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Petr Kvapil 1

1 Institute of Applied Biotechnologies, Služeb 3056/4, 108 00 Prague, Czech Republic; broz@iabio.eu (P.B.);
kasny@iabio.eu (M.K.); novotny@iabio.eu (A.N.); kvapilova@iabio.eu (K.K.); kvapil@iabio.eu (P.K.)

2 Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol
University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic

3 Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
* Correspondence: klempt@iabio.eu; Tel.: +420-739-394-373

Received: 25 August 2020; Accepted: 25 September 2020; Published: 29 September 2020
����������
�������

Abstract: Single next-generation sequencing (NGS) proved to be an important tool for monitoring the
SARS-CoV-2 outbreak at the global level Until today, thousands of SARS-CoV-2 genome sequences
have been published at GISAID (Global Initiative on Sharing All Influenza Data) but only a portion
are suitable for reliable variant analysis. Here we report on the comparison of three commercially
available NGS library preparation kits. We discuss advantages and limitations from the perspective
of required input sample quality and data quality for advanced SARS-CoV-2 genome analysis.
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1. Introduction

The global spread of a new type of coronavirus, SARS-CoV-2, causing the respiratory disease
COVID-19 [1–4] mobilized both the public and private sector and resulted in a rapid development of
solutions focused on SARS-CoV-2 detection and analysis. Next to a number of solutions utilizing the
advantages of RT-qPCR techniques for SARS-CoV-2 detection [5,6], the next-generation sequencing
(NGS)-based protocols allows the analysis of SARS-CoV-2 genome evolution and variability and the
monitoring of its spread within the global population (Nextstrain; https://nextstrain.org) [7,8]. These
knowledges address the need to elucidate its genomic characteristics (GISAID; https://www.gisaid.org)
in order to ensure the efficiency of RT-qPCR testing, assess its transmission through clonal events, and
develop a reliable vaccination protocols future therapies, especially considering the fact that RNA
viruses are prone to accumulate variants in its genome in a relatively short timeline, which in the
case of SARS-CoV-2 is also related to its capacity to proofread and remove mismatched nucleotides
during genome replication and transcription [9–12]. In general, the various types of kits stem from
two dominant approaches—amplicon and hybridization capture. In general, both approaches show
significant advantages and disadvantages in the term of workflow, sample input and NGS library
output requirements [13,14]. Amplicon-based methods are in general based on a simpler workflow and
require smaller amounts of input DNA, but they are typically limited to small panels (a few hundred
amplicons), and tend to have a high PCR background and lower uniformity of coverage [13]. The
capture-based approaches are more useful for targeting large regions, such as small (viral) genomes and
whole exomes, and sequencing data shows better uniformity of coverage. Concerning the workflow,
the capture-based based approaches are more laborious and require relatively large inputs of nucleic
acids [13]. Recently, several companies have developed SARS-CoV-2 targeted NGS library preparation
kits intended for use on Illumina NGS platforms. In this study we report performance analysis of
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three commercially available library preparation kits, utilizing both amplicon (Paragon Genomics,
Hayward, CA, USA) as well as hybridization capture (Illumina, San Diego, CA, USA, Twist Bioscience,
San Francisco, CA, USA) approaches (see the links in Material and Methods). We predefined a
number of evaluation criteria to address the most important wet-lab (such as sample quality and
input requirements, laboriousness of workflow including a time, quality of NGS library, costs) as
well as data analysis steps (such as % of Alligned Bases, % of Duplicates, % of Mapped Reads, Mean
Target Coverage) with a main goal—to achieve high quality genomic data for subsequent reliable
variant analysis of SARS-CoV-2 genome. In total 55 RNA isolates of nasopharyngeal swabs (NS) or
bronchoalveolar lavage fluid (BLF) from five different laboratories located in Czech Republic were
analysed. In order to validate our workflow (wet lab as well as bioinformatics pipeline) we decided
to engage two synthetic SARS-CoV-2 positive controls (Twist Bioscience, San Francisco, CA, USA),
corresponding to different variants of the virus genome (MT007544.1 and MN908947.3), combined
in four different dilutions, resulting in 3, 10, 100 and 1000 copies used for NGS library preparation
by each of three approaches as well as artificial negative control (total human RNA, Takara, Takara,
Saint-Germain-en-Laye, France).

