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Abstract: Cellular communication depends heavily on the participation of vesicular systems gener-
ated by most cells of an organism. Exosomes play central roles in this process. Today, these vesicles
have been characterized, and it has been determined that the cargo they transport is not within a
random system. In fact, it depends on various molecular signals and the recruitment of proteins that
participate in the biogenesis of exosomes. It has also been shown that multiple viruses can recruit
these vesicles to transport viral factors such as genomes or proteins. It has been shown that the late
domains present in viral proteins are critical for the exosomal selection and biogenesis systems to
recognize these viral proteins and introduce them into the exosomes. In this review, the researchers
discuss the evidence related to the characterization of these late domains and their role in exosome
recruitment during viral infection.

Keywords: exosomes; viral infection; late domain; biogenesis

1. Introduction

Eukaryotic cells are complex structures formed by an organization of intracellular
organelles. This complexity can increase if these cells also have extracellular organelles
that are released into their microenvironment. Together, these membranous structures
released by cells are called extracellular vesicles (EVs), which are produced under normal
physiological conditions or during infectious or pathological processes [1]. EVs can be
classified into ectosomes and exosomes. Ectosomes are vesicles that emerge from the surface
of the plasma membrane through outward budding; here, we can include microvesicles,
microparticles, and long vesicles that range in diameter from 100 to 500 nm [2,3]. Exosomes
are EVs with an average size of 100 nm, ranging from 40 to 160 nm, and are characterized by
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an endosomal origin. A particular proprietary feature of exosomes is their interconnection
with other vesicles, such as multivesicular vesicles or different organelles, which may
contribute to the diversity of molecules and signaling exosomes [4,5].

Throughout history, there have been references made to vesicles. However, the first
mention of these vesicles was in 1960: the characterization of secreted small vesicles,
with a size of 100 nm, which originated from chondrocytes by budding directly from
plasma membranes during the formation of hydroxyapatite crystals [6,7]. Studies on other
cell types have shown the relevant functions of EVs in several roles such as coagulation,
the calcification of bones, and the repair of pathological conditions such as arthritis and
autoimmune disorders [5,8–11]. A pioneering study by Trams et al. revealed the presence
of vesicles of different sizes secreted by cells and their potential physiological roles. The
characterization of two of these diversely sized vesicles by differential centrifugation
revealed the presence of two separate vesicular entities. Over time, these methods have
allowed the identification of proteins, nucleic acids, lipids, and glycoproteins that enrich
these vesicular structures [12].

Although cells have a secretome that is well characterized by several elements, exo-
somes are identified today as one of the vesicular mediators with broad biological functions.
They are involved in intracellular communication at the local and systematic levels via the
transfer of functional proteins, metabolites, and nucleic acids to recipient cells. In addition,
exosomes influence various biological processes, such as embryogenesis, immune response,
tissue repair, antigen presentation, programmed cell death, angiogenesis, inflammation,
coagulation, and pathological processes in cardiovascular diseases, infectious diseases,
neurodegeneration, and cancer [13–18].

2. Biogenesis of Exosomes

The origin of these vesicular structures requires two well-defined events. The first
occurs in the plasma membrane during the endocytosis process. Subsequently, during
endocytic trafficking in the early endosome, these vesicles, obtained from the plasma mem-
brane, provide the first classification and fate of cargo molecules. Three routes have been
defined for cargo molecules in early endosomes. First, the molecules that require recycling
are targeted for movement to the tubular peripheral domains of endosomes. These vesicles
can finally merge with the Golgi apparatus network or move toward the plasma membrane
via endosomal recycling. When cargo is not directed toward recycling, these molecules are
concentrated in the early endosome vacuolar regions. Their fate is related to the endosomal
maturation pathway until they reach the late endosomes. Two routes are taken: fusion
with the lysosome and subsequent degradation or fusion with the plasma membrane and
exosome release (Figure 1) [18–21]. During vesicular trafficking, endosomal membranes
undergo a series of changes and modifications that allow their mobility and classification
via the endosomal route. The membrane of the early endosome is enriched in phosphatidyl
inositol 3-phosphate (PI3P), as well as phosphatidyl inositol 4-5 bisphosphate (PI(4,5)P2).
There is also an exchange of sphingomyelin with ceramides and a change in proteins, such
as RAB5 to RAB11, which regulate traffic toward the late endosome. Continuing with
these changes during endosomal maturation, certain areas of the endosomal membrane
begin to invaginate and bud in the direction of the cytoplasm toward the intraluminal
space of the endosome. At this point, the intraluminal vesicles were generated. In this
section, the cargo is enclosed; these structures appear as multivesicular bodies or body
formation proteins (MVBs) in the late endosome. Additionally, the classification of proteins
occurs via two different processes: the endosomal sorting complexes required for trans-
port (ESCRT) complex or a mechanism independent of this system (ESCRT-independent
mechanisms) [5,18,22,23]. When the MVBs follow a pathway leading to fusion with the
lysosome, the cargo within the intraluminal vesicles (ILVs) will begin a degradation process.
However, if MVBs follow a path to the plasma membrane, ILVs are secreted from the cell
and are considered exosomes [18,23].
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Figure 1. Biogenesis of exosomes. Fusion of primary endocytic vesicles is the first step of early en-
dosome (EE) formation EEs: returning to the plasma membrane or changing into late endosomes 
(LE) MVBs. Protein sorting of ILVs can be ESCRT-complex-dependent or ESCRT-independent 
mechanisms. Later, targeted ILVs are prepared to be degraded within a lysosome or rescued by 
DUBs. Rab27A and Rab27B are crucial mediators to lead the MVBs toward the cell periphery. Fi-
nally, the SNARE complex helps the fusion of MVBs with the plasma membrane to release ILVs into 
the extracellular space, which are now called exosomes. 

