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Abstract: Infections with human immunodeficiency virus (HIV) and acquired immune deficiency
syndrome (AIDS) represent one of the greatest health burdens worldwide. The complex pathophysio-
logical pathways that link highly active antiretroviral therapy (HAART) and HIV infection per se with
dyslipidemia make the management of lipid disorders and the subsequent increase in cardiovascular
risk essential for the treatment of people living with HIV (PLHIV). Amongst HAART regimens,
darunavir and atazanavir, tenofovir disoproxil fumarate, nevirapine, rilpivirine, and especially inte-
grase inhibitors have demonstrated the most favorable lipid profile, emerging as sustainable options
in HAART substitution. To this day, statins remain the cornerstone pharmacotherapy for dyslipidemia
in PLHIV, although important drug–drug interactions with different HAART agents should be taken
into account upon treatment initiation. For those intolerant or not meeting therapeutic goals, the
addition of ezetimibe, PCSK9, bempedoic acid, fibrates, or fish oils should also be considered. This
review summarizes the current literature on the multifactorial etiology and intricate pathophysiology
of hyperlipidemia in PLHIV, with an emphasis on the role of different HAART agents, while also
providing valuable insights into potential switching strategies and therapeutic options.

Keywords: HIV; dyslipidemia; metabolic syndrome; antiretroviral therapy; switching strategy

1. Introduction

Since the first case reports in 1981, human immunodeficiency virus (HIV) infection
and acquired immune deficiency syndrome (AIDS) remain among the world’s greatest pan-
demics, with more than 39 million people living with HIV (PLHIV) and 1.3 million newly
infected in 2022 [1]. The development of highly active antiretroviral therapy (HAART)
has transformed AIDS into a rather long-term chronic condition through the substantial
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suppression of viral load, partial restoration of the immune system, and decreased fatal
HIV-related illnesses [2,3]. With nearly normal life expectancy among PLHIV who receive
HAART, it is estimated that 73% of HIV-infected individuals will be over 50 years old
by 2030, highlighting age-related comorbidities such as metabolic syndrome (MetS) and
the consequent cardiovascular disease (CVD) as an emerging problem since obesity and
aging have both seen dramatic increases in prevalence throughout society [4–6]. MetS,
characterized by abdominal obesity, high blood pressure, increased fasting glucose, in-
creased triglycerides (TGs), and decreased high-density lipoproteins (HDLs), is highly
associated with CVD [7,8]. Its prevalence ranges between 11% and 48% among PLHIV, and
it is estimated that 78% of them will develop CVD at some point in life [9,10]. Moreover,
individuals with HIV receiving HAART face greater risk for major metabolic-related car-
diovascular events as compared with those uninfected, experiencing earlier manifestations
of heart failure, while also demonstrating nearly a two-fold increased risk for myocardial
infarction and a four-fold increased risk for sudden cardiac death [11–15].

Dyslipidemia, a cornerstone of MetS and a well-established risk factor for CVD, is
responsible for roughly 50% of all cardiovascular events among PLHIV. Lipid abnormalities
that include low levels of HDL, low-density lipoprotein (LDL), total cholesterol (TC), elevated
TG, and oxidized LDL (oxLDL) lead to an atherogenic profile in more than 67% of women
and 81% of men with HIV infection [16–19]. In more detail, the underlying mechanisms of
dyslipidemia in PLHIV involve complex pathophysiological pathways associated with, in
addition to traditional risk factors, both HAART treatment and HIV infection per se. HIV-
encoded proteins modify the expression of regulatory genes and the function of cell membrane
proteins, resulting in the accumulation of free fatty acids (FFAs) and leading to lipotoxicity,
while chronic inflammation and immune activation seen in HIV infection lead to increased
levels of cytokines, decreased TG clearance, increased levels of oxLDL, and alterations in
lipid particle composition [20–24]. Moreover, as adipose tissue serves as a reservoir for HIV,
inflammation plays a key role via a continuous interplay between CD4+ T cells, macrophages,
and adipocytes, further dysregulating lipid metabolism; specific HAART categories are
implicated in the redistribution of adipose tissue in the form of lipodystrophy [25–29]. In
addition to the aforementioned frequent clinical entity in PLHIV, antiretroviral treatment
can even promote dyslipidemia with numerous molecular mechanisms, with some protease
inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs), and non-nucleoside
reverse transcriptase inhibitors (NNRTIs) having the most profound effects on the lipidemic
profile [30,31]. Severe drug–drug interactions between HAART and statins, combined with
limited evidence of newly introduced hypolipidemic agents in HIV population, bring to
the surface the importance of switching from older HAART regimens to lipid-friendly ones,
highlighting that the management of dyslipidemia in PLHIV is a rather demanding issue.

The purpose of the present review is to summarize the current literature on the
multifactorial etiology and intricate pathophysiology of hyperlipidemia in PLHIV, focusing
on the role of different HAART agents, while also providing valuable insights into possible
switching strategies and treatment options.

2. The Molecular Mechanisms of HIV-Associated Dyslipidemia
2.1. The Role of HIV Viremia and Inflammation

HIV infection induces lipid abnormalities via several mechanisms, with the shed-
ding of viral proteins, immunological activation, and persistent inflammation prevailing
among them. Vpr, an HIV protein responsible for viral replication that plays a multifac-
torial role by inhibiting the peroxisome proliferator-activating receptor-γ (PPARγ) and
stimulating the glucocorticoid receptor (GR) and the liver X receptor-a (LXR-α), leads
to preadipocyte differentiation, dysregulation, and the overaccumulation of FFA, while
it also decreases hepatic fatty acid oxidation and reduces hepatic VLDL-TG exportation,
ultimately leading to lipodystrophy [32–36]. Tat, a regulatory HIV protein involved in viral
transcription, also interferes with normal cholesterol turnover and esterification through
the up-regulation of genes encoding 7-dehydrocholesterol reductase (DHCR7), resulting in
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increased levels of free cholesterol, TC, and cholesteryl esters [21,37,38]. Furthermore, Tat
induces the expression of adhesion molecules and stimulates monocyte chemoattractant
protein-1 (MCP-1)-mediated monocyte transmigration, perpetuating immune activation
and inflammation [39,40]. Another protein shed by HIV, Nef, holds an important role
in the viral replication and immunological escape of HIV, while also exhibiting a bifacto-
rial role in cholesterol bioavailability. It stimulates cholesterol biosynthesis and inhibits
its efflux by suppressing the activity of the ATP-binding cassette transporter protein A1
(ABCA1), while at the same time disrupting caveolin-dependent cholesterol transport in
infected macrophages, resulting in decreased HDL levels and an abundance of lipid rafts.
It also reduces endothelial nitric oxide (NO) production; increases inflammatory cytokine
release, such as IL-6 and TNF-α and promotes the secretion of MCP-1 from endothelial
cells, inducing endothelial apoptosis and promoting atherosclerotic plaque rupture and the
development of acute thrombus [24,41–46].