2. Materials and Methods

2.1. Samples

All samples originate from patients positively diagnosed with COVID-19. Sampling took place in
five Czech hospitals—two in Prague, two in Brno, one in Plzeň. In total, we have received 55 samples of
nasopharyngeal swabs from positive cases. Isolation of total nucleic acid content from nasopharyngeal
swabs was performed by QIASymphony Virus/Pathogen Mini kit and/or QIAamp Viral RNA Mini
kit K (Qiagen, Germantown, MD, USA) respectively (depending on their availability) according to
manufacturer’s instructions to obtain isolates. Viral content of the isolates was subsequently quantified
by RT-qPCR (Direct SARS-CoV-2 RT PCR kit, Institute of Applied Biotechnologies, Prague, Czech
Republic) in order to evaluate the copy number of SARS-CoV-2, based on WHO-recommended protocol
(www.who.org). In direct SARS-CoV-2 RT PCR assay we used the novel coronavirus sequences
reported by the United States Centers for Disease Control targeting two genetic sequences of the viral
nucleocapsid (N1, N2 genes) and human RNase P (RP gene) as an internal control [15].

2.2. Controls Generation

Negative RNA controls prepared from 5ng (nc) human breast tumor RNA (HBT) (Takara Bio;
Saint-Germain-en-Laye, France). Positive controls (pcs) were prepared by spiking 5 ng of HBT with 2
synthetic SARS-CoV-2 RNA controls (SARS-CoV-2 RNA control 1, SARS-CoV-2 RNA control 2; Twist
Bioscience; USA) in order to reach 3 (pc1), 10 (pc2), 100 (pc3), 1000 (pc4) copies of both synthetic
genomes within one control. The prepared controls were qualified by RT-qPCR (Ct values).

2.3. Calculation of Ct for Samples and Controls

The number of virus copies in samples was calculated according to Ct values measured by
adoption of direct SARS-CoV-2 RT PCR assay for synthetic RNA positive controls diluted to defined
viral copy concentration. The direct SARS-CoV-2 RT PCR results were validated with IVD CE certified
kit UltraGene Combo2Screen SARS-CoV-2 Assay (ABL SA Group, Luxembourg) on RNA isolated from
nasopharyngeal swab samples using a viral RNA isolation kit from cell-free fluids (NucleoSpin RNA
Virus, Macherey-Nagel, Duren, Germany).

2.4. NGS Library Preparation

Overall, NGS libraries were prepared from 55 isolates in sets specific for each library preparation
solution. Thirteen samples were prepared using all three kits.

www.who.org
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2.4.1. Library Preparation—1st Attempt NEB+TWIST (NEB+TWIST1)

The library was prepared from a set of 24 isolates (Ct range: 11.29–31.96; see Supplementary Table
S1) and 4 positive (pc1, pc2, pc3, pc4) and 2 negative (nc) controls using NEBNext Ultra II Directional
RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA) following manufacturer’s
protocol (Protocol NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB #E7760,
#E7765; https://international.neb.com/-/media/nebus/files/manuals/manuale7760_e7765.pdf).

Three enrichment plexes (10 samples each, 1500 ng in total per plex) were prepared by pooling
150 ng or maximal available amount of each sample (if available) as described in Supplementary
Table S1. Plexes were subsequently enriched using the Twist SARS-CoV-2 Research Panel kit
(Twist Bioscience; https://www.twistbioscience.com/sites/default/files/resources/2020-07/ProductSheet_
NGS_SARS-CoV-2_Panel_14JUL20_Rev1.2.pdf), following the manufacturer’s protocol (Twist Target
Enrichment Protocol; https://www.twistbioscience.com/sites/default/files/resources/2020-07/Protocol_
NGS_EnzymaticLibraryPrepCDI_13JUL20_Rev1.1.pdf, https://www.twistbioscience.com/sites/default/
files/resources/2019-11/Protocol_NGS_HybridizationTE_31OCT19_Rev1.pdf). Enriched plexes were
equally pooled based on evaluation by Qubit 2.0 and Bioanalyzer 2100 and sequenced on the MiSeq
platform using MiSeq Reagent Kit v3 (600 cycle) (Illumina, San Diego, CA, USA).

