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Abstract: Early-stage evolutionary development of the universal genetic code remains a 

fundamental, open problem. One of the possible scenarios suggests that the code evolved in 

response to direct interactions between peptides and RNA oligonucleotides in the primordial 

environment. Recently, we have revealed a strong matching between base-binding preferences 

of modern protein sequences and the composition of their cognate mRNA coding sequences. 

These results point directly at the physicochemical foundation behind the code’s origin, but 

also support the possibility of direct complementary interactions between proteins and their 

cognate mRNAs, especially if the two are unstructured. Here, we analyze molecular-surface 

mapping of knowledge-based amino-acid/nucleobase interaction preferences for a set of 

complete, high-resolution protein structures and show that the connection between the two 

biopolymers could remain relevant even for structured, folded proteins. Specifically, protein 

surface loops are strongly enriched in residues with a high binding propensity for guanine 

and cytosine, while adenine- and uracil-preferring residues are uniformly distributed 

throughout protein structures. Moreover, compositional complementarity of cognate protein 

and mRNA sequences remains strong even after weighting protein sequence profiles by 

residue solvent exposure. Our results support the possibility that protein/mRNA sequence 

complementarity may also translate to cognate interactions between structured biopolymers. 
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1. Introduction 

Although the universal genetic code was discovered more than 50 years ago [1], its origin and 

evolution still represent a major puzzle. A number of different hypotheses have been proposed in this 

context [2], including: (1) Francis Crick’s “frozen accident hypothesis”, which does not involve any 

physicochemical rationales behind the origin of the code [3]; (2) “error-minimization hypothesis”, which 

suggests that the code has been optimized to minimize perturbation of protein structures upon 

synonymous mutations [4,5]; and (3) “stereochemical hypothesis”, which invokes specific interactions 

between individual amino acids and their cognate codons as the basis of the code’s development [6,7]. 

Although extensive support for any of these theories is still lacking, the latter suggestion is particularly 

attractive because it also has the potential to lead to novel principles of protein-RNA interactions in 

present-day systems in general. This becomes especially important in light of several recent studies 

where proteome-wide screening has lead to the detection of interactions with RNAs (and, particularly, 

mRNAs) for a number of proteins lacking known RNA-binding motifs, including transcription factors 

and metabolic enzymes [8–10]. Interestingly, direct binding to their cognate mRNAs has over the years 

also been detected for a diverse set of proteins with different mechanisms and biological functions 

associated with such interactions [11–16]. 

In our recent studies, we have explored the intrinsic potential of proteins and their cognate mRNAs 

to bind by comparing the propensity of naturally occurring protein sequences to interact with different 

nitrogenous bases with the nucleotide content of their cognate mRNA coding sequences at the proteome 

levels [17–19]. Remarkably, by using experimentally [20] and computationally [21] derived interaction 

propensity scales between amino acids and pyrimidine analogs, and knowledge-based interaction 

preferences of amino acids for different nucleobases derived by analyzing binding interfaces in the known 

3D-structures of protein-RNA complexes [18], we have revealed a statistically significant level of 

matching between the aforementioned properties of protein sequences and their cognate mRNA coding 

regions. Importantly, these results could explain the fixation of the complementary binding relationship 

between the two biopolymers in the modern genetic code. In contrast to the original stereochemical 

hypothesis, however, we claim that strong binding complementarity may exist predominantly at the level 

of longer polypeptide and RNA stretches rather than individual amino acids and codons. The latter model 

also opens up the possibility of direct templating of proteins from mRNA before the development of 

ribosomal decoding and code’s fixation in that era [6,22]. Finally, our findings have allowed us to propose 

a novel and potentially wide-reaching hypothesis that mRNA-coding regions may be physicochemically 

complementary to the respective cognate protein regions and bind, especially if the complementary 

segments are available for interaction such as in the case of unstructured protein and mRNA stretches. 