Inflammation plays a crucial role in dyslipidemia and associated atherosclerosis,
serving both as a cause and as a consequence. In HIV infection, the subpopulation of
CD14+/CD16+ pro-inflammatory monocytes predominates, as indicated by the increased
ratio of CD4+/CD8+, expressing activation markers and molecules presenting antigens
such as CD38, CD69, CD11b, and CD86, resulting in tissue migration and turnover to
cholesterol-overloaded dysfunctional macrophages. These so-called foam cells found in
adipose tissue, together with activated CD4 and CD8 T cells and NK and NKT cells, result
in the production of inflammatory mediators such chemokines CCL2, CCL5 and CX3CL1,
c-reactive protein (CRP), IL-6, IL-8, IL-1β, IL-18, IL-2, IFN-γ, IL-17A, and TNF-α, altering
adipose cell function, impairing reverse cholesterol transport, and reducing HDL and
apolipoprotein A-I (apoA-I) particle numbers [47–52]. Furthermore, these foam cells are
highly concentrated in NADPH oxidases, enzymes that, under a hyperlipidemic envi-
ronment, up-regulate and form oxLDL, inducing endoplasmic reticulum (ER) stress and
the production of reactive oxygen species (ROS), exacerbating both inflammation and
foam cell formation, which are strong promoters of atherogenesis [53–55]. Along the same
line, another mechanism which promotes the ongoing inflammation in HIV-associated
dyslipidemia is the activation of NLRP3 inflammasome. In fact, once pathogen-associated
molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) recognize
HIV particles through toll-like receptors (TLRs), the formation of an inflammasome occurs,
resulting in a cascade of cytokines and the further production of IL-1β and IL-18 [56,57].
Additionally, HIV infection is characterized by the production of interferon-alpha (IFN-α)
as an attempt of the immune system to prevent viral entry and inhibit viral replication. Both
IFN-α and TNF-α are associated with impaired oxidation of plasma FFAs, contributing to
enhanced hepatic re-esterification and elevated plasma levels of TGs. Another important
branch of inflammation-induced dyslipidemia is the alteration of the gut microbiome that
occurs in HIV infection. In fact, damage to the intestinal epithelium, microbial translocation,
and subsequent production of microbial metabolites and toxins such as lipopolysaccharide,
along with the down-regulation of normal flora bioproducts such as butyrate, contribute to
persistent inflammation, as measured by circulating soluble CD14 (sCD14), soluble CD163
(sCD163), and CRP, leading to an increased TG/HDL ratio [58–62].

2.2. The Role of Antiretroviral Treatment

The introduction of HAART as a combination of three antiretroviral agents, typically
including two NRTIs and one PI, NNRTI or integrase strand transfer inhibitor (INSTI),
has revolutionized the treatment of HIV infection. However, nowadays, the long-term
metabolic side effects of those regimens, such as dyslipidemia, have become a concern [63].
The impact of HAART on the lipid profile is often challenging to determine, considering
the significant variability between different classes of ART drugs and drugs within the
same class, as well as the multidrug nature of HIV treatment itself. However, altered lipid
parameters in HAART-experienced patients, as expressed by high levels of TG, LDL, and
apolipoprotein C-III, persisting even 3 years after the initiation of HAART, have raised
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questions about the underlying etiology [64,65]. Furthermore, studies from the pediatric
population that demonstrated a prevalence of dyslipidemia of up to 70% after 6–150 months
of treatment, as well as studies that showed a nearly 15% increase in the prevalence of
dyslipidemia and a significantly higher TG/HDL ratio 6 months after the initiation of
HAART, highlight the eminent need of pathophysiological interpretation, especially in in-
dividuals with multidrug-resistant HIV [66–68]. The main reason behind the ongoing lipid
dysregulation lies in the combination of continuous inflammation and immune activation,
as HAART achieves viral suppression but not elimination, mitochondrial dysfunction, and
altered distribution of adipose tissue. In fact, adipose tissue and lipodystrophy syndrome,
which manifests as lipohypertrophy with abdominal and dorsocervical fat accumulation or
lipoatrophy with subcutaneous fat loss, hold a crucial role in dyslipidemia [69] (Figure 1).
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Figure 1. The pathogenesis of dyslipidemia in PLHIV under HAART. HIV induces macrophage activa-
tion, triggering an inflammatory response with the subsequent release of proinflammatory cytokines
in various organs. In the arterial vessel wall, it leads to endothelial cell dysfunction, the oxidation of
LDL, and the formation of atheromatous plaque. Additionally, HIV directly contributes to dyslipi-
demia by increasing the levels of FFA and VLDL, while also decreasing the functionality of HDL and
impeding reverse cholesterol transport. Furthermore, the use of HAART exacerbates and intensifies
dyslipidemia by inducing liver steatosis, promoting the accumulation of fatty acids, fostering lipoge-
nesis, causing abnormalities in adipocyte metabolism, and leading to lipodystrophy. HIV, human
immunodeficiency virus; HAART, highly active antiretroviral therapy; DAMP, damage-associated
molecular pattern; PAMP, pathogen-associated molecular pattern; LPS, lipopolysaccharides; TG,
triglyceride; VLDL, very low density lipoprotein; HLD, high-density lipoprotein; LDL, low-density
lipoprotein; RCT, reverse cholesterol transport; NO, nitric oxide; FFA, free fatty acid; TNF-α, tumor-
necrosis factor-α; PPARγ, peroxisome proliferator-activated receptor γ; MTP, microsomal triglyceride
transfer protein; LXR, liver X receptors; IL, interleukin; MCP, monocyte chemoattractant protein;
ATP, adenosine triphosphate; LPL, lipoprotein lipase; APO, apolipoprotein; TLR, toll-like receptor;
ABCA1, adenosine triphosphate-binding cassette transporter A1.
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2.2.1. Protease Inhibitors

PIs are mostly associated with lipohypertrophy and have numerous effects on lipid
levels, with a substantial elevation in TG and VLDL levels, especially ritonavir (RTV),
lopinavir (LPV), and saquinavir (SQV); and little to no effect on LDL and HDL levels,
especially between generally lipid friendly darunavir (DRV) and atazanavir [70,71]. In
general, PI-based regimens have a trend to develop greater atherosclerosis compared to
non-PI-based regimens, as demonstrated by the increase in the intima media thickness
(IMT) and the development of atheromatous plaques. More specifically, PIs inhibit lipolysis
by altering lipoprotein lipase (LPL) activity, resulting in reduced TG uptake in adipocytes
and elevated plasma TG levels [72,73]. Furthermore, they inhibit the nuclear localization of
sterol response element binding protein-1 (SREBP-1) in adipocytes, resulting in the down-
regulation of PPARγ, impaired adipocyte differentiation, and insufficient lipid removal
from circulation, while concomitantly promoting the nuclear localization of SREBP-1 in
hepatocytes, resulting in excessive fatty acids synthesis [74,75]. In addition, the inhibition
of proteasomal apolipoprotein B (apoB) degradation and increased ER stress have been
observed in cultures of hepatocytes and rat hepatocytes, respectively, resulting in increased
VLDL and lipodystrophy [76–78]. It is also worth mentioning that ritonavir impairs en-
dothelial function via reduction in adipose mass, and endothelial leptin receptor-dependent
increases in NADPH oxidase 1 (Nox1), C-C chemokine receptor type 5 (CCR5), and inflam-
mation, reducing nitric oxide bioavailability, while also indicating potential avenues for
limiting human immunodeficiency virus infection [79]. Along the same line, chronic expo-
sure to HIV-derived protein Tat impairs endothelial function via the indirect alteration in
fat mass and Nox1-mediated mechanisms, providing potential targets to improve vascular
function in HIV infection-associated CVD [80].

