion. Other PTMs such as N-myristoylation, S-acylation, S-nitrosylation, sulphenylation
modification, which have been reported to have roles in plant immunity, have been de-
scribed elsewhere [1,7,8].

2. Phosphorylation: Regulation of Plant Signalling Processes

Phosphorylation of proteins within living systems is a regulatory facet that often
coincides with the alteration of the biological activity of proteins, their cellular localization,
stability, and interacting partners. Phosphorylation alters various aspects of proteins, post-
translationally, and its role in protein-mediated signaling has been well elucidated. The
most widely understood form of protein phosphorylation often involves the attachment
of a phosphate moiety on amino acids that have a hydroxyl group in their side chains
(serine, threonine, or tyrosine residues). Proteins that mediate phosphorylation are known
as kinases and their classification depends on the type of amino acid residues which they
phosphorylate. A kinase that only phosphorylates specific serine and threonine residues
within a protein is classified as a serine/threonine kinase, whilst the other class is known
as tyrosine kinase. However, there is a small class of less studied kinases that are capable
of phosphorylating proteins at histidine residues [9]. These histidine kinases have been
described in plants and bacteria. In plants, histidine kinases are largely thought to be
involved in a two-component signaling pathway constituting plant hormone and stress
responses. The removal of a phosphate moiety on proteins is mediated by phosphatases.
Consequently, due to the reversible nature of phosphorylation, this form of PTM acts as a
regulatory switch in protein-mediated signaling, and hence, it is widely known as phos-
phoregulation. Several methodologies and experimental approaches have been developed
over the years to study phosphorylation in plants. These include fluorescence microscopy,
phosphomimetic, phosphopeptide enrichment, transcriptomics, proteomics, metabolomics,
mass spectrometry, and to a lesser extent, homology-guided bioinformatics.

In plants, the phosphorylation of several proteins has been shown to alter their biolog-
ical activity. For instance, the role of phosphorylation in regulating the catalytic activity
of the phytosulfokine responsive protein, Arabidopsis thaliana phytosulfokine receptor 1
(AtPSKR1), furnishes a good example besides some of the well documented MAPK sig-
naling pathways (for review e.g., [10,11]). Using in vitro phosphomimetic studies, the
phosphorylation status of AtPSKR1 has been shown to regulate its activity [12,13]. Phos-
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phorylation of AtPSKR1 at the juxtamembrane region of the cytoplasmic domain (S686,
S696, and S698) enhanced its kinase activity, whilst its nucleotide cyclase activity was sup-
pressed by phosphorylation ‘off’ mutants [12]. Coincidentally, detailed studies of the plant
hormone receptor, BRI1 have also shown that phosphorylation of its juxtamembrane region
promotes its kinase activity [14]. However, in PSKR1, phosphomimetic studies of regions
a bit more distal from the juxtamembrane region, Y888 [12]; and T998 [13] revealed that
phosphorylation shuts down the peptide receptor kinase activity in vitro. The observed
differential effect of phosphorylation on the phytosulfokine receptor points to a crucial
role played by phosphorylation in phytosulfokine signaling and may be necessary for the
integration of additional signaling pathways. Phytosulfokine signaling exerts a wide array
of biological effects from promoting cell growth [15], to the formation and maintenance of
root apical meristems [16] and pollen tube maturation [17]. In planta studies examining the
phosphomimetic mutants, S696D/S698D in the juxtamembrane region revealed that this
mutant resulted in an impairment of growth-promoting activity in the shoot but not the
root [13]. This observation underscores the role of phosphorylation at the juxtamembrane
of PSKR1 in promoting shoot development.

Due to the sessile nature of plants, the effect of phosphorylation on protein location
and stability helps to promote tolerance or adaptation to environmental changes or biotic
stress. For instance, phosphorylation has been observed to be synchronized with the change
in the subcellular localization of certain proteins in response to diverse stimuli such as
mechanical or hypo-osmotic stress in Arabidopsis. For example, phosphorylation elicits a
change in the subcellular localization of a basic leucine zipper transcription factor VIRE2-
interacting protein 1 (VIP1) from the cytosol to the nucleus [18]. Takeo and Ito observed
that the dephosphorylation of VIP1 is induced by mechanical and hypo-osmotic stresses
and that its subcellular localization is dually regulated by its phosphorylation status and its
binding to a class of proteins known as 14-3-3 proteins. Furthermore, it was observed that
phosphorylated VIP1 was retained in the cytoplasm presumably by binding with 14-3-3 pro-
teins, and dephosphorylated VIP1 that cannot bind with 14-3-3 proteins was localized in the
nucleus. Elsewhere, using fluorescence microscopy, phosphorylation has also been shown
to influence the subcellular localization of the tobacco VIP1 homolog, repression of shoot
growth (RSG) in a 14-3-3 dependent manner [19]. RSG is a transcription factor that controls
the transcription of gibberellin biosynthetic genes [20]. A phosphorylated serine residue
at a 14-3-3 binding motif of RSG has been demonstrated to be crucial in protein-protein
interactions with 14-3-3 proteins that sequester RSG in the cytoplasm [21,22]. Collectively,
these studies demonstrate how phosphorylation coincides with the cytoplasmic localiza-
tion of these 14-3-3 binding proteins and how dephosphorylation is associated with their
nuclear localization. 14-3-3 proteins are involved in the mediation of a wide array of cellular
events, ranging from metabolism to transport, growth, development, and stress response
(reviewed in [23]). 14-3-3 proteins are a family of phospho-binding proteins, that regulate a
myriad of signaling pathways and exert their biological influence through protein-protein
interactions [23,24]. 14-3-3 proteins specifically bind to a number of signaling proteins
at specific phosphorylated binding motifs [25]. Phosphorylation of specific amino acid
residues at 14-3-3 binding motifs underscores the pivotal role that phosphorylation plays
in 14-3-3 mediated signaling.

