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Abstract: Accurate clinical evaluation of renal osteodystrophy (ROD) is currently accomplished
using invasive in vivo transiliac bone biopsy, followed by in vitro histomorphometry. In this
study, we demonstrate that an alternative method for ROD assessment is through a fast, label-free
Raman recording of multiple biomarkers combined with computational analysis for predicting the
minimally required number of spectra for sample classification at defined accuracies. Four clinically
relevant biomarkers: the mineral-to-matrix ratio, the carbonate-to-matrix ratio, phenylalanine, and
calcium contents were experimentally determined and simultaneously considered as input to a linear
discriminant analysis (LDA). Additionally, sample evaluation was performed with a linear support
vector machine (LSVM) algorithm, with a 300 variable input. The computed probabilities based on
a single spectrum were only marginally different (~80% from LDA and ~87% from LSVM), both
providing an unacceptable classification power for a correct sample assignment. However, the Type I
and Type II assignment errors confirm that a relatively small number of independent spectra (7 spectra
for Type I and 5 spectra for Type II) is necessary for a p < 0.05 error probability. This low number
of spectra supports the practicality of future in vivo Raman translation for a fast and accurate ROD
detection in clinical settings.

Keywords: renal osteodystrophy; statistical analysis; Raman spectroscopy; label-free detection;
multiple biomarkers; diagnostic devices; artificial intelligence

1. Introduction

Bone is a dynamic tissue model. Consequently, a constant remodelling process, which is
known as bone turnover, occurs throughout the life [1]. During this metabolic process, a variety of
molecules are released into the circulatory system and have been identified as bone turnover markers
(BTM) [1–3]. Renal osteodystrophy (ROD) is an exclusive diagnosis of bone abnormal mineralization
and morphological changes in strict relationship with skeletal chronic kidney disease-mineral and bone
disorder (CKD-MBD) [4]. As part of bone quality, which is a commonly used terminology to describe
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bone health, ROD manifests itself with abnormality in bone turnover rate [4–6]. Evaluation of bone
quality is usually derived from both biological and clinical perspectives, and encompasses all presently
known bone abnormalities in the following categories: bone turnover, mineralization, bone volume,
linear growth, strength, as well as soft tissue and vascular calcifications [4,6–10]. As a descriptor of the
bone turnover rate, BTM varies over a significant range. In low-rate turnover, cancellous bone volume
and trabecular bone thickness are lower than those of normal-rate turnover, whereas in high-rate
turnover an opposite trend is present, with increases in volume and thickness [6]. Concerning BTM
ratios, high-rate turnover exhibits less minerals within the tissue, leading to reduced mineral-to-matrix
ratios. Lower carbonate-to-phosphate ratios are also encountered in comparison with those for low-rate
turnover [6]. Despite variances in bone turnover occurring in ROD, the overall bone quality is the
primary and major indicator to determine if ROD is present.

Since bone metabolism is complex, detrimental changes within the bone structure may develop
during early onset of ROD, and become more acute with continuous degradation of the kidney
function. As the kidney fails, there is a progressive disruption of mineral and waste homeostasis
within the body. The main effect is the kidney’s influence on circulatory levels of phosphate
and calcium. With the deterioration of the kidney’s ability to process these analytes, increased
concentration of serum phosphate is observed. Excess serum phosphate binds with available calcium,
and being a non-homeostatic event, the serum concentration of calcium decreases. In response,
the parathyroid glands release parathyroid hormones (PTH) to increase serum calcium levels towards
normal homeostasis levels. In CKD, the kidney cannot respond to PTH correctly, due to impairment of
the kidney’s ability in converting 25-hydroxyvitamin D (also known as the pre-hormone calcifediol) to
the hormonally active metabolite 1,25-dihydroxycholecalciferol (known as calcitriol). Calcitriol serves
as the primary response to PTH, by increasing serum calcium levels through stimulating calcium
uptake from the intestines. However, in kidney dysfunction, the synthesis of calcitriol is severely
impacted, leading to a disruption of the calcium uptake from the gut. Consequently, the skeletal
system being a large calcium reservoir is targeted, serving as the initiation of ROD. Thus, individuals
with advanced CKD tend to exhibit more severe forms of ROD and extensive incidence of bone
fractures [6–10]. It has been also reported that ROD can be a sign of metabolic aging [11,12].