2.4.2. Library Preparation—2nd Attempt NEB+TWIST (NEB+TWIST2)

The second library preparation followed the same procedure as the first experiment, with exception
of utilizing the knowledge of Ct values of samples (Ct 13,1–19). 17 NGS libraries were combined into 2
plexes (6-plex and 11-plex) based on Ct values in order to minimize the range span (see Supplementary
Table S1).

Enriched plexed were evaluated by Qubit 2.0 and Bioanalyzer 2100, pooled equally (with regard
to the number of samples in individual plexes) and sequenced using MiSeq platform using Reagent
Kit v2 (500 cycle) (Illumina, San Diego, CA, USA).

2.4.3. Library Preparation—Illumina

A set of 35 isolates (Ct values 11.29–40, Supplementary Table S1)—4 positive (pc1, pc2, pc3, pc4)
and 1 negative (nc2) controls—was transcribed into ds cDNA using NEBNext® RNA First Strand
Synthesis Module and NEBNext® Ultra™ II Directional RNA Second Strand Synthesis Module (New
England Biolabs; Ipswich, MA, USA) following manufacturer’s protocol.

Libraries were prepared using Nextera Flex for Enrichment (pre-enrichment part of
manufacturer’s guide; https://emea.support.illumina.com/content/dam/illumina-support/documents/
documentation/chemistry_documentation/illumina_prep/illumina-dna-prep-with-enrichment-
reference-1000000048041-05.pdf). Next, libraries were combined within 8 plexes by 5 samples
each based on Ct values (see Supplementary Table S1) and enriched using the Respiratory
Virus Oligo Panel (Illumina, San Diego, CA, USA, following the manufacturer’s protocol
(https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/
coronavirus-enrichment-product-list-1270-2020-004.pdf).

Enriched plexes were equally pooled based on evaluation by Qubit 2.0 and Bioanalyzer 2100 and
sequenced on the MiSeq platform using MiSeq Reagent Kit v3 (600 cycle) (Illumina, San Diego, CA,
USA).

2.4.4. Library Preparation—Paragon

For the NGS library construction with the amplicon approach, the identical set of samples as the
one used in the Illumina approach was used. Briefly, 35 isolates, four positive and one negative controls
were prepared using the CleanPlex® SARS-CoV-2 Research and Surveillance Panel (Paragon Genomics,
San Francisco, CA, USA), following the manufacturer’s protocol (https://www.paragongenomics.com/

wp-content/uploads/2016/12/UG1001-06-CleanPlex-NGS-Panel-User-Guide.pdf) using a variant of
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two-pooled multiplex PCR reactions (see manufacturer’s protocol). From a total of 40 preparations,
only 21 libraries were finally successfully prepared (evaluated from Bioanalyzer traces as recommended
by the guide) in sufficient quality for sequencing.

21 purified libraries were pooled (due to low concentration of some libraries we were not able to
pool each of the libraries equally, see Supplementary Table S1) and sequenced on the MiSeq platform
using Reagent Kit v3 (600 cycle) (Illumina).

2.5. Sequencing

Libraries from each preparation were pooled based on the quality control evaluation. Further,
libraries were diluted and denatured according to the MiSeq Denature and Dilute Guide (February
2019, v10 version). Final loading concentration, as well as sequencing configuration specified in
Supplementary Table S2.