3. ESCRT Factor-Dependent and Independent Pathways in Exosomal Biogenesis 
ESCRT multiprotein complexes are highly conserved and consist of class E vacuolar 

protein sorting (VPS) proteins, which assemble into four distinct complexes: ESCRT-0, I, 
II, and III. They are associated with each other, as well as with other accessory proteins 
such as vesicle trafficking 1 (VTA1) and apoptosis-linked gene 2 (ALG-2) interacting pro-
tein X (ALIX). Interestingly, this protein machinery coordinates molecular binding and 
membrane deformation events that result in the biogenesis and cargo recruitment of ILVs 
[4,24–26]. The components of each ESCRT complex have been characterized and are listed 
below. The ESCRT-0 complex is made up of hepatocyte growth factor-regulated tyrosine 
kinase substrate (HRS), which recognizes monoubiquitinylated cargo proteins and inter-
acts in a complex with signal-transducing adapter molecules (STAM). ESCRT-I consists of 
tumor susceptibility 101 (TSG101), VPS28, VPS37, and multivesicular body subunit 12 
(MVB12). ESCRT-II consists of EAP30, EAP20, and ESP45; and ESCRT-III consists of 
CHMP6, CHMP4, CHMP2, and CHMP3 [27,28]. 

The cellular process that initiates the ESCRT-dependent pathway is determined by 
the high abundance of PI3P in the early endosomal membrane, which allows the recruit-
ment and binding of HSR in ESCRT-0 via a motif known as FYVE. Subsequently, the 
ESCRT-0 subunits HRS and STAMs interact directly with each other and begin to identify 
and join the ubiquitinated cargo to be sequestered. Additionally, HRS harbors a PSAP 
motif that facilitates the recruitment of ESCRT-0 to ESCRT-1 via TSG101. ESCRT-I VSP8 
then binds with ESCRT-II EAP45; in this part, the ESCRT-I MVB12 protein also regulates 
the selection of mono- and di-ubiquitinylated charges within ILVs. The final step involves 
the assembly of ESCRT III, which begins when ESCRT-II binds to ESCRT III CHMP6 and 
participates in the polymerization and activation of ESCRT-III via CHMP4, and the sub-
sequent recruitment of CHMP2 and CHMP3 units into the cell endosomal membrane. 

Figure 1. Biogenesis of exosomes. Fusion of primary endocytic vesicles is the first step of early
endosome (EE) formation EEs: returning to the plasma membrane or changing into late endosomes
(LE) MVBs. Protein sorting of ILVs can be ESCRT-complex-dependent or ESCRT-independent
mechanisms. Later, targeted ILVs are prepared to be degraded within a lysosome or rescued by
DUBs. Rab27A and Rab27B are crucial mediators to lead the MVBs toward the cell periphery. Finally,
the SNARE complex helps the fusion of MVBs with the plasma membrane to release ILVs into the
extracellular space, which are now called exosomes.

3. ESCRT Factor-Dependent and Independent Pathways in Exosomal Biogenesis

ESCRT multiprotein complexes are highly conserved and consist of class E vacuolar
protein sorting (VPS) proteins, which assemble into four distinct complexes: ESCRT-0, I, II,
and III. They are associated with each other, as well as with other accessory proteins such
as vesicle trafficking 1 (VTA1) and apoptosis-linked gene 2 (ALG-2) interacting protein X
(ALIX). Interestingly, this protein machinery coordinates molecular binding and membrane
deformation events that result in the biogenesis and cargo recruitment of ILVs [4,24–26].
The components of each ESCRT complex have been characterized and are listed below.
The ESCRT-0 complex is made up of hepatocyte growth factor-regulated tyrosine kinase
substrate (HRS), which recognizes monoubiquitinylated cargo proteins and interacts in a
complex with signal-transducing adapter molecules (STAM). ESCRT-I consists of tumor
susceptibility 101 (TSG101), VPS28, VPS37, and multivesicular body subunit 12 (MVB12).
ESCRT-II consists of EAP30, EAP20, and ESP45; and ESCRT-III consists of CHMP6, CHMP4,
CHMP2, and CHMP3 [27,28].