Except for intrinsically disordered proteins [23], however, typical proteins require a well-defined 

spatial structure to accomplish their functions in the cell. This is important in the present context as the 

distribution of nucleobase interaction propensities on the surfaces of structured proteins may significantly 
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deviate from those estimated from sequences only. For instance, residues that are far away from each 

other in the primary sequence can be close together in space and interact in the folded structure and vice 

versa. In order to address the possible contribution of protein structural organization to the proposed 

complementary binding with cognate mRNAs, we perform a simultaneous analysis of protein surfaces 

in a set of experimentally obtained protein structures of various sizes (“3D set” [24]) and the properties 

of their cognate mRNA coding sequences. First, we investigate how regions exhibiting a high affinity for 

RNA as calculated according to knowledge-based nucleobase interaction propensities [18] are distributed 

between protein surface and protein interior, and how these regions are enriched or depleted in certain 

secondary structure elements. Second, we analyze the matching between the composition of mRNA 

sequences and interaction propensities of their cognate protein sequences after being weighted by  

amino-acid solvent accessibilities in their spatial structures. Our results demonstrate that certain aspects 

of cognate protein/mRNA sequence complementarity are also reflected for structured proteins and open 

up the possibility of binding interactions at that level as well. 

2. Experimental Section 

2.1. Set of Protein 3D Structures 

The set of protein structures used for analysis (“3D set”, containing 1109 non-redundant  

protein structures filtered with the sequence identity cutoff set at 30%) was constructed as described 

elsewhere [24]. Briefly, the set contains 824 high-resolution X-ray and 285 NMR structures of 

exclusively monomeric protein structures (the total number of entities, the number of protein entities and 

the number of chains in the biological assembly fixed at 1 for the purposes of a PDB query) with no 

modified residues and an X-ray resolution better than 2.5 Å in all structures. All protein sequences in 

the set match their canonical UniProtKB sequence and have the completeness, as defined by the ratio of 

the length of the polypeptide chain in the structure and the length of its canonical UniProtKB sequence, 

greater than 95%. For each protein sequence, its respective mRNA coding region as obtained from the 

European Nucleotide Archive has also been included in the set. 

2.2. Calculations of Protein/mRNA Sequence Correlations 

Pearson correlation coefficients (R) were calculated between protein sequence profiles of different 

knowledge-based amino-acid propensities for interacting with nucleobases [18] and nucleobase-density 

profiles of their cognate mRNA sequences. In order to include 3D information in this analysis, 

interaction preference values for each amino acid were also weighted by their relative solvent accessible 

areas (SASA, see below) as present in the experimental structures. Before comparison,  

the profiles were smoothed using a sliding-window averaging procedure: the window size of  

21 residues/codons was used for all calculations. As discussed before, the results are only weakly 

dependent on the size of the averaging window [17]. The statistical significance (p-values) of  

SASA-weighted profile correlations was estimated using a randomization procedure, where each 

interaction preference scale was shuffled 106 times, and Pearson Rs between mRNA composition and 

SASA-weighted protein profiles were calculated over the whole 3D set. The reported p-values 



Life 2014, 4 791 

 

 

correspond to the fraction of shuffled scales, which exhibit a higher median R in absolute value than the 

one for the original scale. 

2.3. Analysis of Protein Structures 

Analysis of protein structures was carried out using PyMol (http://www.pymol.org/) [25] and Python 

scripts especially written for this. Secondary structure elements in protein structures were characterized 

using PyMol DSS algorithm, which employs a coarse-grain definition of secondary structure and assigns 

each residue to either “helix”, “sheet” or “loop” class. To determine if a given residue belongs to protein 

surface, PyMol’s get_area algorithm was used to calculate absolute and relative solvent accessible 

surface areas (SASA). For each of the 20 common amino acids, a respective tripeptide  

(Gly-[AA]-Gly) was constructed and SASA of the central residue was used to get the reference value 

for a totally exposed conformation. Relative SASA for each protein position was calculated as the ratio 

between the actual value of SASA and this reference value. The residues were considered to belong to 

the “surface” category if their relative SASA was above 30%, as used before [26]. The average value of 

nucleobase interaction preference at a given protein position was calculated as follows. A sphere with a 

radius of 7 Å was centered at the Cα atom of a residue in question, and the preference values of all 

residues with Cα atoms within the sphere were summed up and normalized by the total number of 

residues in the sphere. The thus obtained values were then defined as the spatially-averaged interaction 

preference at a given position. We have also evaluated cutoffs between 4 Å and 9 Å for this purpose and 

found that the dependence on the exact value of the cutoff is only minor (variation < 10%). For each 

type of interaction preference, the mean and the standard deviation (σ) of such values were calculated 

over the whole 3D set. Protein residues were considered as “extremes” and included for the analysis only 

if their spatial averaged preference values were above the mean of the whole set plus a given number of 

standard deviations σ. The statistics was tested for preference cutoffs covering a range of such values 

(from 1σ to 5σ in steps of 1σ; see Figure 3b) and the optimal 2σ cutoffs were used for the final definition 

of preference extremes. 