In a cross-sectional study with 17,852 participants, individuals who received PI regi-
mens were associated with higher levels of TC and TG than HAART-naive patients, while
those receiving the dual-PI regimen had higher levels of TG, TC, LDL, and the TC/HDL
ratio [81]. In a within-class comparison, RTV-containing regimens were associated with
higher levels of TC and TG and a higher TC/HDL ratio than indinavir (IDV)-containing
regimens, while nelfinavir (NFV)-containing and SQV-containing regimens were associated
with a reduced risk of lower HDL levels and a lower TC/HDL ratio, respectively [82]. As
implied, RTV demonstrated the most significant effect on lipid parameters, even 1 week
after initiation of treatment, as indicated by the elevation of 146% TG level and the increase
of 159% VLDL level, even in healthy normal individuals [83,84]. Interestingly, its lipidemic
effect appeared to be dose dependent, given the fact that, combined with other PIs, a low-
booster dose resulted in increased TG and LDL levels by 26% and 16%, respectively, while
in full-dose, TGs increased by 83%, FFAs by 30%, and VLDL by 33% [85,86]. In RTV-boosted
LPV (LPV/r) regimens, a further 28%-to-108% increase in fasting and non-fasting TG levels
was observed, which, combined with an increase of 25% in LDL levels and a concomitant
reduced size of LDL particles, could be associated with high atherogenicity [87,88]. Al-
though some studies demonstrated pretreatment baseline lipid values and LPV plasma
concentration levels as important risk factors for induced hyperlipidemia, other studies did
not verify this observation [89–91]. It is also worth mentioning that Amprenavir (APV) and
NFV increased TG and LDL levels to a lesser extent than RTV or LPV/r in HIV-infected
patients [92,93]. Moreover, ATV is considered to be among the most lipid-friendly PIs
and has shown favorable lipid outcomes. In fact, some studies demonstrated the absence
of a harmful effect on TG levels after 48 weeks of administration, even at a dose of up
to 500 mg, while some others showed a significant decrease of 46% in TG levels, with a
concomitant improvement of 18% in TC levels, during the first 24 weeks after switching to
the atazanavir-based regimen [94,95]. Newer PIs such as DRV share the beneficial effect
of ATV on hyperlipidemia. Data from the ARTEMIS study that included 689 patients
showed that DRV had smaller median increases in TG and TC levels, +1.8 mg/dL and
+10.8 mg/dL, respectively, compared to LPV, 10.8 and 16.2 mg/dL, respectively; however,
in POWER studies enrolling heavily pretreated patients, a 15% increase in TG levels was
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observed [96,97]. Along the same line, in a phase 4 randomized exploratory study, DRV
demonstrated an increase in apoA-I and, consequently, favorable changes in HDL levels,
especially in HIV individuals with a low CD4+ cell count, compared to ATV [98].

2.2.2. Nucleoside Reverse Transcriptase Inhibitors

NRTIs, especially the thymidine analogues stavudine (d4T) and zidovudine (ZDV),
have been implicated with dyslipidemia, mainly with adipose tissue alteration and induced
lipoatrophy [99]. The main pathophysiological mechanism involved is mitochondrial dys-
function and cell toxicity through the inhibition of DNA polymerase gamma and oxidative
phosphorylation, increasing mitochondrial ROS production [100,101]. The increased incor-
poration and ineffective exonuclease removal of highly toxic dideoxy NRTI compounds
presumably constitute another important branch of mitochondrial dysregulation, while
insufficient respiratory chain activity and ATP synthesis, as an index of mitochondrial dys-
function, have been reported in lipodystrophic patients receiving NRTIs [102–104]. ZDV has
especially been associated with the inhibition of mitochondrial adenylate kinase, adenosine
nucleotide translocator, and electron transport chain, promoting ROS production [105,106].
Highlighting the great influence of NRTIs in adipose tissue, the expression levels of signifi-
cant adipogenic factors such as PPAR-γ, SREBP-1, CCAAT/enhancer-binding protein alpha
(C/EBP-α), adiponectin, and leptin were abnormally low, while cytokine levels of IL-6 and
TNF-α, being produced by stressed adipocytes and immune cells, were notably high. Fur-
thermore, NRTIs were associated with depleted cellular mitochondrial DNA (mtDNA) and
mitochondrial proliferation in adipocytes, as quantified by cellular mtDNA copy number
and mitochondrial mass measurements, findings highly suggestive of lipoatrophy [107].
Similar findings with a nearly 68% reduction in mtDNA/nuclear DNA levels were ob-
served in peripheral blood mononucleated cells of HIV individuals treated with NRTIs,
while the significant inhibition of mitochondrial gene expression was demonstrated after a
2-week NRTI-based regimen even in HIV-negative patients [107,108]. Interestingly, some
studies link these effects with lamivudine (3TC) to a lesser extent compared to didanosine
and d4T [109].

A prospective multicenter study that enrolled 873 HIV individuals who switched from
d4T to tenofovir (TDF) demonstrated a sustained reduction in the median levels of TC
(−17.5 mg/dL), LDL (−8.1 mg/dL), and TG (−35 mg/dL), with the greatest reduction
observed among those with higher baseline values [110]. In fact, even a lower dose of d4T
(30 mg b.i.d. instead of 40 mg b.i.d.) showed a clinically significant improvement of lipid
parameters in HIV-treated patients [111]. Similar findings have been recorded with ZDV,
which was associated with higher levels of TC and LDL compared to other first-line agents
in China, suggesting a preemptive switch from thymidine analogues to other regimens
to prevent further progression of dyslipidemia and lipoatrophy [112,113]. Furthermore,
Abacavir (ABC) could be an alternative option of d4T and ZDV, as it has shown a positive
effect in increasing limp fat and partially resolving lipoatrophy, even though an unfavorable
lipid outcome has been observed, with higher levels of TG (25 mg/dL versus 3 mg/dL)
and TC (34 mg/dL versus 26 mg/dL), as compared with TDF at 48 weeks, according to
the results from the ACTG 5202 study [114,115]. However, the increased overall cardio-
vascular risk associated with ABC limits the benefits of potential switching to ABC-based
regimens [116]. 3TC, TDF, and the newer agent tenofovir alafenamide (TAF) are the NRTI
representatives exhibiting the most lipid-friendly profile, outmatching the rest of NRTIs in
all lipid outcomes, such as TG, TC, LDL, and HDL levels [71]. Notably, a recent prospective
cohort study of 1446 HIV individuals who switched from TDF to TAF had a mean weight
increase of +0.5 kg at 144 weeks and a significant increase in TC (+7.9 mg/dL) and TG
(+11.2 mg/dL), with no differences in the TC/HDL ratio [117]. In addition, another recent
observational, single-center study with 61 HIV individuals who switched from TDF to
TAF demonstrated a significant increase in TC 178 ± 38 to 194 ± 40 mg/dL, LDL levels
117 ± 32 to 137 ± 36 mg/dL, and average weight, as well as an increase in HDL levels
45 ± 12 to 48 ± 13 mg/dL, indicating that, despite the overall superiority of TAF in terms
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of stability and bioavailability, a personalized therapeutic approach regarding the metabolic
risk should be taken into account [118].