The cellular process that initiates the ESCRT-dependent pathway is determined by the
high abundance of PI3P in the early endosomal membrane, which allows the recruitment
and binding of HSR in ESCRT-0 via a motif known as FYVE. Subsequently, the ESCRT-0
subunits HRS and STAMs interact directly with each other and begin to identify and join
the ubiquitinated cargo to be sequestered. Additionally, HRS harbors a PSAP motif that
facilitates the recruitment of ESCRT-0 to ESCRT-1 via TSG101. ESCRT-I VSP8 then binds
with ESCRT-II EAP45; in this part, the ESCRT-I MVB12 protein also regulates the selection of
mono- and di-ubiquitinylated charges within ILVs. The final step involves the assembly of
ESCRT III, which begins when ESCRT-II binds to ESCRT III CHMP6 and participates in the
polymerization and activation of ESCRT-III via CHMP4, and the subsequent recruitment
of CHMP2 and CHMP3 units into the cell endosomal membrane. Within the ESCRT-III
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complex, CHMP4 plays an essential role in membrane deformation, leading to internal
budding and generation of ILVs [18,28,29]. In addition, it has been described that CHMP4
can polymerize, generating spiral filamentous structures that mediate the production
of negative curvatures in the membrane. Once membrane fusion occurs, the ESCRT-III
complex disassembles when its polymers translocate through the central pore of VPS4
ATPase. However, the role of VPS4 is not unique to the above process because it also
regulates membrane remodeling processes to stabilize regions in growing ILVs. Other
cellular factors participate in the formation of ILVs and are involved in ESCRT-dependent
pathways. ALIX is one of the best-characterized proteins in this process; it is involved
in mediating the ESCRT-III interaction independently without requiring the assembly of
upstream ESCRT complexes, thus classifying and delivering tetraspanins to exosomes by
ALIX. Additionally, ALIX interacts with syndecans, a transmembrane protein that serves as
a scaffold for synteins and participates in the membrane budding steps of ILV biogenesis
(Figure 2) [18,30].
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size. Among the cellular factors that may be associated with this independent pathway, 

Figure 2. Protein associations of the ESCRT complex. ESCRT complexes are recruited sequentially
into the endosome and recognize ubiquitinated transmembrane proteins, shifting the load from
one complex to the next to facilitate sorting to the MVB vesicles. ESCRT-0 binds to PI3P and
groups ubiquitin membrane proteins across ubiquitin-binding domains (VHS, UIM, and DUIM).
While ESCRT-I is recruited by ESCRT-0. PxxP within the carboxyl end of HRS is associated with
an E2 variant domain of ubiquitin (UEV) in TSG101. ESCRT-II interacts through the VPS36 Glue
domain with ESCRT-I, PI3P, and charge. The VP25 subunit of ESCRT-II serves as a nucleation
point for the staggered assembly of the ESCRT-III filament complex, which sequesters the load and
drives the inward budding of the vesicle. Clathrin Binding (CB); Coiled-Coil (CC); Double-Sided
Ubiquitin-Interacting Motif (DUIM); Phosphatidylinositol-3-Phosphate (PI3P); Src homology-3 (SH3);
Ubiquitin Interacting Motif (UIM).

In eukaryotic cells, the generation of MVBs may have an alternative mechanism
without the participation of the ESCRT complex, where the involvement of some proteins
and lipids has been identified. Perhaps a different characteristic of this alternate pathway
is the larger size and smaller number of encapsulated ILVs that are irregular in shape and
size. Among the cellular factors that may be associated with this independent pathway,
tetraspanins have been shown to participate in various events of exosome biogenesis
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because they direct cargo to MVBs by compartmentalizing the endosomal membrane via
domains enriched by tetraspanins. The tetraspanin CD63 is most frequently identified
in vesicular transport. Furthermore, among the lipids that participate in this pathway,
ceramides and sphingolipids participate in membrane deformation. This step is organized
in the plasma membrane within regions enriched with sphingolipids, cholesterol, and
proteins, spontaneously generating negative curvatures in the membrane, leading to the
generation of IVLs without the participation of ESCRT-III [30]. Some of the cellular factors
that have been characterized as participating in this pathway of IVL biogenesis are GTPase
RAB31 and ceramide transfer protein, which play a role in triggering the budding of
membranes in these lipid regions and the transfer of these types of lipids in the membranes
of the endocytic pathway from the Golgi apparatus and endoplasmic reticulum [23,31].

4. Exosome Composition

Various proteins, lipids, and nucleic acids enrich the biochemical composition of
exosomes. In addition, their composition is determined by factors such as cell type, physio-
logical conditions, or the pathological state of the cell system from which they are isolated.
In this review, the platform known as the exosome database described 9769 proteins,
3408 mRNAs, 2838 miRNAs, and 1116 lipids that have been reported as biochemical ele-
ments that make up exosomes [32]. Different types of RNAs have been characterized in
exosomes, for example, mitochondrial RNAs, long non-coding RNAs (IncRNAs), and their
fragments: miRNAs, small nuclear RNAs, small nucleolar RNA, and ribonucleoproteins
(hnRNP), such as A2B1 and HNRNPA2B1. All of these could function as regulators of
gene expression in the receptor cells of these vesicles. However, they are generally com-
posed of a phospholipid membrane containing tetraspanins, thermal shock proteins (HSP),
GTPases, Flotilin, adhesion molecules, components of the ESCRT complex, MVB proteins
responsible for membrane transport and fusion, metabolic enzymes, phosphatidylcholine,
phosphatidylserine, phosphatidylethanolamine, sphingomyelin, ceramides, diacylglyc-
erides, and lipids-rafts (Figure 3). It is speculated that the amount and location of cholesterol
components may influence the fate of these [18,33,34].

Tetraspanins are required for cell penetration, invasion, and fusion. They do not
possess their own catalytic activities but rather facilitate the trafficking, function, stability,
and oligomerization of other membrane proteins. Exosomes are rich in CD81, CD82,
CD37, and CD63 and are frequently used as exosomal markers, along with other exosomal
tetraspanins, such as CD9. CD63 is a protein that circulates between the plasma membrane
and endosomal compartments and plays a role in the classification of loads [35,36]. CD9
and CD81 are expressed in a wide variety of cells and are considered “molecular facilitators”
that interact with specific proteins involved in the development, proliferation, activation,
and motility of somatic cells. As for CD9, it consists of four transmembrane domains,
including one intracellular end and two extracellular loops. It performs a wide variety of
biological activities, such as cell adhesion, motility, metastasis, growth, signal transduction,
hematopoietic stem cell differentiation, and sperm and egg fusion [37].