2.4. Enrichment Analysis 

All residues in each protein were divided into several groups according to their exposure (the “SAS” 

category, containing “surface”, ”non-surface” and “total” classes) or their presence in a particular 

secondary structure element (“SS” category, including “helix”, “sheet”, and “loop” classes). The fold 

enrichment of interaction preference extremes for a given category (FE) was estimated as the ratio 

between the observed fraction of such residues ( 𝑃(𝑒𝑥𝑡𝑟𝑒𝑚𝑒, 𝑆𝐴𝑆, 𝑆𝑆)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ) and the expected 

probability to find a residue with given characteristics (𝑃(𝑒𝑥𝑡𝑟𝑒𝑚𝑒, 𝑆𝐴𝑆, 𝑆𝑆)𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑):  

𝐹𝐸(𝑒𝑥𝑡𝑟𝑒𝑚𝑒 | 𝑆𝐴𝑆, 𝑆𝑆) =
𝑃(𝑒𝑥𝑡𝑟𝑒𝑚𝑒, 𝑆𝐴𝑆, 𝑆𝑆)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑃(𝑒𝑥𝑡𝑟𝑒𝑚𝑒, 𝑆𝐴𝑆, 𝑆𝑆)𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
=

𝑁(𝑒𝑥𝑡𝑟𝑒𝑚𝑒,𝑆𝐴𝑆,𝑆𝑆)

𝑁𝑡𝑜𝑡𝑎𝑙

𝑁( 𝑆𝐴𝑆,𝑆𝑆)

𝑁𝑡𝑜𝑡𝑎𝑙
×

𝑁(𝑒𝑥𝑡𝑟𝑒𝑚𝑒)

𝑁𝑡𝑜𝑡𝑎𝑙

=  
𝑁(𝑒𝑥𝑡𝑟𝑒𝑚𝑒, 𝑆𝐴𝑆, 𝑆𝑆) × 𝑁𝑡𝑜𝑡𝑎𝑙

𝑁( 𝑆𝐴𝑆, 𝑆𝑆) × 𝑁(𝑒𝑥𝑡𝑟𝑒𝑚𝑒)
 (1) 

where N (extreme, SAS, SS) is the observed number of residues in the whole set with the thus defined 

properties (e.g., all residues that simultaneously have the spatial averaged interaction preference  

value ≥ mean + 2σ, are located on the surface and adopt a helical conformation); N(SAS, SS) is the 

number of all residues with a defined exposure and secondary structure (e.g., all residues in surface 
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exposed helices); N(extreme) is the number of all residues that have the spatially averaged interaction 

preference value ≥ mean + 2σ; Ntotal is the total number of protein residues in the whole set. For the 

determination of expected probabilities, we have assumed that the probability of a given residue to be 

classified as an extreme in terms of binding propensity is independent from its probability to belong to 

a given (SAS, SS) class. 

3. Results 

3.1. Intrinsic Sequence Correlations in the 3D Set 

The analyzed set of protein 3D structures (“3D set”) contains 824 X-ray and 285 NMR proteins of 

different sizes (<N> = 255.2 ± 169.5 residues), representing different SCOP structural classes and 

organisms from different domains of life (Figure 1a). Importantly, all of the structures were chosen based 

on their quality and completeness and each accounts for >95% of residues in its biologically relevant 

sequence [24]. Analysis of the matching between different nucleobase interaction propensity profiles of 

proteins from the 3D set and the compositional profiles of the corresponding mRNA coding sequences 

reveals correlation patterns that are very consistent with our results obtained for the human proteome [18]. 

