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Abstract: The liver is an essential metabolic organ of the human body, and malignant liver tumors
seriously affect and threaten human life. The segmentation algorithm for liver and liver tumors
is one of the essential branches of computer-aided diagnosis. This paper proposed a two-stage
liver and tumor segmentation algorithm based on the convolutional neural network (CNN). In the
present study, we used two stages to segment the liver and tumors: liver localization and tumor
segmentation. In the liver localization stage, the network segments the liver region, adopts the
encoding–decoding structure and long-distance feature fusion operation, and utilizes the shallow
features’ spatial information to improve liver identification. In the tumor segmentation stage, based
on the liver segmentation results of the first two steps, a CNN model was designed to accurately
identify the liver tumors by using the 2D image features and 3D spatial features of the CT image slices.
At the same time, we use the attention mechanism to improve the segmentation performance of small
liver tumors. The proposed algorithm was tested on the public data set Liver Tumor Segmentation
Challenge (LiTS). The Dice coefficient of liver segmentation was 0.967, and the Dice coefficient of
tumor segmentation was 0.725. The proposed algorithm can accurately segment the liver and liver
tumors in CT images. Compared with other state-of-the-art algorithms, the segmentation results of
the proposed algorithm rank the highest in the Dice coefficient.

Keywords: medical image segmentation; deep learning; convolutional neural network; liver tumor;
attention mechanism

1. Introduction

With the development of computer technology, computer-aided technology has been
a popular method to analyze medical images, which can assist clinicians in detecting
and segmenting tumor lesion regions from normal tissues. Computer-aided diagnosis
eliminates human subjective influence and avoids unnecessary diagnosis errors, improving
the accuracy of lesion region identification and improving doctors’ work efficiency.

The liver is an essential metabolic organ of the human body, in charge of metabolism,
digestion, and detoxification. However, malignant liver tumors seriously affect and
threaten human lives. In 2018, global cancer statistics reported approximately 840,000 liver
cases and 780,000 related deaths [1]. Traditionally, radiologists have to watch the liver CT
slices one by one to find the liver tumors, which is not only very time-consuming and
laborious but also easy to make errors due to fatigue or subjective judgments. Therefore,
there is an urgent need for automatic liver tumor detection and segmentation algorithms
to assist clinicians.

Since 2014, deep learning has performed well in image detection and segmentation [2].
Compared with traditional methods, the convolutional neural network (CNN) has been
proven effective in processing images. Especially the fully convolutional neural network
(FCN) has achieved excellent results in medical image identification, classification, and
segmentation [3]. Many researchers have used FCN-related algorithms to segment liver
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and tumors, among which the best model is U-Net [4], which consists of a contracting path
and an expansive path, which makes it have the U-shaped architecture.

There are two main branches for medical image segmentation based on FCN, which
are 2D-FCN and 3D-FCN, and the main difference between the two is the dimension of the
convolution kernel and feature maps. Ben-Cohen et al. [5] used a fully convolutional struc-
ture for liver segmentation and liver metastases detection in CT images. They discarded the
classifier layer and replaced the fully connected layer with a convolutional layer to detect
tumors on the 2D CT image. Sun et al. [6] proposed a new automatic liver tumor segmen-
tation method named multi-channel fully convolutional network (MC-FCN). Compared
with single-channel FCN, MC-FCN has three FCN channels, with independent training
parameters used for image feature extraction and parameter training. Chlebus et al. [7] seg-
mented liver tumors based on 2D fully convolutional neural networks, which transferred
the feature map via long-distance skip connections to restore the detailed information lost
in the spatial downsampling.

