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Abstract: With the conventional mechanical rotation measurement of joints, only static measurements
are possible with the patient at rest. In the future, it would be interesting to carry out dynamic rotation
measurements, for example, when walking or participating in sports. Therefore, a measurement
method with an elastic polymer-based capacitive measuring system was developed and validated.
In our system, the measurement setup was comprised of a capacitive strain gauge made from a
polymer, which was connected to a flexible printed circuit board. The electronics integrated into the
printed circuit board allowed data acquisition and transmission. As the sensor strip was elongated,
it caused a change in the spacing between the strain gauge’s electrodes, leading to a modification
in capacitance. Consequently, this alteration in capacitance enabled the measurement of strain.
The measurement system was affixed to the knee by adhering the sensor to the skin in alignment
with the anterolateral ligament (ALL), allowing the lower part of the sensor (made of silicone) and
the circuit board to be in direct contact with the knee’s surface. It is important to note that the
sensor should be attached without any prior stretching. To validate the system, an in vivo test was
conducted on 10 healthy volunteers. The dorsiflexion of the ankle was set at 2 Nm using a torque
meter to eliminate any rotational laxity in the ankle. A strain gauge sensor was affixed to the Gerdii’s
tubercle along the course of the anterolateral ligament, just beneath the lateral epicondyle of the
thigh. In three successive measurements, the internal rotation of the foot and, consequently, the
lower leg was quantified with a 2 Nm torque. The alteration in the stretch mark’s length was then
compared to the measured internal rotation angle using the static measuring device. A statistically
significant difference between genders emerged in the internal rotation range of the knee (p = 0.003),
with female participants displaying a greater range of rotation compared to their male counterparts.
The polymer-based capacitive strain gauge exhibited consistent linearity across all measurements,
remaining within the sensor’s initial 20% strain range. The comparison between length change and
the knee’s internal rotation angle revealed a positive correlation (r = 1, p < 0.01). The current study
shows that elastic polymer-based capacitive strain gauges are a reliable instrument for the internal
rotation measurement of the knee. This will allow dynamic measurements in the future under many
different settings. In addition, significant gender differences in the internal rotation angle were seen.
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1. Introduction

In the last ten years, a rise in leisure sports activities such as jogging and running has
paralleled a rise in knee injuries. Among these injuries, a prevalent one is the tearing of the
anterior cruciate ligament (ACL), constituting 20% of all knee injuries [1]. In recent decades,
the importance of devices and methods for measuring rotational knee laxity caused by
ACL rupture has increased [2,3].

Currently, there are several examination methods for diagnosing ACL ruptures caused
by internal rotation of the tibia, including physical examination and instrumental mea-
surement methods. The differentiated diagnosis of the rotational laxity of the knee joint
is the crucial prerequisite for the correct therapeutic approach [4]. To date, evidence of
knee instability has mostly been based on subjective, examiner-dependent clinical tests.
Therefore, occasionally, no diagnostic consensus is reached. Physical examination includes
the Lachman test [5], the pivot shift test [6] and the anterior drawer test [7]. These methods
measure the range of motion between the stationary (upper) and mobile (lower) knee to
analyze the degree of laxity [8]. These physical examination methods are standardized in
principle, but results often vary and depend on examiners [9,10].

Regrettably, there is a shortage of evidence-based treatment algorithms and consensus
among orthopedic professionals concerning the rotational laxity observed in both initial
and repeated ACL ruptures. A fundamental challenge lies in the complex and standardized
determination of internal rotational instability. The clinical assessment involves tests such
as the dial and pivot shift, which are subjective and can be affected by the positioning of
the knee and examiner-induced motion. As a result, the reliability of interrater agreement
in manual examination methods is constrained [11–13]. Many studies using measuring
devices, therefore, attempt to imitate and objectify the pivot shift test. However, due to the
complexity of this movement, this has, so far, only been possible to a limited extent. The
commercially available arthrometers that have been frequently used to date are capable
of anterior-posterior-translation to be measured objectively, but the rotation component is
not taken into account. The sensitivity of these devices is not yet optimal. There is also a
dependency of the measurement results on the positioning of the patient, the examiner’s
dominant arm and involuntary muscle contractions [14].