Protein phosphorylation also plays a crucial role in the signaling and perception of
pathogen-associated molecular patterns (PAMPs) in anti-bacterial plant immunity. This
also contributes to the survival of the plant in its sessile state. Pathogen attack is usu-
ally followed by a burst in the production of reactive oxygen species (ROS) which serve
as antimicrobial agents. In plants, an NADPH oxidase, the respiratory burst oxidase
homolog D (RBOHD) is responsible for producing ROS upon its phosphorylation by a
plasma-membrane-associated kinase, botrytis-induced kinase1 (BIK1) [26,27]. Upon PAMP
perception, BIK1 phosphorylates RBOHD in a calcium-dependent manner which is then
followed by a burst in the production of ROS by RBOHD. Disruption of RBOHD phospho-
rylation completely abrogates RBOHD function in immunity [26]. Additionally, the role of
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phosphorylation in plant immunity is also demonstrated by the autophosphorylation of
the Arabidopsis lectin receptor-like kinase, lipo-oligosaccharide-specific reduced elicitation
(LORE), at a specific tyrosine residue (Y600), upon PAMP perception [28]. In this immune
response, a specific bacterial fatty acid metabolite 3-OH-C10:0 activates LORE via its phos-
phorylation on Y600. Activated LORE then phosphorylates downstream receptor-like
cytoplasmic kinases PBL34/PBL35/PBL36 to initiate a relay in the activation of immune re-
sponses. As a means of interfering with a robust immune response, a bacterial phosphatase,
HopAO1 interacts with and dephosphorylates tyrosine-phosphorylated Y600 of LORE,
leading to a failed immune response. In a more recent study, the phosphorylation of SUP-
PRESSOR OF G2 ALLELE OF skp1 (SGT1) an essential regulator that controls the activation
of plant intracellular immune receptors, was shown to contribute to resistance against the
plant pathogen Ralstonia solanacearum [29]. Furthermore, a recent study based on a phospho-
proteomics platform highlighted the role of phosphorylation in immune response in plants,
specifically systemic acquired resistance. In this study, a marked increase in the number of
differentially phosphorylated proteins in systemic leaves inoculated with the pathogenic
bacteria Pseudomonas syringae pv. Maculicola was observed [30]. The observed differentially
phosphorylated proteins included several transcription factors, kinases, and a variety of
defense response-related proteins. This implies that these proteins may be mechanistically
involved in systemic acquired resistance through phosphorylation dynamics.

Some heavy metals accumulate in plants to toxic levels that are detrimental to plant
growth and development. Since plants are sessile, they need inbuilt mechanisms to protect
themselves from the toxic effects of heavy metal poisoning. Cadmium (Cd2+) is one of the
elements that have a propensity to accumulate to toxic levels in plants, especially cereals
like rice [31,32]. The response of rice to Cd2+ accumulation has been reported to involve
phosphorylation mediated events in the cell. In rice, 482 proteins became differentially
phosphorylated on exposure to 0.01 mmol/L of Cd2+ stress [33]. It was observed that the
number of phosphorylated proteins increased six-fold when the Cd2+ concentration was in-
creased to 0.1 mmol/L. A considerable number of identified phosphoproteins are involved
in a myriad of cellular processes including signaling, stress tolerance, the neutralization of
ROS, and transcription factors. Apart from rice, the role of protein phosphorylation has
been investigated in other plants. For instance, in a separate study using phosphopep-
tide enrichment in poplar plants, it was demonstrated that there was a marked increase
in phosphosites and phosphorylated proteins upon Cd2+ treatment as compared to the
control [34]. Also, a recent study in apple has shown that Cd2+ induced phosphorylation of
a malate transporter leads to a reduction in Cd2+ uptake in roots [35]. Taken together, these
observations may suggest that phosphorylation may regulate heavy metal stress responses
in plants.

Overall, these studies collectively underscore the indispensable role that phosphory-
lation plays in plant signaling in responses to stresses such as biotic (immune responses)
and abiotic stresses and the general function of specific proteins or enzymes in different
plant species.

3. Function of N-Glycosylation in Plants

Protein asparagine-linked glycosylation (N-glycosylation; PNG) is one of the most
complex and crucial post-translation modifications, which is common for secretory pro-
teins in eukaryotes [36]. In glycosylation, carbohydrates are attached to proteins either
through linkage to the amide group of asparagine residues or the hydroxyl group of serine,
threonine, hydroxylysine, and hydroxyproline residues. The former is termed N-glycans
while the latter is called O-glycans. The third type of glycosylation that exists is termed
C-glycosylations, which occurs when the point of glycosylation is the carboxyl group of the
tryptophan residue (for review see [37]. N-linked glycans are widely observed to be crucial
for the proper folding of proteins providing blueprints for specific command of protein
folding and discrimination signals for quality control systems [38].
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Plant complex N-glycans are structurally distinct from their animal counterparts
because of the set of glycosyltransferases unique to plants. However, evolutionary origins
of N-glycosylation occurring in the endoplasmic reticulum (ER) are highly conserved
among eukaryotic lineages [39]. Glycosyltransferases catalyze the formation of PNG while
the breakdown of glycan linkages is achieved by glycosidases. These catalytic activities
occur firstly in the ER and then in the Golgi apparatus. Severe basal under glycosylation
in the endoplasmic reticulum (ER) elicit misfolding of newly synthesized proteins, which
induces the ER protein quality control and the unfolded protein response (UPR) pathways.
The former promotes the degradation of misfolded proteins to clear the ER while the
latter, UPR pathways, promote a higher capacity of proper protein folding. Mechanistic
reactions in the ER are mainly conserved in yeasts, mammals, and plants. In general,
the assembly mechanism of the core N-glycan precursor is highly conserved in the ER.
Nevertheless, further modifications occurring in the Golgi apparatus vary enormously in
various eukaryotic lineages, depending on the richness of the genetic toolbox of enzymes
that are used to generate different types of N-glycans [40].