2.6. Reference Mapping and Bioinformatic Analysis

FastQC v. 0.11.8 [16] was used to control sequence quality prior to trimming. Low quality, short
reads and adapters were trimmed by fastp 0.20.0 [17]. The remaining reads were aligned to reference
genome NM9088947.3 (which is identical to NC_045512) using bowtie2 [18] with default sensitive
(–sensitive D 20 -R 3 -N 0 -L 20 -i S,1,0.50) parameters. Flagging duplicate reads (in enrichment libraries)
and calculation of read depth were done by Picard [19]. Sequencing and bioinformatics workflow
were validated by identification of variants present in the synthetic control samples (pc4) based on
MT007544.1 and NM9088947.3 reference genome (Table 1). Variant calling was performed using the
Freebayes algorithm with default parameters. The median coverage in all coding sequences (CDS) of
SARS-CoV-2 gene regions (ORF1a, ORF1ab, S, ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, ORF1)
was calculated.

Table 1. Comparison of detected variant in synthetic control RNA. In our hands, the Paragon approach
did not detect all four variants in generated data by standard reference mapping methods.

Position Twist1 Coverage Twist2 Coverage Illumina Coverage Paragon Coverage

19065 yes 390 yes 36 yes 117 yes 66
22303 yes 381 yes 62 yes 166 no 3
26144 yes 217 yes 40 yes 197 yes 45
29749 yes 573 yes 22 yes 58 no 14

3. Results and Discussion

3.1. NEB+Twist Workflow

During the first attempt, thirty libraries (including 4 positive and 2 negative controls) were
prepared in three plexes (10 samples each, see Supplementary Table S1) employing NEBNext® Ultra™
II Directional RNA Library Prep Kit for Illumina (New England Biolabs) followed by capture-based
workflow utilizing the Twist SARS-CoV-2 Research Panel (Twist Bioscience). Bioinformatic analysis
of sequenced data showed high variability of data quality among samples within the experiment
(e.g., mean coverage and total number of reads) as well as within each of plexes (see Figure 1 and
Supplementary Table S1). Contrary, even distribution of the total reads over three plexes (19, 23.6
and 20.1 M PE reads) confirmed the pooling efficiency. Varying sample performance within plex
(Supplementary Table S1, STD 4.65 M, 3.93 and 4.63 M PE reads per plex 1, 2 and 3) requested
re-evaluation of provided Ct measurement metrics, and led us to standardize Ct value of all samples
by in-house RT-qPCR sample rating assay (IAB; see Materials and Methods), instead of using of data
provided by external laboratories. This solution was subsequently proved by the second NEB+Twist
experiment, which resulted in more even coverage distribution among 17 libraries (one positive control)
prepared in two plexes (STD within plexes 1.05 and 1.78 M). These data indicate that plexes composed
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of samples with similar Ct value show higher uniformity of coverage within the plex compared to
plexes prepared without respect to re-evaluated Ct value (Figure 1).
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Figure 1. (A) Distribution of Ct values within the particular plexes of NEB+TWIST1,2; N+T1,2
(NEB+TWIST1 plex 1–3, NEB+TWIST2 plex 2–3), ILLUMINA; I (plex 1–8) and PARAGON; P (all the
samples) approach. (B) Distribution of median coverage of reads which were mapped to target regions
within the particular plexes of NEB+TWIST1,2; N+T1,2 (NEB+TWIST1 plex 1–3, NEB+TWIST2 plex
2–3), ILLUMINA; I (plex 1–8) and PARAGON; P (all the samples) approach. Box and Whiskers plots
represent the median (horizontal line), 25th and 75th percentiles (boxes), maximum and minimum
(whiskers) and outliers (♦).
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3.2. Illumina Workflow

Subsequently, knowing the importance of Ct evaluation for sample QC, 40 NGS libraries were
prepared by the Illumina protocol, utilizing the Respiratory Virus Oligo Panel in combination with
Nextera Flex for Enrichment (NEB solutions was used for first and second strand cDNA generation,
see Materials and Methods).

Forty libraries (including 4 positive and 1 negative controls) were enriched in 8 plexes with the
goal to minimize the Ct sample range per plex to a difference of maximum 3 where possible (exception
in plex 8, see Supplementary Table S1). Generally, lowering the number of samples within each
plex of capture-based workflows (can go down to single-plex) raises the chance of equal distribution
of sequencing capacity amongst samples (see Figure 1 and Supplementary Table S1), however also
dramatically raises the price per sample as well as hands-on time.