For the components of the ESCRT complex, we have TSG101 and ALIX. TSG101 is a
multidomain protein encoded by tumor susceptibility gene 101 that participates in various
intracellular processes, such as transcription regulation, cell proliferation and division,
ubiquitination and intracellular movement of proteins, normal tissue homeostasis, and
tumorigenesis. TSG101 is mostly found in the cytoplasm, regardless of the cell cycle stage;
however, during the late S phase, a fraction of the protein is found in the nucleus and
colocalizes with the mitotic spindle during cell division. ALIX and AIP1 are cytosolic
proteins that participate in the regulation of various cellular mechanisms such as the
classification of proteins in endosomes, cell adhesion, and apoptosis [29,38].
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teins (41,860), lipids (1116), and nucleic acids (3408 mRNAs and 2838 miRNAs). The main
membrane-bound, and cytosolic proteins incorporated in exosomes are members of the tetraspanin
family (CD9, CD63, and CD81), an endosomal sorting complex required for transport (ESCRT, Alix,
TSG101), integrins, heat shock proteins (Hsp), actin and flotillins. Their unique composition depends
on the type of cell and physiological or pathological state.

5. Virus Modifications of Exosomes

Viral infections can carry viral or cellular factors that favor pathogenicity, dissemi-
nation, replication, and antiviral effects that can trigger several pathogenic mechanisms.
In this sense, it has been observed that the tick-borne flaviviruses Langat Virus (LGTV)
and West Nile Virus (WNV) hijack the exosomal pathway of arthropods to transport viral
factors. Exosomes from LGTV-infected tick cells were used to incubate human HaCaT
epithelial cells, finding that there is an active infection as viral RNA and envelope protein
are transported, while West Nile was found able to be transported in arthropod exosomes
WNV RNA, and thus these viral factors transported by arthropod exosomes have an infec-
tive capacity in murine and human cell lines [39]. Other flaviviruses that have the ability to
transport viral factors through exosomes are Dengue Virus (DENV-2) and Zika Virus (ZIKV).
Since it was found that within the exosomes produced in A549 cells, the NS1 protein was
transported, this fact opens the possibility that this protein travels through the exosomes
to reach the endothelial barriers and damage the cellular environment, which is the main
target of these flaviviruses [40]. In the case of the Hepatitis C virus (HCV), there is evidence
that viral RNA, core protein, and E2 are transported within the exosomes of Huh7.5.1 liver
cells. These viral factors caused a productive infection, and when the infection was treated
with neutralizing antibodies, it was not affected due to the transport of HCV viral factors by
the exosomes, evading the immune response [41]. One of the most studied viruses with se-
questration and transport of viral factors is Human Immunodeficiency Virus (HIV-1). It has
been described that the infection of monocyte-derived macrophages produces exosomes
containing the HIV-1 viral particle and the Gag protein, and that these exosomes have
infective activity in other cell lines such as Hela cells [42]. Also with HIV-1, it was found
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that the Nef protein of this virus is within the exosomes produced by the infection, and it
was observed that nearby cells were more vulnerable. Therefore, the exosomes carrying
Nef were able to promote death in CD4 T lymphocytes [43]. In the C6/36 cells infected with
ZIKV, exosomes containing viral RNA and the envelope protein of this virus are produced.
These viral factors evade the immune response and thus easily reach HMEC-1 endothelial
cells and THP-1 monocytes. Likewise, the regulation of proinflammatory proteins such as
tissue factor (TF), protease-activated receptor-1 (PAR-1), ICAM-1, and TNF-α are involved
in increased hyperpermeability and endothelial damage [44].