With the Rolimeter [15], the manual pull cannot be objectified, which means that
reproducibility suffers. The Telos device [16] often produces false negative measurements
and cannot be used repeatedly postoperatively due to the high radiation exposure. Studies
using electromagnetic sensors can reliably determine the rotation-dependent knee joint
kinematics. However, the fixation systems of the lower leg are not always sufficient.
According to clinical experience, the sometimes high torques and bending moments often
lead to muscular counter-tension in the patient and are perceived as painful. Some of
these measurements require general anesthesia [17]. Due to their complexity, they are
rarely applicable in routine clinical diagnostics. Computer navigation [18] is only useful
in connection with surgical procedures. It delivers reliable results but serves more to
validate surgical techniques. Cadaver studies [19] are experimental laboratory studies.
Amputates are used in which semi-active stabilizers, such as the iliotibial band and the
semimembranosus muscle, have been severed. The biomechanical properties of the tissue
are altered in the cadaver so that the transfer of the results to the in vivo situation is only
possible to a limited extent. In some cases, high forces that are not clinically tolerated are
applied to the knee joint. The force is often transmitted directly via the bone and, thus,
creates conditions that cannot be reproduced in everyday clinical practice. Nevertheless,
these studies are groundbreaking and important in fundamental research. Devices from the
early days of rotation measurement, such as the “Rottometer” [20], show a large difference
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between suggested and real lower leg rotation. This bias is promoted by the low adhesion
between the lower leg, ankle and foot on the one hand and the receiving fixation mechanism
on the other. This problem is already partially taken into account in the “rigid” boot of
Tsai’s working group [21]. However, when the ankle joint is in a neutral position, there is
still considerable rotational laxity in this joint. Quinn et al. [22] already described, in 1991,
for the axial examination in internal and external rotation, that significantly higher three-
dimensional forces and torsional moments act on the knee joint when the foot and ankle
are fixed. Some of the instrumented measurements require an elaborate set-up, including
fluoroscopic [23,24] or magnetic resonance imaging [25,26]. Other torsion measurements
apply the torque to the foot without locking the ankle, which can lead to a considerable
overestimation of the rotational laxity [20,21].

The “Laxitester” device developed by our work group to measure rotational laxity [27]
takes this fact into account by fixing the talus in a defined dorsiflexion. The advantage of
the device is the possibility of a controlled measurement of the lower leg rotation with a
defined torque. It is also a purely mechanical, easily transportable device. But the Laxitester
is a static measuring device. These measurements are only possible when the patient
is at rest. All the instruments for measuring knee laxity are strongly influenced by the
experience of the physician performing the measurement [9,10,28]. In the future, it would
be interesting to perform dynamic rotational measurements, for example, during walking or
sports. Therefore, a measurement method with a polymer-based sensor elastic–capacitive
measurement system was developed and validated.

Hypothesis of the working group: reliable dynamic rotational measurements of the
knee joint with polymer-based sensors are possible. There are significant gender differences
in the rotational laxity of the knee joint.

2. Materials and Methods

A comparative analysis of the internal rotation measurement of the knee joint was
carried out at the University Hospital of Freiburg from February to June 2022. The study was
approved by the Ethics Committee of Freiburg University on 7 December 2021 (approval
number 487/16).

2.1. Materials

The polymer-based sensor was fabricated using carbon black polydimethylsiloxane (C-
PDMS) on the sensing part and pure PDMS as the substrate. The substrate was composed
of PDMS, which was derived from a combination of two primary materials. This blend
involved the amalgamation of two silicones, Neukasil®® RTV-23 and RTV-17 (both sourced
from Altropol Kunststoff GmbH, Stockelsdorf, Germany), in a weight ratio of 10:4. The
resulting mixture was degassed to eliminate all entrapped air bubbles. For the conductive
layer, an electrically conductive PDMS blend, referred to as C-PDMS (carbon black PDMS),
was formulated by further integrating this silicone blend with 10.6 wt% of carbon black
powder ENSACO®® 250 P (TIMCAL Ltd., Bodio, Switzerland).