Just like in lower unicellular eukaryotes, in plants N-glycans play a role in protein
folding and quality control within the lumen of the endoplasmic reticulum [41]. In plants,
monoglucosylated N-glycans in the ER associate with the lectins calreticulin or calnexin.
Further, calreticulin 3 functions as a potential component of ER quality control and is
indispensable for the abundance of functional innate immunity pattern recognition receptor
EFR [42,43]. In addition, calreticulin 3 has been shown to be involved in the retention of
a misfolded or defective variant of the brassinosteroid receptor BRI1 in the ER [42,43].
Besides, PNG has been well established as playing multiple roles in regulating the stress
tolerance of plants. It is important for the transport of the secretory proteins that are
involved in plant adaptive responses to environmental stresses, such as plant immunity [44],
temperature tolerance [45], and salt sensitivity [46,47]. Of late, the effects and mechanism
of N-glycosylation on photosynthesis have been elucidated [48]. In this study, a decline
in photosynthetic capacity and dry mass were detected in alg3-3 and cgl1-1, two typical
mutants in the N-glycosylation process. In the latter, the maximal photochemical efficiency
of PSII decreased significantly. The authors concluded that N-glycosylation plays a crucial
role in maintaining photosynthesis. In addition, it is required to maintain the stability of
a chloroplast-located protein alpha-type carbonic anhydrase, which is closely associated
with photosynthesis.

In Arabidopsis thaliana, similar to other eukaryotes, core processes of PTMs including
glycosylation are highly evolutionarily conserved. In Arabidopsis, more than a thousand
proteins containing various N-glycosylation sites have been detected via the proteomics
approach [49]. Using RNA interference, for example, silencing of α-mannosidase and
β-D-N-acetylhexosaminidase, two N-glycoprotein modifying enzymes found in Capsicum
annuum fruits, led to delayed fruit deterioration until seven days post-harvest. This pro-
vided fruits with twice as much firmness as compared to the control [50]. Additionally,
other studies elucidated the relationship between fruit development and ripening, and
glycosylation and/or glycosylation enzyme families. For example, in Fragaria x ananassa,
during fruit ripening transcripts of genes coding for β-D-N-acetylhexosaminidase were
observed to increase and inhibit its enzymatic activity with alginate oligosaccharides [51].
This was observed to promote an extension of the shelf life of fruits [51].

N-glycoproteomics has been used as a powerful tool to analyze N-glycoproteins
and N-glycosites. In tomato (Solanum lycopersicum), the glycoproteome of green and
ripe fruit stages showed differential regulation of the glycosites and glycoproteins. For
instance, 252 N-glycosites and 191 N-glycoproteins were differentially regulated between
the two stages [46]. Furthermore, a decrease in N-glycosites was observed in tomato fruits
under salt stress conditions. This provided evidence indicating that N-glycosylations are
reprogrammed under stress conditions [46].

Moreover, glycosylation also plays an important function in determining the biological
activity status of therapeutic proteins. Consequently, protein glycosylation is one of the



Life 2022, 12, 324 6 of 21

main emphases in biopharmaceutical research, since it is well known that the attachment
of sugar residues efficiently affects protein homogeneity and functionality [36,52]. Luck-
ily, major developments have been made of late including nuclease-based gene editing,
quantitative transcriptomics, metabolomics, and proteomics that are now enabling high
throughput approaches to explore plant protein and lipid glycosylation by characterizing
and targeting enzymes involved in glycosylation processes. Despite growing knowledge
of N-glycan metabolism, there is still very little known about the biological function of
discrete N-glycan structures in plants. Thus, there are many more remaining fundamental
questions to be addressed, some of which are highlighted in a recent review [53].

4. Redox Regulation, Signaling and Functional Significance in Plants

Plants among other living organisms are subjected to oxidative stress environments
that are characterized by the production of reactive oxygen, sulfur, and nitrogen species.
Although these compounds damage various types of macromolecules they also play im-
portant roles as second messengers. As a result of the reactivity of their thiol groups,
some protein cysteine residues are subject to oxidation by these reactive molecules. The
modification of the cysteine thiol group has gained attention as either a protective or redox
signaling mechanism. Physiologically, reversible redox PTMs have been elucidated and
these include disulfide bonds, sulfenic acids, S-glutathione adducts, S-nitrosothiols, and of
late methionine (Met) oxidation [54,55]. These redox PTMs are primarily regulated by two
oxidoreductase families, thioredoxins and glutaredoxins.

In addition to the structural role some disulfide bonds play, various cellular processes
rely on thiol-dependent mechanisms inducing redox changes. Redox changes influence
catalytic, regulatory, signaling, and protective mechanisms by promoting conformational
changes. These changes affect the biological activity of the modified protein(s), protein–
protein interactions, or subcellular localization [55].