2.2.3. Non-Nucleoside Reverse Transcriptase Inhibitors

NNRTIs have also shown an effect in dyslipidemia with increased TC, LDL, and
TG levels and increased HDL levels, thus counterbalancing the overall lipid risk profile
due to mitochondrial dysfunction, as established by detecting increased mitochondrial
mass and decreased mitochondrial membrane potential [119–121]. Efavirenz (EFV) has
especially been associated with increased ROS production and reduced ATP synthesis
through inhibition of complex I, combined with induced hepatic cell apoptosis through
modified cytochrome c and caspase 9 activity [104,122]. Furthermore, EFV can serve as
a potent pregnane X receptor (PXR) selective agonist, inducing target gene expression,
for instance, for the fatty acid transporter CD36 gene, resulting in increased lipid uptake
and cholesterol biosynthesis in cells [123]. Indeed, the unfavorable lipid effect of NNR-
TIs, especially EFV, has been demonstrated in a 6-year prospective observational study
of 433 immunosuppressed HIV individuals, which demonstrated high TC and TG lev-
els, as well as increased TC and LDL levels as compared with ATV/ritonavir (ATV/r)
treatment [124,125]. On the contrary, some other studies demonstrated favorable HDL
and apoA-I levels of EFV as compared with ATV/r, as well as the superiority of EFV
as compared with LPV in terms of TG levels [126,127]. Additionally, in a between-class
comparison, the 2NN study evaluated the different lipid effects of two NNRTIs, EFV and
nevirapine (NVP), in combination with two NRTI (d4T and 3TC), and showed a greater
increase in TG, TC, and LDL levels in the EFV arm, as compared with the NVP arm. Similar
data have been extracted from the SCOLTA study enrolling 490 HIV individuals, within
which switching from EFV to rilpivirine (RPV), another NNRTI, demonstrated a statistically
significant improvement in TC, TG, and LDL levels and increased the TC/HDL ratio in
12 months [128]. Finally, an interesting study of 50 HIV individuals who switched from a
lipid-friendly NNRTI (NVP) to another lipid-friendly NNRTI (RPV) showed a significant
reduction at week 24 in the mean TC (−12 mg/dL), LDL (−6.5 mg/dL), and HDL levels
(−5 mg/dL), with TG levels remaining rather stable, highlighting the challenging nature of
HAART switching [129].

2.2.4. Integrase Inhibitors

INSTIs seem to exert minimal or negligible influence on lipid levels, even after long-
term use, highlighting the beneficial role of these agents in dyslipidemia after switching
from other HAART regimens, as suggested by current guidelines [130]. A recent meta-
analysis of randomized controlled trials comparing integrase inhibitors with other antiretro-
viral classes (EFV-based or PI-based therapies) in naive HIV patients, demonstrated that
INSTIs led to decreased TC (MD −13.44 mg/dL), LDL (MD −1.37 mg/dL), HDL (MD
−5.03 mg/dL), and TG levels (MD −20.70 mg/dL). However, a well-established risk of
considerable weight gain among HIV individuals has been associated with INSTI-based
treatment, compared to PIs and NNRTIs [131–133]. The pathophysiological pathway be-
hind the aforementioned outcome is yet to be established; however, a low CD4 count, high
viral load, and substantial weight loss before the initiation of HAART were associated with
greater weight gain, implying that superior immune reconstitution in individuals with more
advanced HIV infection appears to be an independent risk factor for INSTI-induced fat
accumulation [134,135]. Recent studies have demonstrated that dolutegravir (DTG) and, to
a lesser extent, Raltegravir (RAL) are associated with activation of lipogenic and adipogenic
pathways, increased lipid accumulation, induced mitochondrial dysfunction and oxidative
stress, low leptin and adiponectin secretion, and elevated peri-adipocyte fibrosis [136,137].
However, these adipose tissue alterations do not reflect unfavorable lipid outcomes, unlike
insulin resistance [138]. Indeed, in the ACTG A5260s study, ART-naive patients undergoing
RAL treatment presented with a rapid two-fold increase in insulin resistance, similar to that
observed with ATV/r and DRV/r, but on the contrary, another prospective randomized
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study highlighted the superiority of RAL in all fasting lipid measurements, including TC,
TG, non-HDL, and LDL, as compared with the two ritonavir-boosted PIs [139,140]. Further-
more, a Greek cohort study by Pantazis et al. demonstrated that INSTIs, especially DTG and
RAL, as compared with elvitegravir (EVG), led to faster and more profound weight gain in
comparison with PIs and NNRTIs, with a mean expected weight gain of 6kg in the INSTI-
based regimen group, while a cohort study of the RESPOND study group, with 4577 HIV
individuals, demonstrated that elvitegravir/cobicistat (ELG/c) and RAL were associated
with a higher incidence of dyslipidemia, as compared with DTG [141,142]. Apart from DTG,
second-generation INSTIs such as bictegravir (BIC) share the same lipid-friendly profile,
although significant weight gain has been recorded, with a study comparing DTG + 3TC
to BIC/FTC/TAF, demonstrating a significant decrease in TG levels (MC −14 mg/dL)
and increased HDL levels (MC + 3 mg/dL) in the DTG group, with a significant decrease
in LDL levels (−13 mg/dL) in the BIC group [143]. Finally, another second-generation
INSTI, cabotegravir (CAB), in combination with RPV, had a promising lipid effect with a
significant increase in HDL levels and a decrease in the TC/HDL ratio, but little to no effect
in LDL levels, regardless of the regimen prior to switching [144] (Table 1).

Table 1. Summary of the effect of individual antiretroviral drugs on lipid parameters.

Drug Class Antiretroviral Drug Total Cholesterol LDL-C HDL-C Triglycerides

Protease inhibitors
(PIs)

Atazanavir/ritonavir ↔ ↑ ↔ ↑
Darunavir/ritonavir ↔ ↑ ↔ ↑

Indinavir ↑ ↑ ↑ ↑
Lopinavir/ritonavir ↑↑ ↑ ↔ ↑↑

Nelfinavir ↑ ↑↑ ↔ ↑

Nucleotide reverse
transcriptase

inhibitors (NRTIs)

Abacavir ↑ ↑ ↔ ↑
Zidovudine ↑ ↑ ↔ ↑

Emtricitabine ↔ ↔ ↔ ↔
Lamivudine ↔ ↔ ↔ ↔
Stavudine ↑ ↑ ↓ ↑

Tenofovir alafenamide ↔ ↑ ↑ ↑
Tenofovir disoproxil ↓ ↔ ↓ ↔

Non-nucleotide
reverse transcriptase
inhibitors (NNRTIs)

Efavirenz ↑ ↑ ↑ ↑
Etravirine ↔ ↔ ↔ ↔

Nevirapine ↑ ↑ ↑↑ ↑
Rilpivirine ↑ ↑ ↔ ↔

Integrase strand
transfer inhibitors

(INSTIs)

Raltegravir ↔ ↔ ↑ ↓
Dolutegravir ↔ ↔ ↑ ↓
Bictegravir ↑ ↓ ↑ ↓

Cabotegravir ↓ ↔ ↑ ↓
↑ = some increase; ↑↑ = moderate increase; ↓= some decrease; ↔ = no significant change; LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

3. Treatment of Dyslipidemia

The treatment of dyslipidemia in PLHIV reflects the eminent need to address its most
common clinical consequence, atherosclerotic cardiovascular disease (ASCVD). ASCVD
risk stratification in PLHIV is usually performed by assessing risk scores from the gen-
eral population, such as the Framingham Heart Study (FHS-CVD), the Pooled Cohort
equations of the American College of Cardiology/American Heart Association (PCE), and
the Systematic Coronary Risk Evaluation High-Risk Equation (SCORE), in an attempt to
detect those with a high or very high risk of ASCVD early on [145]. Although practical and
essential, the aforementioned scores systematically underestimate the CVD risk of PLHIV,
especially among low/moderate risk groups, leading to inadequate or delayed treatment
initiation [146]. Furthermore, although the therapeutic approach to dyslipidemia in HIV
individuals aligns with that of the general population, in PLHIV, potential interactions
between lipid-lowering drugs and antiretroviral treatment should be taken into account.
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The initial step of lipid management involves endorsing lifestyle modifications, followed
by the introduction of lipid-lowering therapy; however, in individuals with an increased
risk of cardiovascular disease, switching from HAART to more lipid-friendly regimens has
a pivotal role (Table 2).