2.2. Methods

The production of the polymer-based capacitive strain gauge, as well as the printed
circuit board, was carried out as already described by us [29]. The C-PDMS and PDMS
were mixed together using a blade mixer for 10 min at 1200 rpm. The resulting mixture
had a high viscosity, leading to uneven distribution in the mold. To address this issue, the
viscosity of the mixture was reduced by adding 2.04 g of n-heptane. In the fabrication of the
sensor, Neukasil silicone was employed. To establish electrical contact, a mushroom-shaped
aluminum pin was embedded. Molds featuring holes were utilized during the fabrication
process, consisting of ten holes with a diameter of 1.05 mm and a depth of 1.40 mm. These
holes were designed to accommodate rigid electrical contacts when molding the C-PDMS
layer. These rigid electrical contacts were precision-manufactured from aluminum through
a CNC machine. They possessed a mushroom-like structure with small holes at their apex
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to ensure secure mechanical fixation and electrical connectivity when embedded in the
C-PDMS layer. To maintain a stable connection with the C-PDMS, even during sensor
extension, the contact pads were coated with a primer (NuSil SP-120, Silicon Primer, Song-
han Plastic Technology Co., Ltd., Shanghai, China). The slender base of the contact was
positioned in the mold’s holes, while the crown extended into the mold cavity, becoming
completely enveloped by C-PDMS from all sides and through its openings. The mea-
surement setup was comprised of a capacitive strain gauge based on the polymer linked
to a flexible printed circuit board. The electronic components on this circuit board were
employed for both data acquisition and transmission. When the sensor strip is elongated, it
results in an alteration in the spacing between the strain gauge’s components, consequently
leading to changes in capacitance. As previously explained, this change in capacitance
allows for the measurement of strain [29]. The measurement system was affixed to the
knee by adhering the sensor onto the skin in alignment with the anterolateral ligament
(ALL). The lower part of the sensor, made of silicone, and the base of the circuit board made
contact with the knee’s surface. Importantly, the sensor was applied to the knee without
any prior stretching, as depicted in Figure 1.
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Figure 1. Images showing (a,b) positioning of the sensor, including the polymer-based capacitive
strain gauges on the knee during measurements; (c) schematic sketch of the sensor. Note that the
circuit board contained a thin rubber mat to provide insulation from below.

The system was validated with an in vivo test on 10 subjects (5 females/5 males). For
this purpose, the internal rotational laxity of the knee was tested on healthy volunteers, and
the results were compared with the measurements on a static measuring device (Laxitester).
The participants were positioned in a supine posture. The clinical examination commenced
with the left leg and subsequently proceeded to the right leg, with each examination
being meticulously documented using a designated form. Exclusion criteria included the
presence of any abnormal findings in the ligaments in the collateral or cruciate ligament
area, a history of prior knee surgeries or any restrictions in the range of motion. The lower
part of the thigh was supported on a bench adjusted to achieve a knee joint flexion of 30◦.
To prevent rotation and displacement of the thigh, the femoral condyles were securely held
in place by posts within a positioning aid. Additionally, this setup effectively prevented



Life 2024, 14, 142 5 of 11

internal rotation of the thigh. The foot was secured in a retention device without the use
of footwear (as depicted in Figure 2a). To ensure precise positioning, the second toe’s
alignment was fine-tuned using an adjustable side clamp situated at the foot’s medial and
lateral edges. Dorsiflexion was set at 2 Nm with a torque meter, in accordance with previous
studies [27], to rule out rotational laxity in the ankle. The strain gauge sensor, based on
polymer, was affixed to the Gerdii’s tubercle along the path of the anterolateral ligament,
just beneath the lateral epicondyle of the thigh. Subsequently, the internal rotation of the
foot and, consequently, the lower leg was measured in three successive assessments using
a 2 Nm torque. The alteration in the stretch mark’s length was then juxtaposed with the
measured internal rotation angle using the static measuring device Laxitester, as illustrated
in Figure 2b.
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Figure 2. Measurement of knee laxity using the Laxitester static measuring device, he foot was
secured in a retention device without the use of footwear, neutral position (a); measuring was carried
out with a torque measurement up to a maximum of 2 Nm (b).

The actual measurement was performed stepwise at 5◦, with at least 20 s spent in the
position after each step before the next 5◦ step was taken until the maximum knee rotation
of the respective subject was reached. Each test was repeated three times. Prior to the
measurements, a multiple (3–5) run-through of the measurement procedure was performed
to allow the subjects to become accustomed to it and to relax them. Using calibration curves
as already described in a previous work [29,30], the conversion of the “clock-ticks” into
length change [31] was carried out. The change in capacitance of the sensor (due to the
change in length) was measured as the time required to discharge the capacitance; this is
called clock–tick [29].