Numerous redox catalytic enzyme families utilize reactive cysteines during the cat-
alytic activity and these include phosphatases, cysteine proteases, antioxidant enzymes such
as glutathione peroxidases, peroxiredoxins, methionine sulfoxide reductases (MSRs), and
various oxidoreductases. Among the well-characterized catalytic enzymes are the MSRs
that reduce two S- and R-diastereoisomers of Met sulfoxide, a product of Met oxidation, to
Met. Met oxidation is increasingly recognized as a mechanism by which proteins perceive
oxidative stress and function in redox signaling. Met oxidation causes the conversion of the
hydrophobic Met into the more hydrophilic Met sulfoxide changing the physicochemical
properties of Met. This change leads to an increase of protein surface hydrophilicity upon
Met oxidation triggering accessibility of otherwise inaccessible buried regions [28]. In the
chloroplast, oxidation-reduction protein modifications including disulfide-thiol exchange
of Cys residues regulated via thioredoxins have been extensively reviewed (e.g., [56–59]).
For instance, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been
shown to determine the efficiency of carbon assimilation, reported first in [60]. Besides,
since the redox-active thiols in Cys residues can be modified by the covalent binding of
nitric oxide leading to the formation of S-nitrosothiol, it was proposed that S-nitrosylation
of Cys residues adjacent to the Rubisco active site in Arabidopsis might regulate the activity
of the enzyme and degradation of the protein (reviewed in [61]). Furthermore, enzymatic
activity assays have shown that Rubisco inactivation in response to S-nitrosylation is possi-
bly the main cause of reduction in carbon fixation upon various stress conditions [61–64]. It
is also worth noting that redox modification plays an important role in the redox activation
by thioredoxin of starch metabolism enzymes such as glucan water dikinase, starch excess4,
β-amylase, ADP-glucose pyrophosphorylase, and ADP-Glc transporter. In addition, redox
modification of starch biosynthesis enzymes is influenced by light and other environmental
stimuli (reviewed in [65,66]).

Redox regulatory function can be traced back to well-characterized examples of how
changes in the protein oligomeric state can regulate localization. This is represented by the
pathogen-responsive non-expresser of pathogenesis-related genes 1 (NPR1) protein. Prior to
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pathogen infection, NPR1 is localized in the cytosol and characterized by covalent disulfide-
bridged oligomers. Upon infection, NPR1 is reduced to monomeric and translocated into
the nucleus where it activates plant immune responses [67]. It was further proposed that
S-nitrosylation of NPR1 is involved in this oligomerization change. However, this change is
dependent on the physiological state of the cell, that is S-nitrosylation could either promote
cytosolic retention [68] or nuclear translocation [69].

Plants have evolved an adaptation to ROS toxicity, and utilize ROS as signaling
messengers that activate defense responses. Cysteine residues in proteins are one of the
most sensitive targets for ROS-mediated PTMs. Consequently, they have become key
residues for ROS signaling research. As such, the sulfenic acid (-SOH) form, which contains
a redox-active cysteine has been considered as part of ROS-sensing pathways that lead to
further modifications which affect protein structure and function [70]. In addition, cysteine-
based signaling mechanisms in response to peroxides have been reported. For instance,
the DNA binding activity of numerous transcription factors such as OxyR, OhrR, AP1, or
CrtJ is regulated by the primary formation of a sulfenic acid which is often transformed
into a disulfide bond [71,72]. Further, oxidation of Met residues in signaling molecules
has been associated with a role in stress responses. MSRs have been shown to achieve
key signaling functions through interactions with Ca2+- and phosphorylation-dependent
cascades. These activities enhance the transmission of reactive oxygen species-related
information in transduction pathways [73].

The rapidly evolving field of redox proteomics affords evidence supporting the notion
that oxidation of Met residues may have a tremendous impact on protein activity via
structural modification, regulation of biochemical pathways, and cellular function including
in response to changing environmental conditions [54,73–77]. As such, the increasing
evidence at both structural and biochemical levels suggests that post-translational Met
oxidation of proteins is a vital process that is not just a result of cellular damage but
provides the cell with information on its oxidative status. Accumulation of Met oxidized
proteins has been observed in plants under low-temperature conditions suggesting that
plant MSR confers increased tolerance to freezing [78]. Using diverse modified lines of
plant models and crop species, MSRs have been shown to play protective roles upon
abiotic and biotic stress, and in the control of the aging process as depicted in seeds
subjected to adverse aging conditions (for review see [73]). In some cases, Met oxidation
does not seem to influence protein function. In such cases, it has been hypothesized that
Met residues could function as ultimate endogenous antioxidants in proteins, rendering
effective scavenging of oxidants before they can attack residues that are vital for structure
or function [79]. Although specific redox-dependent signaling pathways are far from
being understood, there is a consensus that reactive oxygen, nitrogen, and sulfur species
are among the key players in the acclimation and stress tolerance mechanisms of plants.
Therefore, unearthing PTM patterns under different stress conditions and establishing
the functional implications may provide insight(s) into the underlying mechanisms by
which plants respond to adverse conditions. Detailed molecular responses of legumes
to abiotic stress focusing on PTMs and redox signaling including Met sulfoxidation and
S-nitrosylation have been recently reviewed [80].

Proteins carrying oxidized Met residues are also potential MSR substrates. However,
limited reliable methods to detect Met oxidation such as antibodies specific to Met oxidation
could enable immunological-based analyses to hamper advances in the field. Moreover,
in plants, the use of antibodies has only been attempted a few times. In one study, the
Caspicium annuum methionine sulfoxide reductase B2 (CaMSRB2) gene was shown to con-
fer drought tolerance to rice. In this study, immunoblotting using a methionine sulfoxide
antibody combined with tandem mass spectrometry and functional studies suggested
that porphobilinogen deaminase, which is involved in chlorophyll synthesis, is a putative
target of CaMSRB2. The immunoprecipitation also led to the identification of two other
proteins, namely dihydrodipicolinate reductase I and ferredoxin-NADP reductase [81]. To
overcome the problem associated with the low specificity of Met oxidation antibodies,
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a redox proteomics strategy was set up. Tandem mass spectrometry-based proteomics
approaches have been applied including in combination with titanium dioxide and di-
hydroxybenzoic acid enrichment to identify Met oxidized proteins [54]. In this study,
Met oxidized containing peptides were identified from protein extracts of Arabidopsis cell
suspension cultures treated with an analog of 3′,5′-cyclic guanosine monophosphate [54].
A follow-up study showed that this analog can induce phosphorylation cascade events in
a 3′,5′-cyclic guanosine monophosphate-dependent manner including modulation of cell
size through targeted (de)phosphorylation of proteins involved in cell size regulation [3].
Another mass spectrometry-based approach employed cyanogen bromide treatment of
protein extracts prior to trypsin digestion and mass spectrometry identification of peptides
containing oxidized Met residues [82]. An additional mass spectrometry-based approach
combined with fractional diagonal chromatography (COFRADIC) has also been adopted.
This involves HPLC-fractionation of peptides, followed by treating peptides with recom-
binant MSRs that induce a hydrophobic shift in oxidized Met containing peptides; and
finally refractionation and identification of shifted peptides [76]. In this study, a proteome-
wide study of Arabidopsis catalase 2 knock-out plants exposed to oxidative stress identified
catalase 2-dependent protein oxidation events. Further, it was shown that the activity of
glutathione S-transferases, GSTF9 and GSTT23, was significantly reduced upon oxidation.
In all these mass-spectrometry-based approaches Met oxidized peptides were identified
that are components of potential MSR target proteins and potential signaling molecules.