Noninvasively, bone assessment is usually performed by dual energy X-ray absorptiometry
(DEXA) or quantitative computerized tomography (QCT)-based methods [7]. While DEXA and QCT
image the areal bone mass and volumetric bone mineral densities, respectively, they are still lacking
the necessary resolution for detection of bone architecture disruption [13,14]. Thus, accurate clinical
evaluations of bone remodelling and of ROD diagnosis are still accomplished using invasive transiliac
bone biopsy followed by in vitro histomorphometry [7]. However, even if histomorphometry remains
the gold standard technique, it lacks potentially in vivo translation. The main reason behind this
failback is the compulsory sample staining in histomorphometric analysis. Furthermore, assessment of
disease progression and its response to different treatments requires for additional invasive biopsies,
since each histomorphometric investigation only provides data on a single point in time, preventing
the time correlation of different histomorphometric patterns with that of fracture risks. This situation
emphasizes the need for improvement in analytic techniques for minimally to non-invasive alternative
analysis that could provide similar or better degrees of diagnostic information. Specifically, the need
for techniques that could provide in-depth information regarding bone’s quality, progression of ROD
by observing BTM, and risk evaluation of bone fractures.

In comparison to the clinically implemented QCT and magnetic resonance imaging (MRI)
procedures and related high cost (they can be performed mainly in well-equipped facilities affiliated to
hospitals), besides histologic techniques, spectroscopic methods of investigation such as Raman and
Fourier transform infrared (FT-IR) spectroscopies are more commonly used in research laboratories.
Not only are they more available, but also they allow for a more detailed examination of bone
quality parameters at once, without the requirement of histological sample staining. Whereas both
spectroscopic techniques provide a comprehensive chemical analysis that is useful for understanding
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likelihood of fractures and is complementary to that from QCT and MRI, relating to potentially in vivo
translation, Raman spectroscopy is superior due to its insensitivity to water absorption. However,
despites their accessibility, there are only relatively few reports on such Raman studies [15–25], with a
slightly larger number of FT-IR investigations [26–30].

In a recent Raman spectroscopic study, we demonstrated that the bone samples of patients with
ROD exhibit an overall increase in phenylalanine and decreases in calcium content, in mineral to
matrix ratio, and in carbonate to matrix ratio [25]. Since just a single Raman spectrum is clearly not
sufficient to assess at statistically significant levels the differences between normal and ROD samples,
we took advantage of confocal Raman microscopy. Thus, by accumulation of a large number of
independent spectra (22,500 spectra for each Raman mapping), identification of the samples with an
excellent accuracy (less than 10−300) was achieved. All these significant biomarkers (i.e., phenylalanine,
phosphate, carbonate, amide content, mineral-to-matrix ratio, and carbonate-to-matrix ratio) were
simultaneously determined with this unprecedented accuracy. The power analysis showed that for
each biomarker, a relatively low number of spectra (of the order of 20–50 spectra) was required to
identify the ROD samples at the typically desired level of significance (p = 0.05).

The current research, while being a logical continuation of our previous efforts, also seeks to advance
this work by simultaneously considering all of these biomarkers in answering the question concerning the
minimum number of spectra required to accurately classify an unknown sample. By utilizing artificial
intelligence approaches and advanced statistical analysis of data, we attempt to prove the viability of
in vivo Raman translation based on future development of an optical-fiber-based biosensor to allow
data collection and signal multiplexing through a partially invasive needle biopsy procedure.

2. Materials and Methods

2.1. Sample Preparation

The samples analyzed in this work were received from the Mayo Clinic, in Rochester, Minnesota,
and consist of 7 iliac crest bone specimens (4 ROD and 3 normal) of adult female patients within
ages of 67 ± 8. The control (normal bone) group samples were acquired from postmenopausal
healthy women. Confirmation of ROD was also validated by histomorphometric evaluations for
the other group of samples. To protect patient confidentiality, the samples were blinded by keyed
numerical identification prior to shipment for current analysis. They were also standardly embedded
in polymethyl methacrylate (PMMA), to facilitate cutting of 5 µm thick sections with a Leica RM
2265 microtome (Leica Biosystems Inc., Illinois, USA). A standard protocol of sample preparation for
histomorphometric analysis was used, without staining.