2.3. Statistics

Descriptive statistics, linear regression and Spearman’s rank correlation were con-
ducted in this study. The statistical analysis was carried out using SPSS software version
12.0 (SPSS Inc., Chicago, IL, USA). To describe the patient population, basic descriptive
statistics were employed. Differences between groups were assessed with respect to age
and sex, while the changes in measured length were compared among participants at
varying rotation angles with increments of 5◦ (i.e., 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦). Scatter
plots were utilized to assess disparities between participants’ values and variations across
different angles.
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For all participants, the correlation between the change in length and the degree of
knee rotation was calculated using Spearman’s rank correlation coefficient (r) and signif-
icance level (p). The collected correlation data for different angles were then graphically
represented. The significance level was set at 0.05.

Due to the ethics committee vote, only members of the working group were allowed to
participate during the COVID-19 pandemic. Therefore, unfortunately, a power calculation
was not possible.

3. Results

The current study included a total of 10 subjects, of which five were female and five
were male. The average age was 28 ± 6 years.

The measurements showed a highly significant correlation between the purely me-
chanical measurement under maximum force and the digital measurement during dynamic
examination with strain gauges (Figure 3). Furthermore, a significant difference in laxity
was found between males and females (Table 1). Each test was repeated three times. The
maximum standard deviation per individual was ±0.012 after circumference correction of
length change.
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of the internal knee rotation for all participants.

Table 1. Length change of the polymer-based capacitive strain gauge as a function of knee internal
rotation comparing the left and right knee of females vs. males.

Length Change in mm [31]

Internal Knee Rotation 0◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦

Left Knee Females

Female 1 0 0.140 0.076 0.245 0.512 0.618 0.813 1.028

Female 2 0 0.110 0.208 0.232 0.331 0.478 0.781

Female 3 0 0.104 0.148 0.222 0.270 0.332 0.410 0.500

Female 4 0 0.166 0.269 0.402 0.428 0.635 0.784

Female 5 0 0.249 0.536 0.634 0.775 0.859 0.961 1.066

Left Knee Males

Male 1 0 0.212 0.426 0.640 0.818

Male 2 0 0.344 0.592 0.996 1.338

Male 3 0 0.068 0.091 0.095 0.149 0.180 0.213
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Table 1. Cont.

Length Change in mm [31]

Male 4 0 0.170 0.330 0.454 0.540 0.710

Male 5 0 0.213 0.405 0.530 0.686 0.904

Right Knee Females

Female 1 0 0.199 0.388 0.623 0.787 0.994 1.144 1.285

Female 2 0 0.064 0.087 0.149 0.190 0.329 0.503

Female 3 0 0.059 0.076 0.108 0.104 0.133 0.163 0.244

Female 4 0 0.154 0.261 0.349 0.477 0.605 0.695

Female 5 0 0.108 0.126 0.223 0.313 0.404 0.490 0.575

Right Knee Males

Male 1 0 0.084 0.124 0.169 0.217

Male 2 0 0.499 0.778 1.175 1.594

Male 3 0 0.052 0.084 0.093 0.093 0.086 0.085

Male 4 0 0.071 0.109 0.177 0.239 0.301

Male 5 0 0.149 0.256 0.402 0.518

According to Table 1, there are clear differences between the genders. The internal
knee rotation of the females was up to 45◦ in some cases, whereas for most of the males,
only 25◦ was possible. In addition, different values for the change in length were found for
the same angle of rotation. The reason for this was the different sizes of the test subjects.
When analyzing the data, it became apparent that it was necessary to mathematically
correct the changes in length recorded using the polymer-based capacitive strain gauges
depending on the leg circumference of the person examined (Figure 4). This means that in
order to convert the change in length to an angle measurement, a correction factor must be
taken into account. In order to compensate for the change in the length of the strain gauge
with the same internal rotation, which is related to the size of the test person (and is also
caused by the knee circumference), the following correction factor was used: one divided
by the knee circumference of the test person.
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Table 1 additionally shows that there is a significant difference in the length change
between males and females with the same internal rotation angles. However, this was not
exclusive to females as there were also males who demonstrated a significantly smaller
length change (0.052 mm vs. 0.499 mm). If the correction factor (one divided by the
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knee circumference of the test person) is taken into account, the values become relative,
and, in addition, a dimensionless knee circumference-corrected length change is obtained.
However, it is still noticeable (Figure 4) that there are individual differences. These are due
to the thickness of the tissue, the amount of muscle and the elasticity of the skin.