Some researchers use a 3D convolution kernel to replace the 2D convolution kernel to
obtain the three-dimensional features maps of medical images. Lu et al. [8] combined 3D
CNN with the image segmentation algorithm to effectively detect the liver regions. They
evaluated the algorithm on the two public data sets of MICCAI-Sliver07 and 3Dircabd.
Compared with the existing automatic liver segmentation algorithm, this method has
higher segmentation accuracy and improves doctors’ work efficiency without user interac-
tion. Aqyyum et al. [9] proposed a 3D hybrid model for CT images, which consisted of
a three-dimensional residual network, spatial squeeze module, and excitation module. This
algorithm performed well for the segmentation of liver and large tumor regions, but the
detection of small tumor regions was not accurate. Jiang et al. [10] proposed a 3D convolu-
tional neural network structure composed of multiple attention hybrid connection modules
and soft attention modules. The network focused on learning the features of the tumor
and background. The algorithm was tested on the 3DIRCADb data set, and the tumor
segmentation accuracy of this algorithm was 0.62. Especially for small tumor segmentation.

Although the existing algorithms performed well in segmenting liver and liver tumors,
there are still some shortcomings: (1) they focus on either 2D features or 3D features of
the liver CT images, and ignore the hybrid features from 2D and 3D; and (2) segmentation
performance of small liver tumors is poor, which is caused by the small proportion of small
liver tumor in the CT image and low gradient between the liver tumor and background.

To address these shortcomings, we presented several solutions: (1) we designed
a two-stage densely connected UNet (DCUNet) for liver and liver tumor segmentation,
which consists of two stages, and we focused on both 2D and 3D features in the proposed
algorithm; and (2) we added an attention mechanism to the neural network architecture to
learn the multi-scale features of small tumors in the liver.

2. Method
2.1. Overall Process

The overall flow chart of the proposed algorithm is shown in Figure 1, which is
composed of four main steps:

(1) In the preprocessing stage, the original CT image window width is adjusted to
enhance the contrast of the liver region. We use the histogram equalization to extend
the processed CT image pixels nonlinearly. The operation makes the pixels evenly
distributed and highlights the features of the tumor region.

(2) In the first stage, DCUNet-Liver is used to obtain the segmentation results of the
liver region.

(3) In the third stage, according to the liver segmentation results, the detailed 2D features
in the CT images are extracted and fused with the 3D spatial features to optimize the
segmentation results of liver tumors.
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Figure 1. The overall flowchart of the algorithm.

2.2. Stage One: DCUNet-Liver for Liver Segmentation

As shown in Figure 2, the structure of DCUNet-Liver consists of two parts. The
left part of the dotted line is the encoding part, which is mainly composed of dense
blocks and transition layers; the right part of the dotted line is the decoding part. In the
network structure of DCUNet-Liver, the convolution layer, max-pooling layer, drop out,
and upsampling are all regular operations in deep learning methods, and the details of the
dense block and transition layer are elaborated below.

Figure 2. DCUNet-Liver network structure diagram.

There are four dense blocks in the DCUNet-Liver, and in each dense block, the number
of micro blocks is 4, 6, 14, and 8, respectively. As shown in Figure 3a, it is the structure of
the dense block. Each dense block contains multiple micro blocks. The output of each micro
block is connected to all subsequent micro blocks by residual connections. For example,
the output of micro block #1 is connected to micro block #2, micro block #3, until micro
block #n. The main purpose of the micro block is transferring the feature maps of one block
to all others, and can increase the nonlinearity of the whole network and accelerate the
training process of the network.



Diagnostics 2021, 11, 1806 4 of 17

Diagnostics 2021, 11, 1806 4 of 17 
 

 

micro block #n. The main purpose of the micro block is transferring the feature maps of 

one block to all others, and can increase the nonlinearity of the whole network and accel-

erate the training process of the network. 

 

(a) 

 
(b) 

 
(c) 

Figure 3. The structure of the dense block [11], micro block, and transition layer: (a) the dense block 

network structure diagram; (b) the micro block network structure diagram; (c) the transition layer 

structure diagram. 