Viral proteins are not the only factors that are sorted within exosomes during infections
by these pathogens. These factors aid in their dissemination, replication, or pathogenicity
in the organism, but they are not the only ones that are as described below exosomes in a
virus-infection environment and can have the duality of carrying cellular factors that aid in
antiviral or proviral response. It has been described that the Respiratory Syncytial Virus
(RSV), in a model of A549 cells, can have exosomes isolated from this infection. Chemokines
such as MCP-1, IP-10, and RANTES, were carried in these exosomes, which suggests the
activation of the innate immune response and antiviral effect of the isolated exosomes.
Thus, exosomes isolated from RSV infection in A549 cells have the potential to activate
the innate immune response by activating cytokines and chemokines from human PBMC
monocytes, whereas an extrapolation of this same model of exosomes isolated from A549
RSV-infected, but the primary culture of epithelial alveolar respiratory tract cells, found
that the isolated exosomes contained the same miRNA profile as Let-7f, -7i, miR-24, -31,
and -221 that are part of the regulation of replication of RSV and porcine reproductive and
respiratory syndrome virus infection (PPRSV). However, in primary culture, the levels of
these miRNAs were increased, so this approach to exosomes during RSV infection allows
us to assess the possible potential of exosomes to regulate the pathogenesis and immune
response of RSV [45]. The isolation of exosomes infected with DENV-2 from various cell
lineages such as HUVEC and HepG2, allowed us to visualize that the function of these
exosomes is to transport antiviral factors such as IFITM 3, which has effects to suppress
the entry of various enveloped viruses. Therefore, this study allowed us to relate that
the exosomes produced by DENV-infected cells carry antiviral factors to other cells that
are not infected [46]. It was recently shown that exosomes from the plasma of patients
with mild or severe COVID-19 have the ability to induce NLRP3, caspase-1, and IL-1β
mRNA expression in microvascular epithelial cells (HMEC-1) and hepatic endothelial
cells (TMNK-1), resulting in the activation of Casp1 and subsequently IL-1β through the
NLRP3 inflammasome in these endothelial cells. Thus, plasma exosomes from COVID-19
patients would have the ability to regulate SARS-CoV-2 virus-induced disease that develops
venous thromboembolism, coagulopathy in epithelial cells, multiple organ damage, and
induce strong molecular signals in distant cells for immunopathogenesis. [47]. While
exosomes produced during HCV infection of immortalized human hepatocytes (IHH)
showed content that can carry profibrogenic factors that trigger end-stage liver disease,
it was evidenced that miR-19a complies with this profibrogenic regulation. This miRNA
was found within the exosomes of IHH cells to be captured by another cell lineage like
human hepatic stellate cells LX2 and, upon entering the miR-19a via exosomes, caused in
LX2 cells the activation of SOCS-activating TGF-β through the STAT3 pathway, which is
involved in the increase in liver lesion so that the delivery of exosomes produced by HCV is
important for the development of liver fibrosis damage [48]. It was observed that exosomes
maintain cellular homeostasis by transporting antiviral factors that combat infection by
various viruses. Interestingly, viruses can recruit exosomal biogenesis machinery for viral
or cellular elements to distribute into these vesicles, and with them be a Trojan horse to
transport these factors and aid in their dissemination and pathogenicity in permissive and
otherwise differently located cells in the organism (Figure 4). In the next section, the focus
is on describing the evidence associated with the late domains present in viral proteins and
their role in the recruitment of the exosomal machinery.



Life 2023, 13, 1842 8 of 17

Life 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

factors to other cells that are not infected [46]. It was recently shown that exosomes from 
the plasma of patients with mild or severe COVID-19 have the ability to induce NLRP3, 
caspase-1, and IL-1β mRNA expression in microvascular epithelial cells (HMEC-1) and 
hepatic endothelial cells (TMNK-1), resulting in the activation of Casp1 and subsequently 
IL-1β through the NLRP3 inflammasome in these endothelial cells. Thus, plasma exo-
somes from COVID-19 patients would have the ability to regulate SARS-CoV-2 virus-in-
duced disease that develops venous thromboembolism, coagulopathy in epithelial cells, 
multiple organ damage, and induce strong molecular signals in distant cells for immuno-
pathogenesis. [47]. While exosomes produced during HCV infection of immortalized hu-
man hepatocytes (IHH) showed content that can carry profibrogenic factors that trigger 
end-stage liver disease, it was evidenced that miR-19a complies with this profibrogenic 
regulation. This miRNA was found within the exosomes of IHH cells to be captured by 
another cell lineage like human hepatic stellate cells LX2 and, upon entering the miR-19a 
via exosomes, caused in LX2 cells the activation of SOCS-activating TGF-β through the 
STAT3 pathway, which is involved in the increase in liver lesion so that the delivery of 
exosomes produced by HCV is important for the development of liver fibrosis damage 
[48]. It was observed that exosomes maintain cellular homeostasis by transporting antivi-
ral factors that combat infection by various viruses. Interestingly, viruses can recruit exo-
somal biogenesis machinery for viral or cellular elements to distribute into these vesicles, 
and with them be a Trojan horse to transport these factors and aid in their dissemination 
and pathogenicity in permissive and otherwise differently located cells in the organism 
(Figure 4). In the next section, the focus is on describing the evidence associated with the 
late domains present in viral proteins and their role in the recruitment of the exosomal 
machinery. 

 
Figure 4. Hijacking of the exosomal pathway by viruses. The association between exosomes and 
viruses is not clear; however, it has been observed that exosomes before a viral infection can act by 
facilitating or inhibiting the infection. In the first case, it improves infectivity of many viruses, such 
as LGTV, WNV, DENV-2, ZIKV, HCV, HIV-1, RSV, and SARS-CoV-2, by hijacking the exosomal 
pathway to transport viral, cellular or immune response factors to other neighboring or distant cells, 
exosomes being a Trojan horse that allows the dissemination and replication of viruses without the 

Figure 4. Hijacking of the exosomal pathway by viruses. The association between exosomes and
viruses is not clear; however, it has been observed that exosomes before a viral infection can act by
facilitating or inhibiting the infection. In the first case, it improves infectivity of many viruses, such as
LGTV, WNV, DENV-2, ZIKV, HCV, HIV-1, RSV, and SARS-CoV-2, by hijacking the exosomal pathway
to transport viral, cellular or immune response factors to other neighboring or distant cells, exosomes
being a Trojan horse that allows the dissemination and replication of viruses without the detection of
the immune system, and alter non-permissive cells for better propagation of these viral agents. In the
second case, exosomes can act as antigen-presenting vesicles and activate CD4 T cells.