The strongest correlation is observed between window-averaged protein sequence profiles of preferences 

of amino acids to interact with guanine (G-preference) and purine (PUR) density profiles of their cognate 

mRNAs (median Pearson correlation coefficient (R) is −0.76 for the whole set, Figure 1b). In other 

words, protein sequence regions that are predominantly encoded by PUR bases, simultaneously also 

display a strong tendency to interact with G and vice versa (see Figure 1c for the typical, median case). The 

same is also true for mRNA pyrimidine (PYR) or PUR profiles and sequence preferences of cognate 

proteins to interact with PYR or PUR bases, respectively (median Rs are −0.61 in both cases, Figure 1c). 

A similar, but somewhat weaker signal is observed for protein C-preference profiles and mRNA PYR 

profiles (median R is −0.48, Figure 1d). When it comes to the comparison between single nucleotide 

mRNA density profiles and the respective binding preferences of their cognate proteins, the median 

correlation over the human proteome decreases in the absolute values as follows: C-preferences vs.  

C-profiles (−0.51), G-preferences vs. G-profiles (−0.44), and U-preferences vs. U-profiles (−0.3). 

Notably, for adenine (A-preferences) such correlations are significant, but reverse in both cases: protein 

sequence regions, encoded by PUR or A-rich mRNA sequence stretches, prefer not to interact with 

adenines and vice versa (median Rs are 0.43 and 0.40, respectively). Importantly, in folded structures, 

only surface-exposed protein residues should be in a position to bind. Therefore, in order to preserve the 

possibility of complementary binding even for folded binding partners, the above sequence-profile 

comparisons should yield similar results even if one weights the protein sequences by residue solvent 

exposure. Moreover, folded 3D structures of proteins should exhibit surfaces which are predominately 

populated by residues with high G- and C-affinity, as they show the strongest correlation with mRNA 

profiles, and inverse or uniform distributions of those for A and U. We next analyze protein 3D structures 

and their mRNA sequences with these two questions in mind. 
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Figure 1. Intrinsic sequence correlations in the 3D set. (a) General information about the 

set; (b) Distribution of Pearson correlation coefficients (R) between mRNA purine (PUR) 

profiles and G-preference sequence profiles of proteins from the 3D set; (c) Comparison 

between mRNA PUR content and its cognate protein G-preference profile for a typical, 

representative protein from the set (R = Rmedian); (d) The median Rs for the 3D set sequences 

obtained using different knowledge-based interaction preference scales for protein 

sequences and different nucleobase composition profiles of their cognate mRNAs. 

 

3.2. Contribution of Protein Residue Accessibilities to Matching with Cognate mRNAs 

To probe how the reported sequence-based correlations depend on the arrangement of protein chains 

in 3D, we have performed a similar analysis of matching between mRNA compositional profiles and 

interaction preference profiles of their cognate proteins, whereby we also account for the relative solvent 

accessible area of every residue (see Experimental section). Although the thus obtained distribution for 

G-preference of proteins vs. PUR mRNA profiles is wider than the one calculated using just sequences 

(Figures 1b and 2a), it is still strongly shifted into the negative Rs region (median R is −0.59). What is 

more, the shape of the distribution suggests that contribution of the structure is protein dependent: for 

about 10% of proteins, the correlation actually improves or does not change upon weighting their  

G-preference profiles by the accessibility, while on average the correlation drops in absolute value by 

0.17. In Figure 2b, we depict how the matching of individual protein G-preference and mRNA PUR 

density profiles is perturbed by the accessibility weighting in a typical case (compare with Figure 1c).  
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A similar magnitude of the effect is observed for the matching between protein G-preference and mRNA 

G profiles, while other correlations are less affected by the accessibility weighting (Figure 2c)—the 

average decrease of absolute median R-values is about 0.1. Here, the most PUR-rich regions in the 

mRNA match the G-preferring exposed helical and loop regions of the cognate protein, which is not 

inconsistent with the possible binding between the two. Randomization tests show that in most cases the 

matching remains significant after accessibility weighting (Figure 2d), except for the relatively weak 

correlation for the U-preference vs. U profiles and anti-correlations seen for A-preference. 