As shown in Figure 3b, it is the structure of the micro block. In the dense block, each 

micro block generates K feature maps, and we set the parameter K as the growth rate and 

use it to control the number of feature maps generated by the dense block. For example, 

in the first stage, K is 32, which means that if the input of a micro block is M feature maps, 

then the output of the micro block is M + 32 feature maps.  

Therefore, when the neural network contains multiple dense blocks, the number of 

feature maps increases, which can significantly increase the number of parameters, and 

make it harder to train the network. To solve the problem, the proposed algorithm adds a 

transition layer at the output of each dense block, and the network structure of the transi-

tion layer is shown in Figure 3c. 

In the first stage, DCUNet-Liver contains four dense blocks; therefore, four transition 

layers are added, and each transition layer is composed of batch normalization (BN), an 

activation function, convolutional layer (1 × 1 × 1), and pooling layer. The role of the tran-

sition layer is to reduce the redundant feature maps generated by dense blocks and 

downsample the feature maps. The segmentation results obtained by the liver localization 

module on the sagittal, coronal, and cross-sections are shown in Figure 4. 

B
N

+
R

el
u

B
N

+
R

el
u

C
on

v 
1

×
1×

1

C
on

v 
3

×
3×

3

Figure 3. The structure of the dense block [11], micro block, and transition layer: (a) the dense block
network structure diagram; (b) the micro block network structure diagram; (c) the transition layer
structure diagram.

As shown in Figure 3b, it is the structure of the micro block. In the dense block, each
micro block generates K feature maps, and we set the parameter K as the growth rate and
use it to control the number of feature maps generated by the dense block. For example, in
the first stage, K is 32, which means that if the input of a micro block is M feature maps,
then the output of the micro block is M + 32 feature maps.

Therefore, when the neural network contains multiple dense blocks, the number of
feature maps increases, which can significantly increase the number of parameters, and
make it harder to train the network. To solve the problem, the proposed algorithm adds
a transition layer at the output of each dense block, and the network structure of the
transition layer is shown in Figure 3c.

In the first stage, DCUNet-Liver contains four dense blocks; therefore, four transition
layers are added, and each transition layer is composed of batch normalization (BN), an
activation function, convolutional layer (1 × 1 × 1), and pooling layer. The role of the
transition layer is to reduce the redundant feature maps generated by dense blocks and
downsample the feature maps. The segmentation results obtained by the liver localization
module on the sagittal, coronal, and cross-sections are shown in Figure 4.
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2.3. Stage Two: DCUNet-Tumor for Liver Tumor Segmentation

At this stage, based on the accurate segmentation results of the liver region, the
tumors in the liver are further detected and segmented. The proposed algorithm adopts
the combination of a two-dimensional network and three-dimensional network to fuse the
two-dimensional plane features and three-dimensional spatial features of the tumor, so as to
realize the accurate segmentation of liver tumor. The structure of DCUNet-Tumor is shown
in Figure 5. Taking the segmentation results of the liver region as the input of this stage,
firstly, it is processed through a two-dimensional U-Net network, and then the obtained
feature maps are sent to the three-dimensional U-Net network for further processing. The
2D plane features of the CT image are combined with 3D spatial information to detect the
liver tumor region.

The lesion areas of the liver tumors in different patients vary greatly, and the size,
location, and shape of the tumors are different, especially for small tumors, which increases
the difficulty of recognition. The convolution neural network will lose the information of
small tumors and reduce the segmentation accuracy of tumors when extracting features.
To solve this problem, the proposed algorithm adds the attention module to the skip
connections of the DCUNet-Tumor network, which makes the neural network pay more
attention to the liver tumor areas, so as to improve the segmentation accuracy of liver
tumors. The attention module structure is shown in Figure 6a, which includes the main
branch and soft attention branch. The main branch structure is a general residual network
composed of multiple residual units, which include the BN layer, ReLU activation function,
and 1× 1 convolutional layer, shown in Figure 6b. The soft attention branch is composed of
an encoding and decoding architecture, which focuses on extracting the context information
of the small tumor areas in the image, shown in Figure 6c.
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Figure 5. DCUNet-Tumor network structure diagram: (A) a two-dimensional U-Net network;
(B) a three-dimensional U-Net network.