These methods of identification are generally subject to the same limitations. For
example, alkylation, reduction, and labeling performed on cell lysates do not entirely
preclude the possible occurrence of modifications of the cysteine redox state during the
procedure [55]. In addition, the specificity of a given reductant for a given PTM has been
noted as another major drawback as elucidated for S-nitrosothiol [83]. Moreover, protein
abundance is increasing with improved proteomics isolation and purification techniques.
Consequently, identification of PTMs is often increasing and aided with the use of non-gel-
based techniques such as pre-fractionation in combination with enrichment techniques like
biotin affinity for avidin and ICAT-derived gel-free strategies [84,85]. Also, these techniques
assist in decreasing the complexity of the sample. In combination with mass spectrometry,
it has been made possible to determine the site of modification and the extent to which a
given cysteine is modified [70].

Other approaches such as X-ray crystallography, kinetics, and thermodynamics, have
been applied to determine the impact of oxidation of enzymatic activity for example at
elevated H2O2, methionine sulfur oxidation of glutathione transferase decreases its trans-
ferase activity increasing the flexibility of the hydrophobic-site loop, resulting in lower
activities for hydrophobic substrates. It was postulated that to guarantee its transferase
functionality under oxidative stress conditions, it employs a thermodynamic and struc-
tural compensatory mechanism becoming a substrate of methionine sulfoxide reductases,
making it a redox-regulated enzyme [74].

Overall, identification of proteins subject to redox modifications in particular in re-
sponses to oxidative stress is essential for understanding how plants perceive and adjust to
environmental stress factors. Although our understanding of protein oxidation is increasing
tremendously, it is yet to be fully elucidated whether the oxidation of the majority of the
proteins leads to signaling events or damage.

5. Emerging Roles of N-Terminal Acetylation in Plants

N-terminal (Nt)-acetylation is one of the most widespread PTM observed in prokary-
otic and eukaryotic organisms including plants. Despite the belief that about 80% of soluble
human and plant proteins can undergo Nt-acetylation [86–89], the functions of this modifi-
cation remain poorly understood. During Nt-acetylation, acetyl moieties are irreversibly
transferred from acetyl-CoA to the exposed α-amino group of the Nt-residue [90]. This
modification is carried out by protein complexes called Nt-acetyltransferases (NATs), which
consist of at least one catalytic subunit and one facultative auxiliary subunit [90].
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A wide range of NATs has been detected. NATs in turn target a wide range of
substrates [91]. Three main NATs account for the majority of Nt-acetylation events in yeast
and humans by targeting distinct N-termini [90,92]. In plants, NatA to NatE effect at the
cotranslational level while NatF, NatG, and NatH are involved at the post-translational level
and are specifically localized in plastids [93]. While the NatA complex acetylates particular
amino acids that are exposed after Nt-Met excision, targets of NatB and NatC comprise
of Nt-Met residues positioned before acidic or hydrophobic residues, respectively [90,92].
Nomenclature and sequence targets of Nt acetylation are reviewed in [91].

Nt-acetylation is generally described as a destabilizing event that leads to the degrada-
tion of proteins by E3 ligase enzymes [94]. It affects protein behavior, protein-protein, and
protein-membrane interactions, subcellular localization, folding, aggregation, activity, and pro-
tein stability, which are dependent upon the N-end rule pathway of proteolysis [92,93,95,96].
Recently, characterization of the Nt-acetylation of SIGMA FACTOR-BINDING PROTEIN1
(SIB1) revealed that the modification promotes its stability, thus suggesting that protein
turnover is a more complex process than originally thought [97]. Despite the substrate
specificity of NATs, it has been revealed that the role of Nt-acetylation is dependent
on the sequence context of the modification, further implying the complexity of the
process [97]. In addition, it has been suggested that Nt-acetylation plays a role in growth
and development [98].

In plants, Nt-acetylation plays a role in abiotic stress tolerance, immunity, and protein
stability [97]. Linster et al. [99] further showed that NTA specificity is conserved in plants
where it plays an essential role in plant growth and development since T-DNA null mutants
of either NatA subunit were fatal to embryos. Further, a strong drought tolerance to the
NatA-depleted plants was depicted and linked to a change in root morphology and a reduc-
tion in the aperture of stomata, possibly associated with the phytohormone abscisic acid
(ABA)-signaling [97]. Moreover, NatA abundance decreased upon exogenous application
of ABA and consequently, a significant increase in abundance of non-acetylated proteins
was noted [99]. Taken together, these findings suggest that NatA is linked with responses
to environmental cues and specific stress responses.