Table 2. Summary of major studies evaluating the treatment options for HIV-associated dyslipidemia.

Study/Year (n) Study Aim Subject Characteristics Clinical Outcome

Li et al. (2021)
[147] 36,253

Effect of statins on the risk
of CVD, cancer, and
all-cause mortality

PLHIV under stable HAART
Statins reduced the risk of
cancer and mortality but

not CVD

Funderburg et al.
(2014)
[148]

147
Effect of rosuvastatin vs.
placebo on inflammatory

markers of CVD

PLHIV under stable HAART,
HIV RNA < 1000 copies/mL,

LDL ≤ 130 mg/dL,
TG ≤ 500 mg/dL, without

CVD/DM

Rosuvastatin decreased sCD14
and proportions of CD14Dim

and CD16+ monocytes

Gili et al. (2016)
[12] 736

Efficacy and safety of
statins on TC, LDL, HDL,

and TG levels
PLHIV under stable HAART

Reduced TC with rosuvastatin
and atorvastatin; reduced LDL
with rosuvastatin, atorvastatin,
and simvastatin; reduced TG

with rosuvastatin, simvastatin,
and atorvastatin; and increased

HDL with pravastatin,
rosuvastatin, and atorvastatin

Grinspoon et al.
(2023)
[149]

7769 Effect of pitavastatin vs.
placebo on MACEs

PLHIV under stable HAART
with low-to-moderate

CVD risk

Incidence of MACEs was
significantly lower in the
pitavastatin group vs. the

placebo group. Major outcome
led to early termination

of the study

Saeedi et al. (2015)
[150] 43

Effect of
ezetimibe/rosuvastatin vs.
rosuvastatin on apoB, LDL,

TC, TG, HDL, non-HDL,
apoA1, apoB/apoA1,

TC/HDL and CRP levels

PLHIV under stable HAART
with apoB >80 mg/dL

ApoB, TC, TG, and non-HDL
levels reduced more

significantly in
ezetimibe/rosuvastatin vs.

rosuvastatin group

Boccara et al. (2022)
[151] 467

Efficacy of evolocumab on
the reduction of LDL, TG,

non-HDL, apoB, TC, VLDL,
and Lp(a) and potential
increase in HDL levels

PLHIV under stable HAART
with mean LDL of 133 mg/dL,

CVD, DM, and
intermediate/high

10-year-ASCVD risk

Significant decrease in LDL,
TG, non-HDL, apoB, TC,

VLDL, and Lp(a) levels, with
concomitant increase

in HDL levels

Nissen et al. (2023)
[152] 13,970

Efficacy of bempedoic acid
on MACEs (cardiovascular

causes, nonfatal
myocardial infarction,
nonfatal stroke, and

coronary revascularization)
and LDL levels

Statin-intolerant with mean
LDL of 139 mg/dL and

high CVD risk

Bempedoic acid reduced LDL
and incidence of all MACE

points, except nonfatal stroke,
death from CVD, and death

from any cause

Muñoz et al. (2013)
[153] 493

Efficacy of fish oil,
fenofibrate, gemfibrozil,

and atorvastatin
on TG levels

PLHIV under stable HAART

All treatment options reduced
TG levels, with fibrates being

more effective and atorvastatin
less effective than fish oils

PLHIV, people living with HIV; HAART, highly active antiretroviral treatment; LDL, low-density lipoprotein;
TG, triglyceride; TC, total cholesterol; HDL, high-density lipoprotein; non-HDL, non-high-density lipoprotein;
VLDL, very low density lipoprotein; apoB, apolipoprotein B; apoA1, apolipoprotein A1; Lp(a), lipoprotein a;
CRP, C-reactive protein; sCD14, soluble CD14; sCD163, soluble CD163; CVD, cardiovascular disease; ASCVD,
atherosclerotic cardiovascular disease; DM, diabetes mellitus; MACE, major adverse cardiac event; ACC/AHA,
American College of Cardiology/American Heart Association.
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3.1. Statins

Statins are the most commonly prescribed lipid-lowering agents and are considered
the first drug of choice in PLHIV to reduce the risk of ASCVD, with seven statins
currently available on the market, divided into generations depending on their origin,
their synthetic compounds, and their hydrophilic or lipophilic properties [154]. Statins
possess pleiotropic properties in addition to LDL reduction, consisting of inflammation
deterioration, immune activation, oxidative stress, and endothelial dysfunction—a game-
changing ability given the presence of persistent inflammation in HIV infection [155].
Notably, the Johns Hopkins HIV clinical cohort that enrolled 1538 virally suppressed HIV
individuals under statin treatment demonstrated a reduced risk of all-cause mortality
after adjusting for CD4 count, HIV-1 RNA, hemoglobin, and cholesterol levels at the start
of HAART, age, race, HIV risk group, prior use of ART, year of HAART start, NNRTI
versus PI-based ART, prior AIDS-defining illness, and viral hepatitis coinfection [156].
The aforementioned data are strengthened by a recent meta-analysis of 36,253 HIV
individuals undergoing statin treatment, where statin use was independently statistically
correlated with a reduced mortality risk in PLWH [147].

3.1.1. The Role of Statins in Inflammation

Numerous pathophysiological pathways are involved in the pleiotropic effect of statins.
As statins competitively inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA),
which is responsible for the end-stage production of mevalonate, a proposed pathophysio-
logical pathway involves the diminished formation of important isoprenoid intermediates
such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate [157]. These
molecules are responsible for prenylation, a process that affects numerous signal trans-
duction molecules in vascular and myocardial signaling pathways, such as small guanine
triphosphate (GTP)-binding proteins, which regulate pro-atherogenic pathways and the
expression of pro-inflammatory cytokines; and directly activate PPAR-γ in platelets, in-
flammatory cells, vascular wall cells, and cardiomyocytes [158,159]. Furthermore, statins
up-regulate endothelial nitric oxide synthase [82], inducing enhanced NO bioavailability
and promoting its vasodilatory, anti-inflammatory, and anti-atherogenic effects. In fact, the
inhibition of Rho kinases geranylgeranyl phosphorylation and activation of the PI3-Akt
protein kinase pathway are both associated with the increased expression of the eNOS
gene in human endothelial cells, while the polyadenylation of eNOS mRNA and down-
regulation of caveolin-1 expression led to stabilized eNOS mRNA and prolonged activation
of eNOS [159,160]. In vitro studies have also demonstrated the significant effect of statins
on inflammatory cells per se, interfering with the interaction between vascular smooth
muscle cells (VSMCs) and monocytes, resulting in a decreased synergistic production of
pro-inflammatory cytokines, particularly IL-6 [161,162]. Interestingly, lovastatin appears
to down-regulate nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1) in a dose-
dependent manner, with concomitant suppression of key chemokines, including those
regulated upon activation normal T-cell expressed and secreted (RANTES) and the MCP-1,
resulting in the reduced production of IL-2, IL-4, and IFN-γ, and ultimately decreasing
the inflammatory cell infiltration of arterial walls. Furthermore, statins reduce oxLDL
and increase apoA-I levels, decreasing the expression of E-selectin, intracellular adhesion
molecule-1 (ICAM-1), and vascular cell adhesion molecule (VCAM), eventually reducing
TNF-α, IL-6, and CRP levels [163–165]. Several studies have also evaluated the circulating
biomarkers associated with advanced atherosclerosis in people with HIV, with numerous
statins having inconsistent reduction patterns of different biomarkers [166]. In a study of
98 individuals with HIV virologically suppressed, atorvastatin 20 mg daily reduced oxLDL
by 33%, sCD14, sCD163, CRP, and markers of T-cell and monocyte activation [167], while
a study by Calza et al. showed a substantial reduction of CRP, IL-6, and TNF-α levels
after a 12-month follow-up with 10 mg of rosuvastatin per day [167,168]. The JUPITER
trial also brought to light important data regarding individuals with non-elevated LDL
(LDL < 130 mg/dL), but with moderate inflammation (CRP ≥ 2 mg/L), showcasing a
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relative reduction of 44% in the levels of LDL and CRP compared to placebo, while the
SATURN-HIV study demonstrated favorable outcomes in CD4+ and CD8+ activation mark-
ers under a 48-week rosuvastatin treatment, with a concomitant 13.2% reduction of sCD14,
an event associated with a 21% decreased risk of all-cause mortality in PLHIV [148,169].