The purpose of the main branch is to extract the global feature information in the
image, such as the background information and liver information. The residual units in
the main branch directly propagate features from the previous convolution layers to the
rear convolution layer, which solves the problem of gradient disappearance and improves
the segmentation performance of the neural network. However, simply accumulating
residual units may reduce the network’s performance [12], and the output of the traditional
attention module is in Equation (1),

Hi,c(x) = Mi,c(x)× Ti,c(x) (1)

where T(x) represents the feature maps from the main branch, M(x) represents the feature
mask from the soft attention branch, and × represents the element-wise product operation.
In our attention module, the feature mask can be used as a feature selector in the forward
learning process and as a gradient update filter in the backpropagation process. In the soft
attention branch, the mask gradient of the input feature is in Equation (2),

∂M(x, θ)T(x,∅)

∂∅ = M(x, θ)
∂T(x,∅)

∂∅ (2)

where θ is the soft attention branch parameter and ∅ is the main branch parameter. How-
ever, the range of M(x) is [0, 1], and if multiple modules are multiplied directly, the value
of the feature map will become smaller and smaller, which may hinder the performance
of the neural network. To address the problem, the residual attention mechanism of the
proposed algorithm is in Equation (3),

Ai,c(x) = (1 + Mi,c(x))Ti,c(x) (3)

where M(x) is the output of soft attention branch and T(x) is the output of main branch.
When M(x) = 0, the input of this layer is equal to T(x). Therefore, the effect of this layer
cannot be worse than the original T(x). By adding one to M(x), it makes the feature maps
from main branch more prominent and more discriminative and makes the network to
easily reach a very deep level and have a good performance.
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2.4. Mixed Loss Function

The Dice loss function used in the proposed algorithm is inspired by V-Net [13], as
shown in Equation (4),

Ldice = 1− 2× ∑N
i=1 pigi + ε

∑N
i=1 pi + ∑N

i=1 gi + ε
(4)

where N indicates the number of all predicted voxels. pi represents the probability that the
predicted voxel i belongs to class P, gi represents the voxel i in the feature map. ε is 10−4 in
the proposed algorithm. The gradient relationship is in Equation (5).

∂Ld(P, G)

∂pk
= −2× ∑N

i=1 pigi − gk ∑N
i=1(pi + gi)[

∑N
i=1(pi + gi)

]2 (5)
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The cross-entropy loss function is in Equation (6).

Lc = −
1
N

N

∑
i=1

3

∑
c=1

wc
i yc

i log ŷi
c (6)

Therefore, the final loss function of the proposed algorithm is in Equation (7).

Ltotal = λ× Ldice + Lc (7)

where λ = 0.5.

3. Experimental Results
3.1. Experimental Environment and Parameters

The experimental hardware and software configuration in this paper is shown in
Table 1. The training hyperparameter settings in the two stages of the proposed algorithm
are shown in Table 2.

Table 1. Experimental hardware and software configuration.

Environment Configuration Information

GPU Tesla K40L
Video memory 12 G

Memory 64 G
Operating system Ubuntu 16.04

Hard disk 4 TB
Programming Software Keras 2.2.0; Python 2.7; Matlab 2015b

Table 2. Training hyperparameters of each module in the two stages of the algorithm.