2.2. Raman Measurements and Equipment

Confocal Raman microscopy was performed with an alpha 300RAS WITec confocal Raman system
(WITec GmbH, Ulm, Germany), using a 532 nm excitation of a frequency-doubled neodymium-doped
yttrium-aluminum-garnet (Nd:YAG) laser that was operated at a low power output of about 5 mW
to avoid sample damage. The Raman signal was recorded with a 1024 × 127 pixel Peltier cooled
back-illuminated and VIS AR–coated Marconi 40–11 charge-coupled device (CCD) with a spectral
resolution of 4 wavenumbers. To particularly measure just the trabecular bone and avoid PMMA
interference, specific regions of interest were carefully selected using a 20× objective lens with a
0.4 numerical aperture (Olympus, Tokyo, Japan). A low numerical aperture objective was used
primarily to avoid the influence of polarization effects for phosphate and collagen amide I bands,
besides to provide a greater working distance adequate for sample roughness. The WITec Control 1.60
software was employed for confocal mapping data acquisition and for controlling the piezoelectric
stage during laser scanning. Arrays of 150 × 150 Raman spectra were recorded for all Raman images
using an integration time of 50 ms per spectrum. The Raman mapping images were acquired with
80 µm × 80 µm scan sizes.
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2.3. Computational Analysis

A general linear background subtraction in the region of 377 to 1720 cm−1 and a normalization
to the laser line intensity were first applied to each spectrum; the latter was performed to account
for potential fluctuation of the laser power between measurements of different samples. To increase
the accuracy of current computational analysis, before calculating the integrated areas under the
relevant Raman features, an additional linear background subtraction was also performed in the
characteristic frequency regions, as follows: between 395 and 469 cm−1 for the ν2PO4

3 band centered
at 430 cm−1; between 907 and 990 cm−1 for the ν1PO4

3 band centered at 960 cm−1; between 1033
and 1135 cm−1 for the carbonate ν1CO3

2− band centered at 1074 cm−1; between 1215 and 1332 cm−1

for the amide III band centered at 1275 cm−1; between 1625 and 1725 cm−1 for the amide I band
centered at 1660 cm−1; and between 970 and 1040 cm−1 and between 1574 and 1543 cm−1 for the two
phenylalanine bands centered at 1005 cm−1 and 1609 cm−1, respectively. The ratios corresponding to
the significant biomarkers, namely the mineral-to-matrix content (ν1PO4

3/amide I ratio) [15–30], the
carbonate-to-matrix (ν1CO3

2−/amide I ratio) [15–30], the calcium content (ν2PO4
3/amide III ratio) [31],

and the phenylalanine content (phenylalanine/amide III ratio) were next calculated for each of the
7 bone samples (i.e., for each of the 22,500 × 7 = 157,500 spectra). A linear discriminant analysis
(LDA) using a logit classification, which is a commonly employed approach in statistically supervised
learning, was performed considering simultaneously all four biomarkers. Alternatively, the whole
information contained in the Raman spectra was also evaluated through dimensionality reduction
to the most relevant 20 variables, by using principal component analysis (PCA) followed by a linear
support vector machine (LSVM) classification with a 10-fold cross validation, both implemented in
MATLAB® version r2016a. For each spectrum, a score was attributed based on the logit transformation.
The reason of this prior dimensionality reduction was to decrease the computing time devoted to the
LSVM algorithm.

3. Results and Discussion

Since reliable ROD detection cannot be based on a single ideal biomarker, to differentiate between
the normal and the ROD samples, we took advantage of the inherent Raman capability of simultaneously
providing information about all significant biomarkers. In this way, we could also account for any
potential changes, in a label-free and real-time manner. The integrated Raman spectra for each sample,
which were obtained from averaging over 22,500 individual Raman spectra recorded per image,
are presented in Figure 1.
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Figure 1. Integrated Raman spectra of 3 normal and 4 renal osteodystrophy (ROD) bone samples,
each obtained by averaging 22,500 Raman spectra. The spectra are vertically translated and color
labeled for easier visualization.
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Although intensity differences in some of the Raman features can be observed in these spectra,
particularly for those corresponding to the phenylalanine peaks at 1005 and 1609 cm−1, no other
evident information concerning additional biomarkers of interests can be accurately extracted
without appropriate computational analysis. Indeed, the large amount of collected Raman data,
besides facilitating an excellent statistics on the results (i.e., an accuracy of less than 10−300 for each
biomarker [25]), also allows for a direct visualization by use of pseudo-color contrast of different
components and their distributions. Supporting evidence are the Raman images associated with the
phenylalanine content that are presented in Figure 2a–g. Generation of these images was performed by
applying filters to select certain parts of the spectra, namely the frequency region from 970 to 1040 cm−1