6. Sorting of Cell Factors in Exosomes

Cellular proteins can be transported by exosomes, according to the cellular context, to
maintain homeostasis for pro-inflammatory and anti-inflammatory processes [21]. These
sorting events occur based on the post-translational modifications of proteins, such as ubiq-
uitination, SUMOylation, ISGylation, phosphorylation, oxidation, acetylation, citrullination,
myristylation, and glycolysis (Figure 5) [21,49]. This is due to the important involvement of
the ESCRT complex, which sorts ubiquitin-tagged proteins and their transport to ILVs and
subsequent travel in exosomes [50]. This process begins when ESCRT-0, which contains
a ubiquitin-binding domain (UBD) in its HRS and STAM 1/2 subunits through its FYVE
domain recognizes ubiquitin-tagged proteins [51]. HRS also contains a PSAP domain that
interacts with TSG101 of ESCRT-I and carries ubiquitin-tagged proteins within ILVs [52].
Once these sorting processes begin simultaneously, ESCRT-I recruits ESCRT-II to activate
and associate with ESCRT-III; the latter is coupled by TSG101 and ALIX, which serves
as an intermediate between ESCRT I and III as it associates with TSG101 of ESCRT-I and
CHMP4A of ESCRT-III [53–55]. Subsequently, proteins must be deubiquitinated to remain
in ILVs; to uncouple this signal, ESCRT-III is critical, as it recruits proteins that uncouple
ubiquitin [45]. In this context, exosomes isolated from myeloid suppressor cells were
enriched with ubiquitinated proteins, such as histones H1.2, H1.3, HSP70, and Ezrin [56].
Another ubiquitin-containing protein to be classified within exosomes is the non-classical
human leukocyte antigen G (HLA-G); exosomes isolated from ascites and pleural exudates
of patients with aplastic anemia HLA-G-positive showed that this protein was enriched
by ubiquitin [57].
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Figure 5. Schematization of sorting by post-translational modifications in exosomes. It shows which
membrane proteins can assist ubiquitination and phosphorylation for incorporation into exosomes.
It has been found that ubiquitination of HLA-G, H1.2, H1.3, Esrin, and HSP70 helps their sorting into
exosomes, other posttranslational modifications that lead to this same process are phosphorylation of
ARF6, SUMOylation of α-synuclein, oxidation of γ-synuclein, citrullination of α-fibrin, and fibrinogen
and myristoylation of Tya. While ubiquitination of MCH-II regulates lLVs to take the lysosomal
degradative pathway, other posttranslational modifications regulating this degradative pathway are
acetylation of GRP78 and ISGylation of TSG101.

In contrast, ubiquitination is not the only pathway to reach exosomes, as ubiquitinated
proteins can evade deubiquitination and thereby reach the lysosomal pathway. Ubiqui-
tination in dendritic cells leads to endocytosis and MHC-II sorting to ILVs for removal
by lysosomes, thus opening the possibility that another form of protein sorting exists in
exosomes [58]. One alternative evidence for ubiquitination is phosphorylation, as ARF6
transport was observed in tumor cells, and this modification regulates exosome loading [59].
SUMOylation, which utilizes a small ubiquitin-like modifier, also shows the property of
sorting proteins into exosomes, as it was found that when this modification is present in
α-synuclein, it can be targeted and sorted into exosomes, within the context of Parkinson’s
disease [60]. ISGylation is another post-translational modification similar to ubiquitin that
allows the release of exosomes, as it regulates the number and secretion of exosomes. It was
observed that ISGylation of TSG101 induces their aggregation and degradation and thereby
modifies exosome production, so its function is believed to be the control of exosomes [61].
The oxidized-synuclein protein is secreted by exosomes produced by neuronal cells, which
can be targeted for glial cells and cause intracellular protein aggregation, indicating that
oxidation is important for the transport within exosomes [62]. GRP78 expression promotes
the phenotypic features of cancer, and this protein is secreted by exosomes from cancer cells
by inhibiting histone deacetylase inhibitors, blocking the release of GRP78-rich exosomes
and their aggregation in the endoplasmic reticulum (ER), which promotes sorting in the
exosomes [63]. Citrullination is a post-translational modification of peptidyl-arginine to
peptidyl-citrulline, and in synovial fluid exosomes of fibrin and fibrinogen, were found to
play an important role in the transport of these proteins in exosomes to regulate rheumatoid
arthritis [64]. Myristoylation, which is based on the binding of a myristoyl molecule, binds
covalently to an amino group of glycine and is also involved in the sorting of exosomes into
the Tya protein, where this post-translational modification is targeted and transported in
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exosomes in vitro [65]. In addition to these post-translational modifications, glycosylation
occurs because the galectin-3 binding protein of sialoglycoprotein (LGALS3BP) is found
within exosomes that are abundant in glucans and these LGALS3BP sites. Therefore, it
is possible for other proteins that are glycosylated to be transported in these exosomal
vesicles [66]. However, this type of sorting is related to viruses, as it has been described
that some viruses could take this strategy to carry viral factors inside exosomes. It has
also been observed that some ubiquitins are important for the quasi-envelope and release
viral, such is the case of ITCH, a member of the NEDD4 HECT domain E3 ubiquitin ligase
family, which is associated with the pX c terminal sequence of the Hepatitis A (HAV), VP1
capsid of protein independently of ALIX. This interaction allows the quasi-envelope and
release of eHAV (quasi-envelopment hepatovirus) from infected cells [67]. Studies in HCV
show that the NS2 protein is ubiquitinated by E3 ubiquitin ligase and this posttransla-
tional modification allows interaction with HRS and possibly allows entry of HVC into
exosomes [68]. In Herpes Simplex Virus 1 (HSV-1), it is shown that the glycoprotein gB of
this virus possesses ubiquitination that causes the HLA-DR antigen to become HLA-DR
antigen and binds to this protein, and this gB-DR complex enters the exosome using gB
ubiquitination, causing an alteration in the presentation of antigen by the MHC-II pro-
cessing pathway and to evidence the immune system [69]. The Epstein–Barr virus (EBV)
LAMP-1 protein has been found to play a role in sorting this virus into exosomes, as it
associates with CD63, a tetraspanin involved in exosome biogenesis, but cellular LAMP-1
has been described to ubiquitinate to load into exosomes, so it is possible EBV LAMP-1
may have this ubiquitination ability to bind to CD63 of exosomes [70,71].