Hyperparameters
Setting

Liver Localization Module Tumor Segmentation Module

Initial learning rate 0.001 0.001
Dropout 0.5 0.5

Batch_size 10 1
Epoch 500 500

Optimizer SGD SGD
Growth_rate 32 64

3.2. Data Sets and Quantitative Evaluation Metrics

All CT images used in this experiment are from the Liver Tumor Segmentation Chal-
lenge of the 2017 International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI). This data set consists of subjects from six hospitals with
different types of liver tumor diseases, including 131 sets of enhanced CT image sequences.
Each CT sequence covers the entire abdomen, using the Nifti format; the number of axial
slices is not fixed, ranging from 74 to 987. The resolution of each CT slice is 512 × 512, the
pixel interval is from 0.56 mm to 1.0 mm, and the slice interval is from 0.45 mm to 6.0 mm.
The data set also provides the ground-truth segmentation results of liver and liver tumors
manually annotated by clinicians.

In the experiment, we divided the 131 abdominal CT image sequences into a training
set (81 sequences), validation set (25 sequences), and test set (25 sequences), and we
used random translation, random rotation, and arbitrary scale transformation as the data
augmentation methods.
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The Dice coefficient is a standard evaluation metric in medical image segmentation;
therefore, we used Dice as the quantitative metric in the experiment. The calculation
formula of the Dice coefficient is in Equation (8).

Dice(P, G) =
2| P ∩ G|
|P| + |G| (8)

where P and G represent the proposed algorithm’s segmentation results and the ground-
truth segmentation results, respectively. The range of the Dice coefficient is between 0 and
1, and the larger the Dice coefficient is, the higher the segmentation accuracy is.

3.3. Training and Verification of the Network Model

The loss function curve of the proposed algorithm is shown in Figure 7a. It can be seen
that the loss value is reduced to 0.1 after 500 rounds of training iteration, which indicates
that the trained deep learning network model has converged.

Figure 7. The learning process and the experimental results of the model: (a) the loss function of the
proposed algorithm; (b) the results of different micro blocks.

In the liver localization stage, the number of micro blocks in dense blocks is an impor-
tant parameter for the performance of the neural network. To optimize the effectiveness of
this parameter, we compare five selections, which are (4, 6, 14, 8), (3, 4, 6, 8), (3, 4, 12, 8),
(4, 6, 14, 8), and (4, 8, 16, 12), respectively, and the results are shown in Figure 7b. When
the micro block numbers are (4, 8, 16, 12), the model’s accuracy first stabilized and then
gradually declined, which indicates that the micro block numbers with larger values may
cause over-fitting and reduce the neural network’s performance. When the micro block
numbers are (3, 4, 6, 8), the curve of the segmentation accuracy is the lowest, which indi-
cates that the micro block numbers with smaller values cannot obtain sufficient parameters
to accurately segment liver and tumors. Therefore, based on the experimental results, the
proposed algorithm set the micro block numbers as (4, 6, 14, 8).

3.4. The Results and Analysis of This Algorithm

The Dice coefficient of the two stages of the proposed algorithm on the test set is
shown in Table 3. The Dice coefficients of liver and tumor on the training and testing data
set is shown in Table 4. There are 25 samples in the test data set, and the Dice coefficient
values of the liver and liver tumor segmentation results from all these 25 samples are shown
in Figure 8. The Dice coefficient of the liver segmentation result is mostly around 0.95, and
the Dice coefficient of the tumor segmentation result is mostly around 0.8, indicating that
the proposed algorithm can accurately segment liver and liver tumors.
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Table 3. The Dice coefficient of the liver and tumor at various stages.

Network Model Liver (Dice) Tumor (Dice)

DCUnet-Liver 0.934 0.656
DCUnet-Tumor 0.967 0.725

Table 4. The Dice coefficient of liver and tumor on the training and the testing dataset.

Network Model Training (Dice) Testing (Dice)

DCUnet-Liver 0.99 0.967
DCUnet-Tumor 0.86 0.725

Figure 8. The Dice coefficient of the segmentation results of the proposed algorithm in the test set on
25 CT sequence images: (a) Dice coefficient of the liver segmentation results; (b) Dice coefficient of
the tumor segmentation results.