3.1.2. The Role of Statins in Lipid Management

Although statins exhibit major pleotropic anti-inflammatory properties, their most
profound effect in reducing the risk of ASCVD lies within their hypolipidemic effect. It
is reported that a decrease in LDL of 2 mg/dL is associated with an average reduction
of 1% in the risk of clinical events in the general population; however, some differences
have been detected in PLHIV, as a reduction of 3–16% in total cholesterol was observed in
PLHIV compared to non-HIV [12,170]. Furthermore, the efficacy of statin in HIV-induced
dyslipidemia is well established. Calza et al. provided evidence regarding different statin
options, enrolling 94 HIV individuals in PI-based treatment with hypercholesterolemia
(TC > 250 mg/dL) for a duration of at least 3 months. In more detail, participants were
randomized to hypolipidemic treatment with rosuvastatin 10 mg daily, pravastatin 20 mg
daily, or atorvastatin 10 mg daily, with the results demonstrating a significantly higher
mean decrease in TC levels with rosuvastatin (25.2%), rather than with pravastatin (17.6%)
or atorvastatin (19.8%), after one year of follow-up [171–174]. Another randomized control
trial assessing statin efficacy, the INTREPID study, compared pitavastatin to pravastatin
and demonstrated a significantly higher reduction in LDL levels in PLHIV under 4 mg
of pitavastatin versus 40 mg of pravastatin (31% and 21%, respectively) at 12 weeks of
therapy, with the benefit being sustained at week 52 [175]. Most notably, reductions in TC,
non-HDL, apoB, the apoB/apoA-I ratio, and the TC/HDL ratio were also significantly in
favor of pitavastatin, while no differences in apoA-I, TG, or HDL were demonstrated at
either week 12 or week 52. Furthermore, a recent meta-analysis demonstrated that 10 mg
of rosuvastatin per day and 10 mg of atorvastatin per day provided the largest reduction
in TC levels, while atorvastatin at 80 mg and simvastatin at 20 mg provided the greatest
reduction in LDL levels, atorvastatin 80 mg and simvastatin 20 mg showed the greatest
reduction in TG levels, and pravastatin 10–20 mg and atorvastatin 10 mg showed the largest
increase in HDL levels [12]. The hallmark of statin treatment in the prevention of ASCVD
risk in PLHIV, and perhaps one of the most anticipated trials in the field of dyslipidemia,
was the REPRIEVE trial. REPRIEVE was a large, randomized, blinded study of pitavastatin
versus placebo in more than 7500 HIV individuals, and it demonstrated, for the first time, a
reduction in clinical endpoints (MACEs), defined as a composite of cardiovascular death,
myocardial infarction, hospitalization for unstable angina, stroke, transient ischemic attack,
peripheral arterial ischemia, revascularization, or death from an undetermined cause. The
study showed an incidence of 4.81 per 1000 person-years in the pitavastatin group and
7.32 per 1000 person-years in the placebo group in MACE; it also used a pooled cohort
equation for ASCVD risk stratification, thus providing an opportunity to evaluate statin
benefits in those with higher and lower ASCVD risk [149].

3.1.3. Drug Interactions between HAART and Statins

One of the main concerns with the use of statins in PLHIV is the potential drug–drug
interactions with HAART agents, resulting in increased statin exposure and potential side
effects, or decreased exposure and therapeutic failure, as well as alterations in antiretro-
viral bioavailability. Many HAART agents, especially PIs, pharmacokinetic boosters, and
NNRTIs, share common metabolic and deactivation pathways with statins, with both drug
categories serving as substrates or inhibitors of cytochrome P450, particularly CYP3A4
and CYP2C9, and organic anion-transporting polypeptides (OATPs), while complex biliary
excretion and active tubular secretion through CYP3A4, OATP1B1, P-glycoprotein (P-gp),
and r breast cancer resistance protein (BCRP) enhance the intricacy of statin choice.

Rosuvastatin and fluvastatin are metabolized primarily by CYP2C9, while pravas-
tatin is minimally metabolized by P450 enzymes; therefore, they are considered safe
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options when combined with PIs and NNRTI, although rosuvastatin and pravastatin may
demonstrate minor interactions due to the inhibition of OATP1B1 [176]. In fact, the co-
administration of rosuvastatin with ATV/r has been associated with a significant increase
in ATV concentration above the therapeutic threshold, with a concomitant risk of adverse
drug reactions, while other studies demonstrated an increased maximum concentration of
rosuvastatin when co-administered with ATV, LPV, or DRV/r of 600%, 366%, and 139%,
respectively [177,178]. Therefore, if rosuvastatin is concomitantly administered with PIs, a
low dose of 5 mg per day is recommended, with slow titration and close monitoring. Along
the same line, studies regarding pravastatin have demonstrated an exposure decrease of
50% in patients receiving SQV/r and 40% in those receiving EFV, as well as an increase in
the AUC of 33% and 81% in PLHIV under LPV/r and DRV/r, respectively; thus, guide-
lines recommend a suitable dose adjustment to achieve the expected benefit, especially
with DRV/r [179]. Furthermore, clinically relevant interactions between fluvastatin and
HAART have not been extensively documented, although co-administration with NFV
and EFV could result in low plasma statin concentrations; hence, a higher initial dose
is suggested [180]. Lovastatin and simvastatin have extensive metabolism first pass by
CYP3A4 and are contraindicated in HIV individuals under HHART, mainly due to the
severe and fatal adverse effects upon concomitant use with PI-based regimens, alongside
the easy access to safer statin options [181,182].

Atorvastatin follows the same metabolic pathway, and, to a lesser extent, it serves as a
substrate for OATP1B1 and shows affinity for CYP3A4 and P-gp; therefore, its concentration
can differ with the co-administration of PIs or NNRTIs. In fact, different studies presented
contradictory evidence due to the different pharmacokinetic interactions of atorvastatin
and certain HAART agents [183]. In more detail, evidence has demonstrated an increased
exposure of 79% in HIV individuals receiving SQV/r and nearly 488% with LPV/r, and
thus guidelines recommend a submaximal initial dose of atorvastatin, 10 mg in ATV/r-
containing regimens, 20 mg in LPV/r-containing regimens, and 40 mg DRV/r-containing
regimens [176,181]. However, the potential reduction in atorvastatin AUC by 32% and
43% with ETV and EVG, respectively, highlights the necessity for increased dosage of
atorvastatin, with a threshold of 80 mg per day [184]. Significant interactions due to
the inhibition of CYP3A4, P-gp, and BCRP could present with the concomitant use of
cobicistat to enhance ATV, DRV, and ELV, and despite data scarcity, the tendency is to
initiate the lowest recommended dose, titrate carefully, and monitor for adverse effects,
especially with atorvastatin and rosuvastatin [185]. Pitavastatin is mainly metabolized
via glucuronidation and minimally by CYP450 enzymes, and, thus, the potential for drug
interactions through the CYP450 system is reduced, rendering pitavastatin a rather safe
option with no interactions expected. Similarly, INSTIs do not pose a risk for drug–drug
interaction, as they exhibit weak-to-no inhibition of BCRP and other metabolizing enzymes
(Table 3).