for the phenylalanine peak at 1005 cm−1, and that from 1574 to 1543 cm−1 for the phenylalanine peak
at 1609 cm−1. A brighter yellow pseudo-color in these images corresponds to a higher phenylalanine
content, as the associated color scale bar reveals. An overall much larger amount of phenylalanine
(more dominant yellow regions) can be observed for the ROD samples (Figure 2d–g) than for the
normal bone samples (Figure 2a–c), in agreement with our previously quick examination of the spectra
shown in Figure 1.
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Figure 2. Representative confocal Raman images of phenylalanine content in: (a–c) normal bone
samples and (d–g) ROD samples. A bright yellow pseudo-color corresponds to a higher Raman intensity.

However, for in vivo data acquisition through an optical fiber-based biosensor, Raman spectral
recording versus confocal Raman mapping is more suitable. Consequently, the fundamental question
about the minimum number of spectra necessary to obtain a sample assessment with a sufficient
(desired) accuracy still remains. We already demonstrated that by considering a single biomarker
in the distinction between the samples at a typical level of significance of p = 0.05, about 18 spectra
were needed for the mineral-to-matrix content, 20 spectra for the carbonate-to-matrix content, and 46
spectra for the calcium content [25]. The rationale implies that if we take into account in the current
multivariate computational analysis all the biomarkers concurrently, a smaller number of spectra
will be necessary, thus, emphasizing the possibility of ROD detection in real-time through Raman
spectroscopy. It is known that the larger the number of employed variables, the more likely is to obtain
a good classification power. It should also be noted here that by currently using only four variables
classification (i.e., just four biomarkers), we reduce the potential impact of multicomparison correction
analysis on the final p value [32].

Prior to finding this minimum number of spectra, a potential discrimination between the normal
and ROD bone samples is attempted in Figure 3a,b through plotting of the carbonate-to-matrix
component (ν1CO3

2−/amide I ratio) versus the mineral-to-matrix component (ν1PO4
3/amide I), and the
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phenylalanine content (phenylalanine/amide III) versus that of calcium (ν2PO4
3/amide III), respectively,

for each of the 22,500 Raman spectra. For consistency and because of differences in polarization
sensitivities between amide I and amide III features, the mineral and carbonate contents were
normalized to the amide I band, and the calcium and phenylalanine contents to the amide III band.
Furthermore, to minimize the calculation errors, we consider the ratio of areas under the corresponding
peaks instead of the ratio of their intensities [15–31]. While from Figure 3a a relatively good correlation
can be implied between the mineral-to-matrix and the carbonate-to-matrix biomarkers (both being
indicators of bone turnover and remodeling activity), unfortunately, only a very small differentiation
between the samples can be achieved. The main reason behind this lack of sample separation is the
strong overlapping between majority of the color-coded points representing independent Raman
spectra. A better sample classification can be performed by examining the relationship between
phenylalanine and calcium contents (see Figure 3b). The much larger amount of phenylalanine in
comparison to that of calcium observed in this figure for the ROD samples (remark based on the
location of these data points regarding an imaginary line of slope 1) corroborates with the clinical
reports for patients with kidney malfunction (identified as ROD patients). For example, such patients
demonstrate a substantially lower level of calcium in their blood test analyses [33–35].
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Figure 3. Representation of (a) the carbonate-to-matrix biomarker (ν1CO3
2−/amide I) versus the

mineral-to-matrix biomarker (ν1PO4
3/amide I), and (b) the phenylalanine content (phenylalanine