Figure 2. Contribution of protein residues accessibility to matching between protein 

interaction preference profiles and sequence compositional profiles of their cognate mRNAs. 

(a) Distribution of Pearson correlation coefficients (R) between mRNA PUR profiles and  

G-preference sequence profiles of proteins from the 3D set weighted by the relative  

amino-acid solvent accessible surface areas (SASA); (b) Comparison between mRNA PUR 

content and its cognate protein G-preference profile weighted by relative amino-acid SASA 

for a typical, representative protein from the set; (c) The median Rs for the 3D set sequences 

obtained using different knowledge-based interaction preference scales for protein 

sequences weighted by relative amino-acid SASA and different nucleobase composition 

profiles of their cognate mRNAs; (d) Statistical significance of observed correlations 

between SASA-weighted interaction preference profiles of proteins and different 

compositional profiles of their cognate mRNAs. The dashed line depicts the p-value 

magnitude of 0.05. 

 

3.3. Distribution of Nucleobase Interaction Preferences in Folded Protein Structures 

How do nucleobase interaction preferences map onto protein 3D structures? Spatial distribution of 

such preferences in protein structures was evaluated using a fixed spherical cutoff (here 7 Å, see Methods 

for details). Here, all residues whose Cα atoms are inside the sphere centered at the Cα atom of a residue 
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in question, contribute to its total, average preference value. The residues are also divided into several 

groups according to their solvent exposure (surface/non-surface) and their presence in specific secondary 

structure elements using a coarse-grain definition: helix, sheet or loop (Figure 3a, see Figure 1c for the 

1D G-preference profile of the same protein). Importantly, protein residues are included in the statistics 

only if their spatially averaged preference value is above the mean of the whole set plus a given number 

of standard deviations (σ). In Figure 3b, we show the dependence of the total number of such ”extremes” 

on the σ cutoff together with the fold enrichment (FE) for G-preference extremes among different 

secondary-structure categories. While the FE values display a relatively stable behavior below the 2σ 

cutoff, the sharp decrease in the number of considered extremes as a function of σ does have an effect 

on their actual values at higher cutoffs. At the same time, the observed tendencies, and in particular the 

predominance of loop regions among G-preference extremes (see also Figure 4), remain pronounced 

even at higher cutoff values. For all further analysis, we have used the 2σ cutoff since this value allows 

one to focus on the prominent features only, yet still provides reasonable statistics (Figure 3b). 

Figure 3. Analysis of protein structures. (a) The studied properties of 3D structure shown 

for an exemplary protein from the 3D set; (b) Dependence of the total number of G-preference 

extremes in the 3D set (right y-axis, black curve) and fold enrichment (FE) for the extremes 

among different secondary-structure categories (left y-axis, colored curves) on the number 

of standard deviations (σ) from the set mean used for the definition of the extremes. The 

dashed line depicts a cutoff value applied for all further calculations. 

 

The enrichment of extremes of different preferences among various categories of protein residues is 

shown in Figure 4. As one can see, A- or U- interacting sites are distributed approximately uniformly 

between protein surface and protein interior, but they prefer different structural motifs: loop regions 

corresponding to A-preference extremes and sheet regions corresponding to U-preference extremes 

(Figure 4, upper panels). At the same time, we observe a strong tendency for the G- and C-interacting 

sites to be on the surface and to predominately form protein loops (Figure 4, middle panels). What is 

more, G-preference extremes are also often found in the exposed helices. On the other hand, PUR 

interacting sites are equally present in surface loops or helices, but are depleted in the protein interior. 

Finally, protein regions with high average PYR binding propensity display an approximately uniform 

distributions in terms of both solvent accessibility and secondary structure (Figure 4, lower panels). 
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Figure 4. Fold enrichment (FE) for different interaction preference extremes among different 

amino-acid categories. 