In Arabidopsis, functional roles of NatB and NatC have been linked to plant growth
and development but to a less dramatic effect than NatA [91,100]. The Arabidopsis NatB
complex has been shown to be involved in developmental processes such as leaf shape
formation and transition from vegetative to generative growth [100]. A transcriptomic
and proteomic characterization of NatB mutants showed that NatB is also implicated
in responses to salt and osmotic stress in Arabidopsis [101]. Comparative total proteome
analyses of natb mutant seedlings revealed the down-regulation of 1-aminocyclopropane-1-
carboxylate oxidase (ACO), which is involved in the last step of ethylene biosynthesis in
natb mutants, thus affecting the overall ethylene content [102]. Results of the same study
showed that NatB-mediated NTA of ACOs plays a role in sustaining ethylene homeostasis
that is necessary to preserve plants’ growth and responses.

Further analyses of acetyltransferases are needed to continue understanding the
role of Nt-acetylation in plants and more particularly their role in regulating stress and
environmental responses. Insights on the relationship between NAT complexes and stress
regulation, particularly drought stress, are required to bring a better understanding of the
mechanisms of modulation stress responses and stress tolerance towards a targeted or
multiscale approach to address its potential application in agriculture.

6. Protein Ubiquitination in Plants

Ubiquitination is one of the most common PTM mechanisms in eukaryotes. Ubiquiti-
nation involves the covalent addition of one (or more) ubiquitin—a small 76 amino acid
protein—to the lysine (K) residue of a target protein. Attachment of several ubiquitins ones
after the other on a K residue of the target protein leads to poly-ubiquitination, which very
often channels the target protein to the 26S proteasome degradation complex [103,104].
Ubiquitination can also result in mono-ubiquitination or multi-monoubiquitination (i.e.,
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several mono-ubiquitinations on different lysines of the substrate) of the target protein,
resulting in a non-proteolytic process. Examples of non-proteolytic processes include a
change in protein activity, location, or interaction with co-regulators [105].

This PTM requires ATP energy and a cascade of enzymatic reactions involving three
different classes of enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating en-
zyme (E2), and the ubiquitin ligase (E3). The specificity of recognition of the target protein
is carried out by E3 ligase, which is largely mediated by cullin ring E3 ligase complexes
in plants (CRLs [106,107]). CRLs are composed by the RING BOX PROTEIN 1 (RBX1)
subunit that interacts with the ubiquitin-conjugating E2 protein, and a scaffold subunit
(Cullin, CUL), which exists in three isoforms (CUL1, CUL3A/B, and CUL4), and finally
the substrate recognition component subunit specific for each CRLs complex. Three CRLs
have been described in plants based on their distinct CUL adaptor and substrate receptors:
(1) CRL1F-box or Skp1-Cullin1-F-box (SCF) complex in which F-box proteins recognize
the targeted protein for ubiquitination (see review [108]), (2) CRL3BTB or Broad complex-
Tramtrack-Bric-a-brac (BTB)-Cul3a/b complexes that use their BTB proteins as substrate
receptor (see review [109]), and (3) CRL4DWD or DDB1-binding/WD40-Cul4 complexes
that directly targeted substrate for ubiquitylation via the DWD proteins (see review [110]).

Many key developmental regulators are known to be regulated by CRLs complexes.
For example, mono-ubiquitination of proteins has been shown to play roles in endocytosis
of iron transporter [111], histone modification during anther development [112], or kinase
regulating plant immunity [113]. In plants, several proteins have been shown to have
multiple K ubiquitinated in vivo. However, further investigations are required to determine
if multiple ubiquitinated K is related to multi-monoubiquitination [114]. Moreover, plenty
of key transcriptional regulators is shown to be poly-ubiquitinated through CRLs complexes
or other E3 ligases [108–110]. Regulation by protein degradation is a common mechanism
allowing normal development of meiosis [115], autophagy [116], response to biotic and
abiotic stress [117,118], seed germination [119], and many more processes.

Interestingly, some components of CRLs are both plant hormone receptors and in-
volved in PTM of key plant hormonal signaling, especially those involved in plant defense.
Coupling hormonal perception with PTM probably induces a fast response mechanism
against pathogens and abiotic stress. Among them is the F-Box protein CORONATINE
INSENSITIVE 1 (COI1), which function as jasmonic acid (JA) receptor. COI1 is a component
of the CRL1COI1 complex, which interacts with JASMONATE ZIM DOMAIN (JAZ) family
proteins in a JA-dependent manner and leads to its degradation by the 26S proteasome [120].
This causes de-repression of several transcription factors such as MYC2 involved in the
activation of JA-mediated responses [117]. However, at some point, the plant needs to
reset JA signaling to avoid harmful runaway responses. A recent study demonstrates that
this repression of MYC2 activity after JA perception is achieved by the CRL3BPM complex,
which is responsible for poly-ubiquitination and thus degradation of MYC2 [121].

Another example is the BTB proteins NONEXPRESSOR OF PATHOGENESIS-RELATED
GENES 3 AND 4 (NPR3/4), which act as a salicylic acid (SA) receptor [122,123]. The
CRL3NPR3/4 complex, after SA perception, mediates poly-ubiquitination and degradation
of the master regulator NPR1 [122]. Recently, a study describes new regulators of NPR1
activity and convincingly shows that the short chains of ubiquitin lead to the active form of
NPR1 while long ubiquitin chains lead to its destruction [124]. To ensure an efficient and
fast response to stresses, NPR1 protein is also subject to multiple PTM leading to subcellular
trafficking, activation, and inhibition of its activity [118]. This demonstrates the occurrence
and importance of crosstalk between ubiquitination and other protein modifications (see
for details [125]).