To verify the effectiveness of the attention mechanism, we compared the segmentation
results of DCUNet-noAttention (without attention mechanism) and DCUNet-Tumor (with
attention mechanism). The segmentation results of the two models are in Figure 9, and
DCUNet-Tumor can obtain a more accurate segmentation result of liver and liver tumors,
and its segmented liver has no extra holes. However, DCUNet-noAttention cannot detect
small tumor regions and only identify the approximate location of the tumor region,
resulting in poor performance.

To verify the performance under different circumstances, we test the proposed algo-
rithm on the liver CT images with small tumors, large tumors, and multiple tumors, and
the experimental results are shown in Figures 10–12, respectively.

In this paper, we paid more attention to small tumor detection. In the LiTS data set,
there are 46 liver CT volumes with small tumors; the accurate detection percentage of the
proposed algorithm was 38/46, or 82.6%, and its Dice coefficient is 0.68. Besides, Figure 10
shows the segmentation results of the small tumor regions, and we find that the proposed
algorithm can detect the small tumors accurately without any miss-segmentation problems,
and there are no extra holes in the segmented liver. Figure 11 shows the segmentation
results of the large tumor regions, and we find that the segmentation results for the liver
and liver tumors are accurate. Figure 12 shows the segmentation results of multiple tumors,
and we find that the tumor located in different positions of the liver can be detected. All the
experimental results indicate the ability of the proposed algorithm to detect and segment
various types of liver tumors.
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images; (b) the real segmentation results; (c) our segmentation results.

Furthermore, we compare the segmentation results of the proposed algorithm with
those of DenseUNet [14], and the results of large tumors, small tumors, and multiple
tumors are shown in Figures 13–15, respectively. Based on the comparison results, we
find that DenseUNet segmentation results have some problems, such as many under-
segmented regions in the outer contour of the tumor and holes in the center of the tumor,
so there are big differences between the ground truth and DenseUNet. In contrast, the
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proposed algorithm can accurately detect and segment the liver tumor regions, and the
differences between the ground truth and the proposed algorithm’s segmentation results
are very small.
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Figure 13. Segmentation result of a small tumor; the first row is the sagittal plane, the second row is the
coronal plane, and the third row is the transverse plane. (a) CT image; (b) Ground truth; (c) DenseUNet
segmentation results; (d) difference image between DenseUnet and ground truth; (e) the proposed
algorithm’s segmentation results; (f) difference image between the proposed algorithm and ground truth.
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for abdominal CT images, and the two stages are DCUNet-Liver and DCUNet-Tumor. We 

Figure 14. Segmentation result of a large tumor; the first row is the sagittal plane, the second row is the
coronal plane, and the third row is the transverse plane. (a) CT image; (b) Ground truth; (c) DenseUNet
segmentation results; (d) difference image between DenseUnet and ground truth; (e) the proposed
algorithm’s segmentation results; (f) difference image between the proposed algorithm and ground truth.
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Figure 15. Segmentation result of a multiple-tumor area; the first row is the sagittal plane, the
second row is the coronal plane, and the third row is the transverse plane. (a) CT image; (b) Ground
truth; (c) DenseUNet segmentation results; (d) difference image between DenseUnet and ground
truth; (e) the proposed algorithm’s segmentation results; (f) difference image between the proposed
algorithm and ground truth.

In this paper, we propose a two-stage liver and liver tumor segmentation algorithm
for abdominal CT images, and the two stages are DCUNet-Liver and DCUNet-Tumor.
We added the attention mechanism to improve the accuracy of segmenting small tumors.
Experimental results show that the algorithm in this paper can accurately segment liver
and liver tumors, and the Dice coefficients reached 0.967 and 0.725, respectively. Compared
with other state-of-the-art algorithms, the proposed algorithm has a better segmentation
effect, faster calculation speed, and requires fewer computational resources.

4. Discussion

We trained the proposed algorithm using the experimental environment shown in
Table 1, which takes 35 h, and we compared the proposed algorithm with DenseUNet [14]
in terms of the parameter amount and calculation speed, shown in Table 5. From the
comparison results, we conclude that the proposed algorithm reduces the parameters of
the neural network model and improves the computational speed.