 

4. Discussion 

The discovery of the compositional matching between nucleobase-preference profiles of protein 

sequences and nucleobase density profiles of their cognate mRNA coding regions has prompted us to 

hypothesize that the two biopolymers may be physico-chemically complementary to each other and  

bind [17–19]. However, as the matching was observed at the level of primary sequences of proteins and 

mRNAs, we have suggested that such complementary binding may be relevant particularly in those 

situations where the two biopolymers are unstructured [17–19]. On the other hand, we have not excluded 

the possibility of direct interactions even between folded proteins and their cognate mRNAs. The present 

study is a first step in the direction of addressing this possibility. Because of the general lack of tertiary 

structure information about mRNAs, however, here we exclusively focus on protein 3D structures. Our 

results demonstrate that the cognate matching is largely preserved if one also considers protein residue 

solvent accessibility in 3D structures (Figure 2). Although including such structural information leads to 

a decrease in the absolute value of median R values for all tested combinations of protein interaction 

preferences and mRNA compositional profiles over the whole 3D set (Figures 1d and 2c), the correlation 

is still reasonable and statistically significant for a number of cases (Figure 2c,d). Moreover, a detailed 

analysis of protein structures has revealed a strong tendency for prominent G- and C-interacting protein 
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sites (G- and C-preference spatially averaged extremes) to localize predominantly in surface-exposed 

loop regions (Figure 4, middle panels). Thus, such potential RNA binding sites are able to form 

interaction patches on the protein surface, which also have intrinsic conformational flexibility and may 

adjust their configuration upon interaction with RNAs. While this finding does not constitute evidence 

of such interactions, it is consistent with them. Here it should also be emphasized that present results do 

not allow one to speculate about the mechanistic aspects of such potential binding, but rather provide a 

general consistency check for the possibility of cognate interactions even for folded proteins. 

A similar behavior to G- and C-interacting protein sites is also observed for PUR-binding hotspots, 

which favor surface localization and avoid sheet conformations (Figure 4). On the other hand, other 

nucleobase interaction preferences display less prominent features: A-, U-, and PYR-interacting sites are 

distributed almost uniformly between protein surface and protein interior, although the former two do 

slightly prefer to be in loop and sheet regions, respectively (Figure 4, upper panels). Interestingly, in 

contrast to guanine, we observe a relatively strong anti-matching between A-preference sequence protein 

profiles and PUR- or A-density profiles of their cognate mRNAs that may, in principle, disturb the 

complementary bindings between them. At the same time, in folded structures A-preferring protein 

regions do not predominantly localize on the surface (Figure 4) and, thus, may contribute less to binding 

to cognate mRNAs. From the perspective of the origin of the genetic code in response to direct 

interactions between peptides and RNA oligonucleotides, we propose a scenario (see also [19]) whereby 

the early stage of code development was mostly driven by binding events between G- or C-rich RNA 

sequences and G/C preferring peptides that exhibited flexible structure and featured exposed  

RNA-interacting sites. These ancient peptides were mostly comprised of “old” amino acids, which can 

be obtained abiotically like in the Miller-Urey experiments [27], and whose codons are enriched in  

G and C [28]. At the same time, as we have shown here, A-preferring amino acids (e.g., Trp, Phe, Cys) 

are on average less available for interaction and perhaps have not, within the coding-from-binding 

framework, contributed directly to codon assignments. The latter is especially reasonable if one 

considers that such amino acids also belong the group of “new” amino acids, which are metabolically 

more complex and could entered the genetic code table at later stages of the development, not requiring 

direct interactions between and polypeptides and RNA [19]. The fact that in this view the primordial 

encoding of protein sequences was fuzzy (i.e., multiple proteins of related composition were encoded by 

the same mRNA) bears resemblance with the compositional heredity scenario of early evolution [29].  

In this picture, physicochemical interactions between abiotically obtained RNA and protein building 

blocks possibly lead to optimization of the composition of the two moieties within primordial vesicle-

like compartments, which was then later fixed in sequences/structures of the two biopolymers. 

Importantly, in the present study we do not account for any structural organization of mRNA, which 

could in principle also strongly contribute to the binding with its cognate protein. In contrast to proteins, 

however, information about structural organization of mRNAs in the cell is still very limited. For 

instance, proteome-wide data on in vivo mRNA secondary structures have become available only very 

recently [30] and very little is known about their tertiary arrangements. Such data, when it becomes 

available, will open up opportunities for future studies of structural features of protein-interacting sites 

in mRNA and the structural aspects of the protein-mRNA complementarity hypothesis. 
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