Compare to NEB+TWIST the capture-based Illumina approach data showed in average a lower
percentage of mapped reads (Supplementary Table S1), this consequence could be related to the lower
specificity of Respiratory Oligo Viral Panel designed next to the SARS-CoV-2 also for other pathogens
(see https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/ngs-
enrichment-coronavirus-app-note-1270-2020-002.pdf).

3.3. Paragon Workflow

Unlike capture-based protocols, Paragon’s amplicon-based workflow keeps samples separated
during the whole workflow (Supplementary Table S1). Therefore, it is potentially possible to directly
evaluate the success of prepared targeted SARS-CoV-2 NGS library (see Materials and Methods).
In our hands, Paragon protocol resulted in 20 (plus 1 control) successfully generated libraries out of
40 samples in total. Since the same set of samples was also used for the Illumina workflow where it
resulted in 35 sequenced genomes (plus 4 controls), the further optimization of the Paragon protocol
would be needed. Paragon NGS library preparation workflow was proved to be the fastest protocol
out of three mentioned solutions (see comparison below).

3.4. Data Analysis

The main quality control parameter is the fraction of all target bases which achieved at least 20×
coverage or greater. Following this arbitrary limit, sample analysis was considered as successful in
case it reached a minimal 50% proportion of targeted bases with coverage ≥20×. Out of 95 sequenced
libraries eighty-six libraries passed this limit; 16 sample libraries and 2 control libraries of 1st attempt
NEB+Twist workflow (out of 30), 16 sample libraries of 2nd attempt NEB+Twist workflow (out of
17), 30 sample and 2 control libraries of Illumina workflow (out of 35) and all 21 sequenced Paragon
workflow libraries including one control library (Supplementary Table S1). The impact of Ct on this
parameter is especially apparent from the comparison of the first and second approach using the
NEB+Twist workflow (see Figure 1 and Supplementary Table S1). Also, the viral load in a sample
(corresponding to sample Ct value ≤ 23.29 or positive control value ≤ 25.84) showed to be the limiting
factor in case of each workflow, samples with higher Ct value resulted in either poor genome coverage
(NEB+Twist workflow and Illumina workflow) or in absence of expected library preparation product
(Paragon workflow).

Considering the time-consumption of each library preparation approach, the fastest was
amplicon-based Paragon workflow with hands on time (HOT) 4 12min and 6 h 30 min instrument
time (INT), followed by Illumina (6 h 6 min HOT and 23 h 24 min INT) and NEB+Twist workflow (6 h
42 min HOT and 26 h 54 min INT) (Figure S1). This is in concordance with the expectations based on
the manufacturer’s manual as well as the general principle of each workflow. It should be noted that
Illumina workflow allows faster hybridization time (down to 90 min; we used 5 h long incubation)
which reduces the time difference between enrichment and amplicon-based approaches.

https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/ngs-enrichment-coronavirus-app-note-1270-2020-002.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/ngs-enrichment-coronavirus-app-note-1270-2020-002.pdf
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From the perspective of quality of generated sequencing data, the Ct value showed to be the major
predictor of sample outcome in regards to the goal of reaching 20× coverage obtained on a particular
sample, as well as success of library preparation, regardless of type of workflow. Since Ct reflects the
actual viral load, it has negative correlation with almost all monitored parameters (Figures 2 and 3).
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Figure 2. Mutual correlation of selected categories of metrics related to (A), NEB+TWIST1 (plex 1–3);
(B), NEB+TWIST2 (plex 2–3); (C), ILLUMINA (plex 1–8); and (D) PARAGON (no plex) approach. We
can observe a significant negative correlation between Ct value and % of mapped reads to the reference
genome. Lower Ct number caused higher number of % mapped reads and therefore results in better
coverage. PRC ALIGN 20×, the percentage of bases that were aligned to the reference sequence at
least 20×; PRC ALIGN 50×, the percentage of bases that were aligned to the reference sequence at
least 50×; PRC ALIGN 100×, the percentage of bases that were aligned to the reference sequence at
least 100×; PRC DUPL, percentage of duplicate sequences (not generated in the case of PARAGON
approach); Ct VALUE, reflecting the viral load; TOTAL READS, total number of reads which were
yielded by sequencing on MiSeq (Illumina); PCR MAPPED READS, total number of reads which were
mapped to target regions; PERC_MAPPED, percentage of mapped reads which were mapped to target
regions; MEDIAN INSERT, median value of insert length; MEDIAN COVERAGE, median coverage of
reads which were mapped to target regions; MEAN COVERAGE, mean coverage of reads which were
mapped to target regions.
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Figure 3. Correlation of Ct (reflecting the viral load) to median coverage of reads which were mapped
to target regions. Sequenced samples without controls: NEB+TWIST1,2; (A) 40 samples, Illumina;
(B) 35 and Paragon; (C) 20 (19 prepared amplicon libraries, including 4 controls, were excluded from
sequencing—did not meet the QC limit). (In a graph NEB+TWIST1,2 are presented together with
samples of both independent preparations). Min/max Ct values: NEB+TWIST1,2 (11.29–32.96), Illumina
(11.29–29.98) and Paragon (11.29–25.63). Min/max median coverage values: NEB+TWIST1,2 (0–16015),
Illumina (9–4796) and Paragon (73–11415).