4. Discussion

The study showed a highly significant correlation between the purely mechanical mea-
surement under maximum force and the digital measurement during dynamic examination
with strain gauges. Furthermore, a significant difference in laxity was found between males
and females.

The role of rotational laxity and, subsequently, extraarticular stabilizers was already
noted in 1989 at a meeting of the American Orthopaedic Society for Sports Medicine
(AOSSM) at an expert conference [32]. In a current review, Garcia-Mansilla et al. noted the
importance of the anterolateral complex [25]. Especially in the case of recurrent anterior
cruciate ligament ruptures, excessive rotational laxity is evident [33]. Studies increas-
ingly support the importance of the anterolateral ligament in anterior cruciate ligament
reconstruction [31].

A few processes have been established to structure elastic and highly flexible materials,
such as polydimethylsiloxane (PDMS). Some of them allow one to combine conductive and
nonconductive PDMS in one structure to construct flexible sensors [4]. This non-invasive
measurement PDMS strain sensor is applied to the skin in the course of the anterolat-
eral ligament. Based on the in vitro measurements of the simplified knee joint model
of Zens et al. [34], the results obtained from the knee simulator exhibited a reproducible
relative capacitance change of 0.01 for every 5◦ angle change from 10◦ through 45◦. Already,
in this in vitro experimental setup, it could be shown that the bone-to-bone displacement
is transferred to the skin and measured there with the strain sensors. This could also be
performed on human cadavers with capacitive strain sensors. As part of the project, an
optimized polymer-based capacitive strain gauge was developed (Figure 1c). The sensor
consists of two layers: a stretchable substrate and a stretchable conductive layer sitting
on top of that, which is structured as a capacitive electrode. The sensor was first charac-
terized. For this purpose, the sensor was subjected to a stretch of 10 mm and a relaxation
for several cycles. The speed at which the sensor was stretched from one step to the next
was 3 mm/sec. The precise stretching of the sensor was achieved by using a linear stage.
The results confirmed the reproducibility of the sensors and the reliability of the newly
developed manufacturing process. The differentiated diagnosis of rotational laxity of the
knee joint is the crucial prerequisite for the correct therapeutic approach [31].

The Laxitester can only be used to measure the dorsiflexion when applying the maxi-
mum torque (2 Nm)—other statements regarding the kinetics of the knee cannot be made.
The advantage of a digital measurement using polymer-based capacitive strain gauges
compared to a mechanical internal rotation measurement with a fixed internal rotation
force is that a linear measurement of internal rotation laxity is possible without applying a
maximum force [35]. In addition, using our sensor, the measurements were reproducible in
independent studies [36] and, compared to the Laxitester, our approach is independent of
the investigator, which is one of the main points of criticism in using the Laxitester [9,10,28].
Using our sensor, the only dependent variable is the size of the subject, which could be
corrected by a correction factor (based on the knee circumference). Nevertheless, individual
patient-based differences can occur. The advantage of the method described here is that it
is easy to use in everyday clinical practice—no time is required at the MRI scanner as is the
case described in Kernkamp et al. [37] and Kosy et al. [38]. Moreover, the measurements
can easily be performed directly on the patient and do not require any cadaveric studies,
as in Lording et al. [39] or Wang et al. [40]. In addition, there is no need for camera or
sensor systems such as in electromagnetic tracking, which the subjects walk past or in
which the subjects perform movements [41]. An additional benefit of our system is that,
after calibration has been performed for each patient, the strain gauges can also be used for
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other dynamic measurements such as walking, running or stair climbing. The data could
then be sent directly to the patient’s or athlete’s smartphone via Bluetooth, for example, in
order to record these measurements during everyday activities or directly during sports.

5. Limitations

The low number of cases due to the COVID-19 pandemic and ethical regulations is a
major weakness. Patients with cruciate ligament pathologies were not included due to the
ethical regulations.

6. Conclusions

The current study shows that elastic polymer-based capacitive strain gauges are a
reliable instrument for internal rotation measurement of the knee. This will allow dynamic
measurements in the future in many different settings. In addition, significant gender
differences in the internal rotation angle were seen.
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