This type of sorting opens a panorama for further study of the behavior and dynamics
of cellular and viral protein sorting and provides a broader picture of the functions of
exosomes in the transport of cellular or other factors, such as viruses.

7. Late Domains

One of the unknowns of how viral factors are recruited by the biogenesis machinery
of exosomes is still not entirely clear. Cellular proteins use various post-translational modi-
fications, or in the case of RNA, there are certain motifs for their sorting [21]. Regarding
viral proteins, there is evidence that certain domains present in these proteins are essential
for interaction with proteins involved in the formation of exosomes. Late domains were
first identified in the Gag polyprotein (comprising mainly matrix, capsid, and nucleocap-
sid domains) of some retroviruses (Figure 6a), and later in arenaviruses, picornaviruses,
rhabdoviruses, filoviruses, and flaviviruses (Figure 6b). The name of these late domains
was assigned because these sequences played a final role in the budding process of the
aforementioned viruses. These domains are PT/SAP, PPXY, and YXXL/YPXnL, where X
can be any amino acid and n can vary in length [72–74]. In this sense, it was observed that
in the Gag protein of HIV-1, the p6 region shows two late domains, PTAP and YPXnL, and
these are associated with proteins involved in the biogenesis of exosomes as reported with
PTAP that interacts with the TSG101 component of the ESCRT machinery and helps the
exit of this virus from the cell [75]. While the YPXnL domain, in the p6 region of the Gag
protein, binds to ALIX, which in turn interacts with TSG101, it has been observed that in the
absence of the PTAP domain, YPXnL and ALIX facilitate the release of HIV-1 because they
interact with the ESCRT-III complex, which is recruited in the twinning regions together
with VPS4 ATPase. This leads to the rearrangement of the membrane and its fission and
drives the disassembly of ESCRT-III, thereby releasing viral particles [74,76]. In RSV, it
was found that in the Gag protein, the p2b peptide was associated with virus release and,
consequently, this function was regulated by a PPXY domain, which interacts with the E3
ubiquitin ligase Nedd4. This association is similar to that seen with the YPXnL domain
of HIV-1, where Nedd4-1 was observed to interact with ALIX and assist in viral particle
release, which is similar to RSV and the interaction of PPXY and Nedd4 [77,78].
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Figure 6. Schematization of the Gag protein and Late domains in other viruses. (a) The arrangement
of the Gag protein of some retroviruses is shown, the matrix, cápside, and nucleocapsid proteins
are conserved, and the location of the late PT/SAP, PPXY, and YXXL/YPXnL domains is shown.
(b) Diversity of viral proteins other than Gag show late domains. There are different groups of viruses
such as filoviruses, rhabdoviruses, arenaviruses, picornaviruses, and flaviviruses that show similarity
in budding functions as in retroviruses.

In the equine infectious anemia virus (EIAV), there also is a Gag protein being a
retrovirus. It was found that the presence of the YPXL domain was in the p9 region of
its Gag protein and that this region interacts with ALIX. This interaction fulfills the same
functions observed in p6 of HIV [79,80]. Another retrovirus studied was the human T-cell
leukemia virus type 1 (HTLV-1) where it was found that the M region of the Gag polyprotein
shows two late domains, PPXY and PTAP. As demonstrated with the previous retroviruses,
these regions play an important role for viral budding since it was found that they interact
with the Nedd4 and TSG101 proteins since an overexpression of Nedd4 alters the release
of viral particles [81]. This feature of late domains is not restricted to retroviruses, as has
been observed in other viruses, such as filoviruses like the Ebola virus, which do not have
a Gag protein like retroviruses. It was identified that in the VP40 protein that plays a role
in virus budding, it contains two overlapping late domains, which are PTAPPEY, that
are both like the PTAP interactions with TSG101 and ESCRT, while PPEY interacts with
Nedd4, but in contrast to that seen with retroviruses, it is not essential for budding [82].
In the rabies virus of the rhabdovirus family, something similar to the Ebola virus was
found by identifying two overlapping late domains, PPEYVPL belonging to the PPEY
domain and YVPL in the M protein of this virus, which is believed to interact with TSG101,
ESCRT-I, and YVPL-recruited ALIX and ESCRT-III complex proteins such as CHMP2A
and CHMP4B [83]. The arenaviruses were found, and the Z proteins have located PTAP
and PPXY domains that interact with TSG101, and being modified these domains and the
same protein TSG101 causes a significant decrease in viral production. Another important
fact with arenaviruses is that most of these have been found a late domain, in the original
arenaviruses, as mentioned, the Lassa virus contains two late domains PTAP and PPXY,
while the Lujo virus only shows PSAP. Modern viruses such as Junin, Machupo, Guanarito,
Sabia, and Chapare contain the PT/SAP domain and in this same context of viruses, it was
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found that the White Water Arroyo virus (WWAV) and Pichinde virus contain overlapping
domains of PT/SAP and motifs similar to PPPY, with PT/SAPPY similar to those seen with
Ebola [84,85]. The Hepatitis A virus was recently found to contain in its VP2 protein the
YPXnL domain, and replacing Leu with Ala in the late domain eliminates virus release but
does not alter viral assembly. They also observed a loss of ALIX recruitment, which helps
interact with proteins of the ESCRT complex, and viral particles, can be released [86].