In respect to the aim of obtaining >20× coverage, based on presented data, the recommended
samples are those with Ct value among 11–23. Samples within this range required a lower number
of total reads and higher ratio of mapped reads (Supplementary Table S1) compared to those with
Ct above 23. In the case of data recorded on the set of 13 samples which were prepared by all three
approaches the negative correlation of median coverage to Ct values did not show such significant
trend because all the samples were in the optimal Ct values range 11.29–22.6 (Supplementary Table S1,
Figure 4). Nevertheless our data demonstrate that even samples with Ct values ≥ 23 can be successfully
processed, however will require substantially higher sequencing capacity and tend to be more prone
to dropouts.
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Enrichment based approaches required a higher number of reads (min. 109 624 PE reads,
IAB20_006_34 sample, see Supplementary Table S1) to reach the optimal coverage limit than amplicon
approach (75 684 PE reads, IAB20_006_35), which is in concordance to expectation that amplicon-based
approach have generally better on-target rate compared to capture-based approach [13]. On the other
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hand, the evenness of coverage was better in both capture-based protocols compared to amplicon-based,
as shown by Supplementary Table S1 and Figure 3, which is also in concordance with previously
published results [18]. It should be noted that Illumina´s panel also targets several other viral genome
sequences (21 viruses in total; performance not evaluated) as well as human targets serving as positive
control, which is reflected by increased panel size as well as sequencing requirements (see the link in
Materials and Methods).

In all CDS regions the read depth is higher compare to median coverage across whole genome
(see Reads of Depth for CDS in Supplementary Table S1). We can observe 0 read depth coverage in
all CDS region of negative control samples (nc). There are also dropouts in NEB+TWIST1 method in
samples IAB20_006_03 and IAB20_006_13. This gap corresponds to low mapping rate (% mapped
reads) to the reference genome (Supplementary Table S1). Except for the mentioned dropouts, we can
observe relatively good read depth across whole CDS regions.

Whole experiment was done during the acute phase of the coronavirus crisis, using
routinely-generated clinical isolates. These samples represent certain constraints for successful
NGS library preparation and/or data processing, due to limited concentration (often below detection
threshold of Qubit HS Assay), variable quality and viral load and limited volume. Therefore, it was not
possible to apply all three methods on the whole set of samples, and 13 samples were prepared using all
three methods. We present relevant data acquired in this set of samples in Figure 4 and Supplementary
Table S1 (highlighted in red), however due to the observation that performance of given sample is
also affected by sample composition (number and quality) of enrichment plexes (the effect of Ct), we
suppose that the performance in regards to solution used for library preparation is rather relative.