The activity of some transcription factors relies on their ability to interact with CRLs.
This is the case of LEAFY (LFY), a key transcription factor in flower development [126]. To
ensure petal identity in the floral meristem, LFY interacts with the F-box protein UNUSUAL
FLORAL ORGAN (UFO) and requires the activity of CRL1UFO to promote its function [127].
Interestingly, CRL1UFO is responsible for poly-ubiquitination of LFY suggesting that pro-
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tein degradation is required to promote LFY activity, potentially via a mechanism like
proposed for NPR1. Interestingly, LFY interacts also with the BTB protein NPR5 and NPR6,
also known as BLADE ON PETIOLE (BOP) proteins [128]. LFY requires the activity of
CRL3BOP1/2 to activate some target genes and fully promote its activity. Thus, LFY is a
unique plant case where a transcription factor requires the activity of two distinct CRLs
complexes. However, further experiments are required to understand how mono/multi
or poly-ubiquitination modifies the activity of this peculiar transcription factor. The speci-
ficity mediated by substrate adaptors such as BTB proteins is not necessarily unique to
one target. For instance, the CRL3BOP1/2 complex also targets PHYTOCHROME INTER-
ACTING FACTOR 4 (PIF4) protein for ubiquitination to modulate plant response to light
and temperature [129].

Other E3 ligases not classified as CRLs complexes exist and are important for plant
development [104]. For example, the development of chloroplasts relies on the import of
thousands of proteins from the cytosol, which is controlled by TRANSLOCON AT THE
OUTER ENVELOPE OF CHLOROPLAST (TOC) proteins. The activity and the functionality
of this crucial chloroplast protein import machinery depend on the SP1 E3 ligase, composed
of a RING finger domain that directs the ubiquitination of targets, and an intermembrane
space domain involved in TOC component specificity. Several TOC proteins are then
poly-ubiquitinated and degraded by the CHLORAD proteolytic system [130,131].

The ability of CRL complexes to trigger ubiquitination of a target and a rapid degrada-
tion was exploited to develop several degron-based biosensors in the plant. This strategy
was first developed to map indirectly auxin distribution at a cellular resolution thanks to
the design of the DII-VENUS biosensor, a synthetic protein corresponding to a DII degron
tagged to a YFP fluorescent protein [132]. In response to auxin, DII degron interacts with
CRL1TIR1, mediating its polyubiquitination and rapid degradation. A similar strategy,
based on protein domains targeted to degradation via ubiquitin/26S proteasome was used
to monitor other hormonal distributions such as gibberellic acid or JA (see review [133]).
Recently, new tools have emerged to detect in vivo proteins targeted by CRL complexes,
such as the proximity labeling approach coupled to mass spectrometry [134], which repre-
sents a promising method to decipher new molecular interactions and probably inspire
future biosensors.

7. SUMOylation in Plant Development and Stress Responses

Post-translational modification of proteins by SUMO (Small-Ubiquitin MOdifier)
constitutes an essential regulatory mechanism in plants that belongs to the Ubiquitin family
of protein modifiers (Ubl). Ubls share the β-grasp fold and are conjugated to the target
substrate through three sequential reactions catalyzed by dedicated enzymes [135]. Prior to
entering the conjugation cycle, SUMO undergoes a maturation process that involves the
release of a variable number of residues. This depends on the SUMO isoform to expose
the conserved C-terminal Gly-Gly motif. SUMO maturation is catalyzed by specific SUMO
proteases that are also competent to deconjugate SUMO from the target. This is consistent
with the reversible nature of SUMO conjugation (SUMOylation). SUMO proteases are
cysteine proteases that belong to either the C48 subgroup of the CE superfamily or the C97
subgroup [136]. The C48 subgroup of SUMO proteases is characterized by a catalytic triad
His-Asp-Cys. The C97 subgroup of SUMO proteases possess the catalytic dyad His-Cys
and are known as ULP or DeSI [136]. The first committed step into SUMO conjugation is
catalyzed by the E1-activating enzyme that is composed of the SAE2 large subunit and
the SAE1 small subunit [137]. First, in the presence of ATP, SUMO is adenylated and
transferred to the E1 catalytic cysteine establishing a high-energy thioester bond. In a
second step, recruitment of the E2-conjugating enzyme to the E1 is facilitated by high-
specificity protein-protein interactions that have undergone molecular coevolution. This
coevolution has resulted in biochemical incompatibility among heterologous SUMO E1-E2
from evolutionarily distant species [138–140]. In this step, SUMO is transferred from the E1
to the E2 through a trans-esterification reaction. The E2 loaded with SUMO is competent
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for transferring SUMO to the substrate [141], although this reaction is facilitated by E3
ligases that comprise members of the SIZ1 and MMS21/HPY2 groups [142]. The lysine
residue in the substrate that establishes an isopeptide bond with SUMO C-terminus is
usually located at the consensus site ψKxE/D, where ψ is a hydrophobic amino acid [143].
Substrates can be monoSUMOylated at single or multiple positions, or polySUMOylated,
expanding the versatility of protein regulation by SUMO. PIAL protein ligases catalyze the
formation of polySUMO chains [144], which are recognized by SUMO-targeted ubiquitin
E3 ligases (StUbl) and provide an indirect mechanism for substrate degradation via the
proteasome [145]. In addition to being covalently attached to proteins, SUMO can also
modulate protein function by establishing non-covalent interactions mediated by a SUMO
Interacting Motif (SIM) present in the target [146].