Another group of viruses in which these late domains have been found are flaviviruses.
In the West Nile virus, it was analyzed that in the envelope protein, there are two conserved
late domains, PXAP and YCYL, and when carrying out mutations of these domains occurs,
a similar phenomenon to retroviruses happens when these changes occur, which is a drop
in the production of viral particles. Although that was not similar to the previous examples
when employing siRNA for ALIX and TSG101, as no effect on the release of viral particles
occurred [87]. This opens the possibility that these domains interact with other proteins
that interact with the ESCRT complex or have another function in the cellular environment.
In a different case of the yellow fever virus (YFV) where it was found that in the NS3
protein, located the YPXI domain, which is similar to YPXL, and that in another work
with Aspergillus nidulans the YPXL/I domain recognizes PalA/PacC, which is a homolog
of AIP1/ALIX, there is a late motif similar to that reported in retroviruses and it shows
that YPXI interacts with ALIX and that truncating this protein inhibits the release of viral
particles [88,89]. On the other hand, in tick-borne encephalitis virus (TBEV), which refers
to another flavivirus, it was evidenced that the NS3 protein contains a variation of the late
domain seen in retroviruses, which is LYTLA, similar to the ΦYXΦXL sequence (Φ any
non-polar amino acid); and that this late domain is involved in the recruitment of the ESCRT
complex due to its interaction with ALIX/CHMP4A and that these events are related to
viral replication and assembly [90,91]. Although this evidence for late domains is not
directly related to issues of exosome sorting, it is related to the way in which components
of ESCRT, ALIX, and TSG101 are recruited to the budding of these viruses. The interaction
with cellular factors of the cellular protein sorting machinery and exosome biogenesis
leaves an opening for further study of whether viruses could transport viral factors via
this late domain signaling and recruit these factors into exosomes, as there is evidence that
cellular factors containing late domains aid in their transport by exosomes.

Late domains have not only been found and evidenced in viral proteins. Since the
evidence was found that heparan syndecan sulfate proteoglycans and their cytoplasmic
adaptor syntenin regulate the formation of exosomes, and syntenin contains a YPXnL
domain similar to that observed in retroviruses, this domain interacts with ALIX involved
with the sorting and biogenesis of exosomes [92]. Another cellular protein evidenced to
contain some late domain is the beta-galactoside-binding lectin galectin-3 (Gal-3), this
protein is found intercellularly and extracellularly. The secretion of Gal-3 is measured
independently of a secretory pathway by a non-classical undefined mechanism; however, it
was found by electron microscopy that this protein was in the light of the exosomes and its
release depends on the ESCRT-I complex, TSG101, and VPS4 ATPase. The most amazing
thing about this interaction in this exosomal environment is that it was found that Gal-3
contains a PT/SAP motif conserved at the amino end, and when a mutation is made in this
domain, a significant decrease in Gal-3 is seen [93]. Further evidence that these domains
play an important role in exosomal sorting is seen for the Nedd4 family interacting protein
1 (Ndfip1) containing three PPXY domains. It was found that the expression of Ndfip1 acts
as a switch for the packaging of a target protein, in this case, WW-tagged Cre recombinase
as ubiquitination occurs and promotes the loading of CreWW into exosomes, evidencing
the property of these late domains to load or sort proteins into exosomes [94]. The ability of
late domains to promote the sorting of cellular proteins within exosomes and the potential
study of viral proteins with these domains open a scenario for further investigation of the
existence of these late domains in viral proteins and their implications.



Life 2023, 13, 1842 13 of 17

8. Conclusions

The evidence described in this review show that an important number of viruses have
conserved sequences called late domains in their structural and non-structural proteins.
Although for HIV-1, it is important for the virus to migrate to the extracellular environment,
in other cases, as in flavivirus another option exists, such as interacting with proteins
that play roles in biogenesis and cargo selection of exosomes, as this could be the bridge
or the key point for viral factors and the viruses themselves to reach the exosome. It is
important to emphasize that the progress in developing methods for the isolation and
characterization of EVs and exosomes is crucial for advancing the investigation of these
cellular structures. The biggest problem in this field has been obtaining a high degree
of purity of the exosomes. Implementing technologies such as ultracentrifugation, flow
cytometry, and electron microscopy have been tools that can serve as a primary purification
and characterization system. However, the use of size exclusion chromatography or
asymmetric-flow field-flow fraction, which allows the separation of nanoparticles by their
density and hydrodynamic properties, has allowed the identification of populations of
exosomes with highly diverse molecular properties [95–97]. This new panorama opens a
new study to identify these late domains in other unreported viruses and to understand
their relationship with the transport of viral factors inside exosomes. Also, identifying
the presence of post-translational modifications within these domains or in the viral cargo
proteins will be a crucial piece of future research. Finally, the late domains PT/SAP, PPXY,
and YXXL/YPXnL are required to understand their role in interacting with proteins such as
ALIX, TGS101, and the ESCRT complex to determine their influence on the dissemination
and replication of various viruses.
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