In regards to data analysis of obtained viral genome sequences, we decided to validate
reference-mapping-based pipeline using the knowledge of presence of variants within synthetic
Twist control (3–1000 copies per reaction volume, see Materials and Methods). Positive control was
prepared from two synthetic controls representing two genome variants: MN9088947.3 and MT007544.1
(Twist Bioscience). Thus, 2 genome variants combined in positive control differed by 4 sites: 3 SNPs
(19065T > C, 22303T > G, 26144G > T) and one deletion (29749 ACGATCGAGTG > A). We filtered
out the mapped reads of low quality (MQ < 20), bases with lower quality (BQ < 25), supplementary
and secondary alignment, PCR duplicates (except Paragon which is an amplicon-based approach),
read depth (DP > 20×). For high quality variant calling, Freebayes algorithm (default parameters)
was used [20]. For the Paragon data the variant calling was performed after trimming out the primer
sequences to minimize false positive results.

Surprisingly, only sequencing data from libraries prepared by Paragon protocol did not show the
presence of variants caused by low coverage at those sites (see Table 1), despite showing the highest
mean coverage in comparison to competitors (see Supplementary Table S1). Moreover, the absence
of anticipated SNPs is in sharp contrast to significantly higher overall number of called variants in
data from Paragon libraries in comparison to both capture-based protocols (NEB+Twist and Illumina),
as indicated by the Venn diagram (Figure 5). Both of these findings (low coverage uniformity and
high rate of false positives) are in alignment with previously published results [13,14]. Almost 60% of
variants in Paragon are common in all tested samples which is caused by PCR biased and low mapping
quality (MQ < 20).

All acquired SARS-CoV-2 genomes were uploaded to NCBI Sequence Read Archive (SRA) under
accession numbers SUB7745307, SUB7745376, SUB7738659 and SUB7745293.
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4. Conclusions

In our study we compared the performance of three commercially available NGS library
preparation kits. We pointed out factors which are positively/negatively correlated to the data
quality of advanced SARS-CoV-2 genome (variant) analysis. From this point of view the Ct value
(reflecting the viral load per sample) was determined to be the key predictor of library preparation
success and sample data outcome reflected by suitable coverage (at least 20× on a particular sample),
regardless of type of workflow. Samples with the Ct value ≥ 23 showed a lower number of total reads
and lower ratio of mapped reads, although also these samples (Ct ≤ 23) can be successfully processed,
but require higher sequencing capacity. The samples with higher Ct value resulted in low genome
coverage—NEB+Twist workflow and Illumina workflow or in absence of expected library preparation
product—Paragon workflow. This empirically evaluated dependence also applies to the capture-based
approaches where the plexes composed of samples with similar Ct value show higher uniformity
of coverage within the plex compared to plexes prepared without respect to Ct value. According to
our results the capture-based approaches required a higher sequencing capacity (higher number of
reads) to reach the suitable ≥ 20× coverage and showed lower on-target rate than the amplicon-based
approach, but the evenness of coverage was better in both capture-based protocols.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/10/769/s1,
Supplementary Table S1: Metrics of samples processed in NEB+TWIST1,2 (NEB+TWIST1 plex 1–3, NEB+TWIST2
plex 2–3), ILLUMINA (plex 1–8) and PARAGON (no plex) approach.; Supplementary Table S2: MiSeq Sequencing.
Reagent kits used for sequencing, number of cycles, loading concentration and PhiX spike-in per each sequencing
run. Cluster density should be within 1200–1400 K/mm2 in case of MiSeq V3 chemistry; Figure S1: Process scheme
of time-consumption for library preparation by NEB+TWIST, Illumina and Paragon approaches (extrapolation to
20 samples).

Author Contributions: Conceptualization, P.K. (Petr Kvapil) and P.K. (Petr Klempt); methodology P.K. (Petr
Kvapil), P.K. (Petr Klempt), K.K., P.B. and M.K.; validation, P.B., M.K. and A.N.; formal analysis, P.B. and A.N.;
writing—original draft preparation, P.K. (Petr Kvapil), P.K. (Petr Klempt), K.K., A.N. and M.K.; writing—review
and editing, P.K. (Petr Kvapil), P.K. (Petr Klempt) and M.K.; supervision, P.K. (Petr Kvapil); funding acquisition,
P.K. (Petr Kvapil). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Pavel Dřevínek (IInd Faculty of Medicine, Charles University,
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