In plants, SUMO regulates multiple developmental processes [147] and has an essen-
tial role during the early stages of seed development [148]. In Arabidopsis, SUMO modulates
hormone signaling such as ABA [149,150], salicylic acid (SA) [151], and auxin [152]. In
addition, SUMO plays a major role in plant responses to abiotic challenges [153] and plant
immunity [154]. Efforts to understand the molecular mechanism that mediates the extensive
biological role of SUMO have focused on uncovering protein substrates through targeted
and non-targeted approaches, and through characterizing the functional diversity of the
SUMOylation machinery components. In Arabidopsis, the four functional SUMO proteo-
forms display distinct biochemical properties and biological functions. While SUMO1 and 2
isoforms are the most efficiently conjugated and capable to form polySUMO chains, SUMO3
conjugation is less efficient, and SUMO5 displays the lowest conjugation rate in vitro [155].
These properties correlate with the essential role of the SUMO1/2 isoforms [148], the spe-
cialized function of SUMO3 in plant immunity [156,157], and the unknown biological role
of SUMO5. SUMO-activating enzyme small subunit has undergone divergent evolution
resulting in two isoforms, SAE1a and SAE1b, displaying distinct kinetic properties. This
has been suggested to provide a molecular mechanism to modulate SUMOylation rate
in vivo [158]. SUMO proteases are the SUMOylation machinery group providing higher
diversification [159], which has led to speculation that deSUMOylation, and not SUMOyla-
tion, could be responsible for providing substrate specificity to the system [160]. Besides
distinct biochemical properties associated with protein sequence divergence, SUMO ma-
chinery components are also post-transcriptionally regulated adding complexity to the
already intricate SUMO system. The SUMO activating enzyme SAE2, the conjugating
enzyme SCE1, the E3 ligase SIZ1, and the SUMO protease ESD4 have been identified as
SUMO targets [144,161]. However, the molecular consequences of this modification remain
poorly understood. Phosphorylation of SAE2 and SUMO1 has also been identified in
phosphoproteomic studies [162]. On the other hand, several pieces of evidence point to the
existence of tight regulation of SCE1 protein levels [148,162,163], suggesting that multiple
processes converge to fine-tune SUMOylation in vivo. Many components of the SUMOy-
lation machinery are nuclear proteins [153,164], consistent with an enrichment of SUMO
conjugates in the nucleus [148]. Among the molecular functions of SUMO conjugates,
transcriptional regulators and chromatin remodelers are highly represented [142]. The
relevance of SUMOylation in plant biology is further supported by studies performed in
plants of agronomic interest, which point to manipulation of SUMOylation as a promising
strategy to improve crop productivity [165].

8. Citrullination Discovery and Potential Roles in Plants

Citrullination is a PTM that is catalyzed by L-arginine deiminase resulting in the
deimination of arginines in a protein or peptide. The enzyme, agmatine deiminase, is a
member of the large family of guanidino-group modifying enzymes that catalyze a va-
riety of reactions, including guanidinium hydrolysis and amidino group transfer. The
deiminated arginine forms citrulline, an amino acid that is not one of the classic 20 amino
acids. Citrulline itself is an intermediate of the urea cycle. The enzymatic conversion of an
arginine residue into citrulline in a peptide or protein results in the loss of a positive charge
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that alters a number of intra- and intermolecular electrostatic interactions causing partial
unfolding of the citrullinated protein [166]. Citrullination has been detected in different
organisms including the red alga Chondrus crispus [167], bacteria (for review see [168]), and
in humans including in tissues such as the hair follicles [169]. Citrullination has been shown
to be important in human physiology, for example in terminal differentiation of the epider-
mis, apoptosis or the modulation of brain plasticity during postnatal life, the regulation
of pluripotency [170], and cancer [171]. However, a disruption in the citrullination rates
has been shown to play an essential role in the pathogenesis of various autoimmune and
neurological disorders such as rheumatoid arthritis [172,173]. In animals, the citrullination
of proteins affects epigenetic transcriptional regulation, histone modifications, and proteol-
ysis. Although it plays such an important role in animals, it has just recently been reported
in higher plants. This discovery marks an important step towards unraveling the role of
this modification in plants [174]. However, in plants, the presence of the non-proteinogenic
amino acid citrulline has been known for over a century (review see [175]). In Arabidopsis,
using proteomics approach by combining nuclei enrichment, immunoprecipitation enrich-
ing citrullinated peptides using anti-citrulline antibodies and tandem mass spectrometry,
citrullinated peptides were detected [174]. Citrullination on a specific set of proteins was
observed, with the majority of proteins having nucleotide-binding regulatory functions.
In addition, it was shown that the citrullinome changed in response to cold stress. It has
been confirmed that the calcium-dependent Arabidopsis thaliana peptidyl arginine deimi-
nase catalyzed the citrullination reaction of proteins through enzyme-substrate modeling.
Also, this was ascertained in vitro using synthetic peptides and the fibrinogen, which is
categorically known as one of the main citrullination targets in animals. This recent study
reveals that the Arabidopsis thaliana proteome contains proteins with a specific citrullination
signature. Importantly, this modification has a biological significance that can be traced to
many of the annotated roles of the modified proteins in stress responses [174]. Further, this
study suggested that citrullination might be part of the general regulation of pluripotency
and that the downstream effect of stress-specific citrullination influences plant growth,
development, and stress responses. Overall, these findings establish citrullination as an
overlooked post-translational modification that is a component of cellular reprogramming
during stress responses.

9. Concluding Summary

Overall, it can be noted that PTMs play vital roles in the various plant molecular
process and responses to external stimuli (Figure 1). However, there is still a lot to be
uncovered, for example, the lifetime of both the modification and the modified protein.
Notable is that various PTM studies in plant biology are focused on studying a single PTM
at a time. This has the potential to miss the crosstalk between various PTMs and protein
function during plant development and under various environmental stresses. Additionally,
it has been coined that the integration of diverse signals on a protein via multiple PTMs is
an integral part of signal transduction and is also an emerging area in systems biology [176].
Therefore, we challenge the proteomics community to employ a holistic approach towards
the identification and characterization of multiple PTMs on protein or protein complexes.
This will shed light on their role in protein—protein interaction and mechanism regulating
their function(s) and response to environmental changes.
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