/amide III) versus that of calcium (ν2PO4
3/amide III) for all the 22,500 independent Raman spectra

measured per sample. A similar color labeling as in Figure 1 was used for each of the 7 bone samples.
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A more compact and easier visualization of the results presented in both Figures 1 and 3a,b
can be obtained by plotting in Figure 4a,b the combination of these four biomarkers using statistical
1-sigma ellipsoid representations, with the biomarker averages over 22,500 spectra defined by solid
circles. For consistency with Figure 3, the carbonate-to-matrix versus mineral-to-matrix is presented in
Figure 4a, and phenylalanine versus calcium in Figure 4b. Another reason for using this statistical
representation is to inspect for potential differences between same types of samples. Indeed, a variation
from sample to sample is observed in the relationships between biomarkers, even among normal
samples or ROD samples themselves. We suggest that this anticipated variation is based on age or on
other specific patient conditions. However, besides a much clear distinction of phenylalanine to calcium
relationship seen in Figure 4b than that observed previously in Figure 3b, no additional information
regarding sample classification is attainable, even with this more compact statistical representation.
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Figure 4. Statistical representation using 1-sigma ellipsoids of: (a) the carbonate-to-matrix biomarker
versus the mineral-to-matrix biomarker, and (b) the phenylalanine content versus that of calcium.
The solid circle defines the average over 22,500 spectra for each biomarker. For consistency, an identical
color-code was again used.

Therefore, we present, in Figure 5, the histograms associated with all of the above investigations
(i.e., from both, Figures 3 and 4), and taking as variables all the four ratios concurrently. A linear
discriminant analysis with 10-fold cross validation of the training data was employed. For the
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prediction classification, a logistic score transformation was used, with a score less than one for normal
bone spectra and more than one for ROD spectra.
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Figure 5. Combined histograms resulted from statistical investigations using all four biomarkers
concurrently. Distribution of scores of more or less than 1 were assigned to each ROD and normal
spectrum, respectively.

The strong overlapping seen in Figure 5 between these histograms, not only agrees with the
findings previously discussed, but also confirms that a sample classification cannot be based just on a
single spectrum, since Type I and Type II errors will be unacceptable large in this case (see solid line at
1). A summary of the results associated with the confusion matrix and the usual parameters related to
the prediction ability, which was based on randomly selecting the spectra, is presented in Table 1.

Table 1. Confusion matrix for single spectrum LDA classification (4 variables).

Condition
Positive

Condition
Negative

Prevalence
57.14%

Accuracy
80.5%

Prediction positive 70470 11205 Precision
78.3%

FDR
(false discovery rate)

16.6%

Prediction negative 19530 56295
FOR

(false omission rate)
21.7%

NPV
(negative predictive value)

78.3%

Sensitivity
78.3%

Specificity
83.7%

FPR
(false positive rate)

16.6%

FNR
(false negative rate)

38.9%

The important question is whether focusing on only four biomarkers (as measured variables)
significantly affects the discrimination power of the method, since the Raman spectra in the frequency
range of interest contain over 300 data points, thus, potentially over 300 independent variables.
Consequently, we employed an alternative computational approach based on a linear support vector
machine (LSVM) algorithm, which takes into account all of these independent variables in the
classification of any unknown sample. The results associated with the confusion matrix from the LSVM
are summarized in Table 2. Even though the LSVM method involves about two orders of magnitude
more independent variables than does the LDA, only a marginal improvement in sample classification
is accomplished based on a single spectrum. This observation, which arises from a comparison between
the results presented in Tables 1 and 2, also demonstrates that the four previously chosen variables
(biomarkers selected mainly from clinical reasons) contain most of the information (discrimination
power) necessary to differentiate between the normal and the ROD samples.



Diagnostics 2020, 10, 79 9 of 13

Table 2. Confusion matrix for single spectrum LSVM classification (~300 variables).

Condition
Positive

Condition
Negative

Prevalence
57.1%

Accuracy
87.5%

Prediction positive 70470 9112 Precision
88.3%

FDR
(false discovery rate)

13.5%

Prediction negative 10530 58388
FOR

(false omission rate)
11.7%

NPV
(negative predictive value)

88.3%

Sensitivity
88.3%

Specificity
86.5%

FPR
(false positive rate)

13.5%

FNR
(false negative rate)

15.6%

To improve the accuracy of the classification, we next consider N measurements of independent
spectra from different locations in the sample. For N such spectra (with N being an odd integer), we
assume that the sample belongs to ROD if n > N/2 spectra have a score greater than one. On the other
hand, if n spectra have a score less than one, the sample is assessed as normal. Given a probability p1

that a normal spectrum has a score less than 1, and a probability p2 that a ROD spectrum has a score
larger than 1 (see Table 1), the QI (N) probabilities for Type I (rejection of a true null hypothesis, or false
positive), and the QII (N) probabilities for Type II error (non-rejection of a false null hypothesis, or false
negative) can be calculated as follows:

QI(N) = 1− P1(N) =

k<N
2∑

k=0

(
N
k

)
(1− p1)

N−kp1
k (1)

QII(N) = 1− P2(N) =

k<N
2∑

k=0

(
N
k

)
(1− p2)

N−kp2
k (2)

The probabilities of Type 1 and Type II assignment errors, namely wrongfully assigned k = N,
N−1, . . . , k < N/2 spectra obtained from either a normal or a ROD bone sample, are plotted in Figure 6
as a function of the number of independently recorded spectra.
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Figure 6. Probability of Type I and Type II errors versus the number of randomly chosen spectra
employed in the classification. The black lines in the inset indicate that a relatively small set of measured
spectra is sufficient to classify the samples with a typical p < 0.05 error probability.
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While an examination of the large part of Figure 6 reveals that the assignment error probability can
be made as small as desired, the inset of this figure further indicates that for a defined precision, only a
low number of sampling points is necessary. For example, the black lines in the inset show that to
achieve a probability of less than 5%, 7 independent spectra are sufficient for Type I error and 5 spectra
for Type II error. The corresponding confusion matrix and related probabilities for 11 independent
spectra are summarized in Table 3. A classification accuracy of ~99% is obtained. Since such a relatively
small number of independent spectra can be in principle acquired through an optical-fiber-based
biosensor (e.g., using depth profiles confocal Raman), the present work not only validate the feasibility
of future in vivo Raman translation, but also emphasize the need of computational analysis for these
essential predictions.

Table 3. Confusion matrix for 11 spectra classification.

Condition
Positive

Condition
Negative

Prevalence
57.1%

Accuracy
98.8%

Prediction positive 98.3% 0.5% Precision
98.3%

FDR
(false discovery rate)

0.5%

Prediction negative 1.7% 99.5%
FOR

(false omission rate)
0.0174%

NPV
(negative predictive value)

98.3%

Sensitivity
78.3%

Specificity
99.5%

FPR
(false positive rate)

0.5%

FNR
(false negative rate)

2.3%

4. Conclusions

Ideally, ROD should be reliably detected in real time and with noninvasive or minimally invasive
methods, together with the fact that its detection cannot be based on a single biomarker. This research
describes alternative techniques that could provide similar or better degrees of diagnosis. It is also
a logical continuation of our previous efforts in demonstrating that Raman spectroscopy can be
a viable approach [25]. One of the shortcoming of the Raman technique towards its potentially
clinical translation is knowing the minimum number of independent spectra that will provide an
accurate assessment of this complex diseases. Another drawback is the need for development of an
optical-fiber probe biosensor. To overcome the first constraint, we took advantage of both, Raman
providing simultaneously information about all the biomarkers of interests in a label-free manner, and
computational analysis in answering the essential question of the minimal number of spectra necessary
for sample classification with a desired accuracy.

The resulting confusion matrix from a classification performed by standard LDA with 10-fold cross
validation demonstrates that the probability of a correct sample assignment based on a single spectrum
is about 80% (see Table 1). For this classification, a logit transform score was used for each spectrum.
Moreover, the current statistical analysis shows that a reasonably small number of randomly selected
spectra suffices for assessment of any sample at any desired degree of accuracy; only 7 independent
spectra are necessary for Type I error and 5 spectra for Type II error. This outcome is achievable
because of simultaneous consideration of all the known physical differences between the normal and
ROD samples. Furthermore, the classification of bone quality on just four variables (biomarkers)
reduces the potential impact of multicomparison correction analysis on the final p value [32]. Finally,
all the information contained in the spectra was used in an alternative statistical learning algorithm for
sample classification. Prior implementation of this LSVM algorithm, a dimensionality reduction by
PCA in 20 directions (of most variations) was employed. Although this later classification takes into
consideration much more information (~300 independent variables), the results were only marginally
superior to those obtained from the LDA approach. A correct sample assignment based on a single
spectrum is about 87% in this case (see Table 2).
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In conclusion, the current computational study validates that only a relatively low number of
spectra is necessary for accurate ROD detection, supporting the feasibility of future in vivo Raman
translation through development of a biosensor for signal recording and multiplexing. This work adds
value to a potentially alternative method for fast ROD assessment and human health monitoring.
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