Table 3. The effect of lipid-lowering agents on the serum concentration of antiretroviral drugs.

Hypolipidemic
Agent PIs NNRTIs NRTIs INSTIs Recommendations

Rosuvastatin ↑ C with ATV/r,
LPV/r, DRV/r - - ↑ C with EVG/c

Initial dose 5 mg with slow
titration, do not exceed 20 mg
with cobicistat-boosted drugs

Fluvastatin ↓ C with NFV ↓ C with EFV - - Initial dose > 20 mg

Pravastatin
↓ C with SQV/r,
↑ C with LPV/r,

DRV/r
↓ C with EFV - - Suitable dose adjustment

Lovastatin Contraindicated Possible ↑ C - Contraindicated
with EVG/c Consider low initial dose
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Table 3. Cont.

Hypolipidemic
Agent PIs NNRTIs NRTIs INSTIs Recommendations

Simvastatin Contraindicated Possible ↑ C - Contraindicated
with EVG/c Consider low initial dose

Atorvastatin ↑ C with SQV/r,
LPV/r ↓ C with EFV, ETV - ↑ C with EVG/c

Dose 10–40 mg for PIs, 40–80 mg
for NNRTIs, lowest effective dose

for cobicistat-boosted drugs

Pitavastatin - - - - No dose adjustment

Ezetimibe - - - - No dose adjustment

PCSK9i - - - - No dose adjustment

Bempedoic acid - - - - No dose adjustment

Fenofibrate - - - - No dose adjustment

Gemfibrozil ↑ C with LPV/r - - - Consider low initial dose

Fish oils - - - - Possible pill burden

↑, increase; ↓, decrease; PIs, protease inhibitors; NNRTIs, non-nucleoside reverse transcriptase inhibitors;
NRTIs, nucleoside reverse transcriptase inhibitors; INSTIs, integrase inhibitors; C, concentration; ATV/r,
atazanavir/ritonavir; LPV/r, lopinavir/ritonavir; DRV/r, darunavir/ritonavir; EVG/c, elvitegravir/cobicistat;
NFV, nelfinavir; EFV, efavirenz; SQV/r, saquinavir/ritonavir.

3.2. Ezetimibe

Ezetimibe inhibits the Niemann–Pick C1-like cholesterol transport protein (NPC1L1)
at the brush border of the small intestine, leading to the up-regulation of LDL receptors and
its circulatory clearance [186]. As ezetimibe does not interact with CYP3A4 and therefore
is not associated with drug–drug interactions with HAART, it should be considered as a
treatment option in PLHIV with statin intolerance, or as an additional therapy in those
who already receive the maximum indicated statin dose and do not reach LDL therapeutic
targets. Furthermore, the results of a recent meta-analysis of 13 randomized controlled
trials and single-arm trials comparing rosuvastatin plus ezetimibe versus rosuvastatin
monotherapy showed significant reductions in LDL (−23.89 mg/dL), TC (−26.17 mg/dL),
and TG levels (−18.57 mg/dL), but no reduction in HDL levels with ezetimibe [187].
Meanwhile, other studies showed a mean decrease of −18.18 mg/dL versus −9 mg/dL in
TC levels, a mean decrease of −11.16 mg/dL versus −3 mg/dL in TG levels, and a mean
decrease of −17.46 mg/dL versus −9.5 mg/dL in non-HDL levels [150]. Notably, numerous
studies also demonstrated favorable outcomes with ezetimibe initiation with regard to
inflammation markers, particularly CRP, IL-1β and IL-18. In fact, a reduction in adipocyte
size, the accumulation of pro-inflammatory cytokines, the expression of TNF-α, and the
suppression of NF-kB activation have been associated with its use, making ezetimibe a
rather strategic asset in the management of dyslipidemia in PLHIV [188–191].

3.3. PCSK9 Inhibitors

It should be mentioned that proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitors, a heterogeneous group of molecules consisting of two monoclonal antibodies,
alirocumab and evolocumab; and a synthetic small interfering RNA (siRNA), inclisiran,
have currently emerged as treatment options for hyperlipidemia, and they have been associ-
ated with a reduction in serum LDL levels through the up-regulation of LDL receptors and
increased LDL clearance [192]. PCSK9i is used as a third-step approach in HIV individuals
with an increased risk of ASCVD for those who face intolerance or severe drug–drug
interactions with statins and also fall behind the recommended LDL levels with statin plus
ezetimibe interventions, offering an additional 43%-to-64% reduction in LDL, alongside
statins [193]. Although recent EACS guidelines included both evolocumab and alirocumab,
with their safety and efficacy already having been extensively documented in the FOURIER
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and ODYSSEY studies for the general population, with no drug interactions having been
reported, data are only available for evolocumab in PLHIV [194,195]. Among the first
reports, a small single-center study with 19 HIV individuals demonstrated the favorable
effects of evolocumab in LDL levels and coronary endothelial function, as measured by cine
3T MRI, setting the boundaries for the BEIJERINCK study [196]. In this study, Boccara et al.
enrolled 467 PLHIV with a well-treated HIV infection and mean LDL levels at baseline
133 ± 40 mg/dL. In more detail, among the participants, 31% of them were under statins,
21% had a history of statin intolerance, and 40% had potential drug–drug interactions be-
tween statins and HAART. The results showed a persistent reduction in LDL levels of 58%
through 52 weeks of exposure, with a concomitant sustained improvement in TC, TG, non-
HDL, VLDL, apoB, Lp(a), and HDL levels, thus highlighting the beneficial role of PCSK9
in PLHIV with advanced hyperlipidemia [151]. Although the underlying mechanisms are
still poorly understood, experimental models and clinical trials of individuals from the
general population with familial hypercholesterolemia have shown a reduced expression of
ICAM-1 and CCR2 in monocytes, as well as the down-regulation of TNF-α, IL-1, and IL-6
and the up-regulation of IL-10 with PCSK9i, highlighting the potential anti-inflammatory
properties of PCSK9i in PLHIV [197,198].

3.4. Bempedoic Acid

Bempedoic acid, a recently approved hypolipidemic agent for adults with heterozy-
gous familial hypercholesterolemia or established risk of ASCVD, has shown impressive
LDL-lowering properties, either as monotherapy or in combination with ezetimibe, through
the inhibition of ATP citrate lyase (ACLY) alongside direct activation of AMP-activated
protein kinase (AMPK) [199,200]. Although some studies have shown favorable results
for statin-intolerant patients or those under a maximally tolerated statin dose of the gen-
eral population, data from HIV individuals are scarce at the present. The randomized
CLEAR trial showed a reduction in LDL levels of 17.8% and 24.5% among statin-treated and
statin-intolerant patients, respectively, with a concomitant reduction of 18.1% in CRP levels,
while recently published data from the same trial with 13,970 statin-intolerant participants
reported a reduction in all major adverse cardiovascular events with the use of bempedoic
acid [152,201]. Furthermore, Ballantyne et al. enrolled 301 patients with an increased
risk of ASCVD undergoing statin therapy in a phase 3, double-blind clinical trial and
randomly assigned them to a fixed dose of bempedoic acid plus ezetimibe, bempedoic acid
as monotherapy, ezetimibe alone, or placebo, showcasing a 36.2% reduction in LDL levels
with the combination treatment, 23.2% reduction with ezetimibe, and 17.2% reduction
with bempedoic acid as monotherapy [202]. The aforementioned evidence, alongside the
lack of drug interactions or considerable muscle-related side effects, has led the updated
EACS guidelines to enlist 180 mg of bempedoic acid once daily as a potential therapeutic
approach in HIV individuals with unmet LDL goals [203].

3.5. Fibrates

A significant metabolic disorder and a predominant abnormal lipid characteristic
in HIV infection are considered hypertriglyceridemia. The cornerstone of its treatment
remains to this day lifestyle modifications, aiming at TG levels < 150 mg/dL, followed by
statin treatment for HIV individuals with an increased risk of ASCVD and TG > 200 mg/dL;
however, treatment for markedly elevated TG levels > 500 mg/dL, or even above this range,
usually requires fibrate initiation due to the increased risk of pancreatitis [204]. Fibrates act
by binding and activating the nuclear hormone receptor peroxisome proliferator-activated
receptor (PPAR-α), inducing PPAR-dependent gene transcription and up-regulating lipopro-
tein lipase, thus limiting substrate availability in the liver for TG synthesis and increasing
TG clearance [205]. On the same side, the activation of PPAR-a leads to the decreased
production of pro-inflammatory mediators such as TNF-α, IL-1, IL-6, and IL-8, while also
promoting the production of anti-inflammatory agents, such as IL-10, thus contributing
to inflammatory retention in HIV infection [206]. Fenofibrate lacks significant interac-
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tions with ART, while gemfibrozil’s inhibition of OATP might result in increased systemic
exposure when co-administered with specific HAART regimens such as LPV/r, but it
can also lead to decreased hypolipidemic efficacy and increased serum concentrations of
statins [207,208]. Furthermore, a study by Silverberg et al., with 6941 HIV individuals,
demonstrated a substantially lower reduction in TG levels in PLHIV as compared with
the general population, with great variation among individual HAART classes, −44.0%
in patients receiving PI monotherapy, −26.4% in patients receiving PIs and NNRTIs, and
−60.3% in patients receiving NNRTIs [209]. Amongst fibrates, gemfibrozil seems to be more
effective in PWH as compared with fenofibrate, with a mean TG reduction of 80 mg/dL
and 49 mg/dL, respectively; meanwhile, in combination with ezetimibe, it achieved a
remarkable reduction in TG levels (from 265 ± 118 mg/dL to 149 ± 37 mg/dL) and a
considerable augmentation of HDL levels (44 ± 10 to 53 ± 12 mg/dL) in comparison
with statins [153,210]. Although their hypolipidemic effect is solid, fibrates failed to re-
duce the incidence of cardiovascular events of more than 10,000 patients with increased
ASCVD risk in the PROMINENT study that was conducted with participants from the
general population; therefore, similar long-scale studies in the HIV population seem to be
imperative [211].

3.6. Fish Oils

Fish oils are long-chain omega-3 polyunsaturated fatty acids (PUFAs), and their
two purified forms of ethyl esterized n-3 fatty acids, eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), are commonly used to decrease TG levels and the risk
of ASCVD in the general population. Their hypolipidemic effect, along with their anti-
inflammatory properties that have been attributed to the inhibition of VLDL production,
has been well documented in the REDUCE-IT trial. This study, in which 8179 statin-
treated patients with elevated TG levels and cardiovascular disease or diabetes were
randomized to 4 g of icosapent ethyl per day or placebo, showed a 25% relative and
4.8% absolute reduction in the primary end points of MACE, except death from any
cause, while the REDUCE-IT biomarker sub-study demonstrated a significant reduction in
serum levels of IL-1, IL-6, CRP, oxLDL, homocysteine, Lp(a), and lipoprotein-associated
phospholipase A2, thus establishing EPA as a promising therapeutic option to combat
hypertriglyceridemia [212,213]. Although limited, evidence for PLHIV has validated the
beneficial effect of PUFAs, especially for EPA. A double-blind, placebo-controlled study
that randomized 48 PLHIV under fibrate or niacin with 4 gr PUFA daily versus placebo
for 12 weeks showed a reduction of 31.5 mg/dL and 7.4 mg/dL in TG levels, respectively,
while the ACTG A5186 study that randomized 100 PLHIV with TG levels >400 mg/dL to
3 gr of fish oil twice daily or 160 mg of fenofibrate daily for 8 weeks demonstrated a 46% and
58% reduction in TG levels in each arm, respectively, with the combination treatment of fish
oil and fenofibrate resulting in a total 65.5% reduction, achieving TG levels < 200 mg/dL in
22.7% of the patients [214,215]. Along the same line, similar evidence was also reported
from a recent meta-analysis of clinical trials assessing the efficacy of PUFAs and especially
EPA in PLHIV, with a 10.5 mg/dL reduction in TG levels and 11 mg/dL increase in HDL
levels [216]. Therefore, fish oils seem to be a valuable asset against hypertriglyceridemia
without major adverse effects or interactions; however, the pill burden in a population
under polypharmacy might interfere with patient compliance.

4. Conclusions

To the present day, dyslipidemia in PLHIV remains a challenge given the high preva-
lence of age-related metabolic diseases and the multifactorial origin of these comorbidities
in inflammation and immune activation, with HIV viremia and antiretroviral treatment rep-
resenting two sides of the same coin. Current antiretroviral regimens stand as safe, effective,
and well-tolerated options in terms of HIV suppression; however, different HAART classes
and drugs within the same class are held responsible for inducing lipid abnormalities, while
considerable drug–drug interactions with major hypolipidemic agents raise concerns when
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treating dyslipidemia. A holistic approach of hyperlipidemia and consequent cardiovascu-
lar risk seems imperative, with the incorporation of healthy lifestyle modifications such as
dietary interventions and exercise implementation demonstrating substantial but insuffi-
cient benefit. Therefore, pharmacological treatment appears to be essential, with HAART
modification being the primary and crucial step, followed by hypolipidemic agent initiation.
The aim of the careful evaluation of potential resistance, tolerability, adherence, or substi-
tution of HAART seems to be a game-changing strategy. Switching from RTV-based or
RTV-boosted regimens to DRV- or ATV-based ones if PIs are required, avoiding thymidine
analogs, and favoring ABC and TDF in terms of NNRTI utilization, combined with shifting
from EFV to NVP or RPV and incorporating lipid-friendly INSTIs, could maintain optimal
viral response without the burden of associated dyslipidemia. In general, hypolipidemic
interventions in PLHIV follow the guidelines for the HIV-negative population and are
based on statin implementations; however, drug interactions mainly due to the CYP450
metabolism of both statins and HAART could interfere with favorable outcomes. Add-on
therapy with ezetimibe, PCSK9, bempedoic acid, fibrates, or fish oils is recommended
for individuals presenting with intolerance or unmet therapeutic targets, although large-
scale clinical data are still scarce. An in-depth understanding of the underlying molecular
mechanisms involved in HIV-associated dyslipidemia is imperative to achieve effective
and personalized treatment with respect to HAART switching and hyperlipidemia, while
future large-scale studies in HIV individuals that implement new lipid-lowering drugs are
expected to optimize the management of metabolic-related comorbidities in PLHIV.
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