Table 5. Comparison of the parameter quantity and calculation efficiency of the network model.

Methods Number of Parameters Time (Seconds/Piece)

2D DenseUNet [14] 49,970,531 0.674
H-DenseUNet [14] 61,444,622 0.829

Our algorithm 21,909,838 0.479

We quantitatively compared the proposed algorithm with other state-of-the-art liver
and tumor segmentation algorithms. As shown in Table 6, the proposed algorithm has
an excellent liver and tumor segmentation performance and outperforms the others.

Moreover, we compared the proposed algorithm with the other methods submitted
by MICCAI 2017, including 13 groups of liver segmentation results and tumor segmen-
tation results (https://competitions.codalab.org/competitions/17094#results (accessed
on 15 December 2020)). All methods used the same dataset, named LiTS. The comparison

https://competitions.codalab.org/competitions/17094#results
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results are shown in Tables 7 and 8. From these two tables, we conclude that the Dice
value of our algorithm for liver and liver tumors is the highest, reaching 0.967 and 0.725.
In addition, the VOE and RVD coefficient of the liver was 0.082 and 0.022, and for liver
tumors was 0.347 and 0.034.

Table 6. Comparison of the Dice coefficients between our algorithm and other algorithms.

Network Model Liver Tumor

Li [14] 0.961 0.722
Bi [15] 0.934 0.645

Yuan [16] 0.963 0.657
Kaluva [17] 0.912 0.492

Vorontsov [18] 0.951 0.661
Liu [19] 0.951 —
Guo [20] 0.943 —

Meng [21] 0.965 0.689
Fang [22] 0.961 —

Our algorithm 0.967 0.725
Bold indicates the highest values.

Table 7. Comparison of liver segmentation.

Group Dice VOE RVD

Ours 0.967 0.082 0.022
Mantis_shrimp 0.959 0.078 0.009

schwein 0.959 0.078 0.008
SMC_QMIA 0.958 0.079 −0.023

Yong 0.958 0.081 0.030
BriceRauby 0.957 0.083 0.015

Karo 0.955 0.085 0.034
kikikirai 0.955 0.086 −0.029
Neymo 0.954 0.086 −0.009

VincentHan 0.953 0.088 −0.001
CYNSAHZU 0.950 0.084 −0.006

kirai 0.946 0.1 −0.022
Jangho_Kwon 0.937 0.109 −0.021

EdwardMa 0.924 0.141 −0.025
Bold indicates the highest values.

Table 8. Comparison of liver tumor segmentation.

Group Dice VOE RVD

Ours 0.725 0.347 −0.034
SMC_QMIA 0.707 0.333 −0.096
davidlinhl 0.7 0.342 −0.064

CYNSAHZU 0.699 0.367 −0.136
KristinChen 0.694 0.401 −0.195
MengLei1 0.69 0.362 −0.069

Cerry 0.69 0.370 −0.052
viggin 0.689 0.400 −0.162
LeoZ 0.686 0.376 0.014

Eric101 0.681 0.353 −0.066
Yong 0.661 0.375 −0.007

zhoushen 0.645 0.366 −0.082
hyukist 0.631 0.375 −0.088

mahendrakhened 0.556 0.435 7.179
Bold indicates the highest values.

We asked radiologists to manually make the liver tumor segmentation, and obtained
a Dice coefficient for the human raters of about 0.78, while that of the proposed algorithm
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is 0.725. Although the accuracy of our algorithm is slightly lower than that of manual
detection, the use of an automatic segmentation algorithm can greatly liberate manpower
and reduce the pressure on doctors.

Author Contributions: Formal analysis, Q.Z.; Methodology, L.M. and S.B.; Project administration,
L.M.; Writing—original draft, Q.Z. and S.B.; Writing—review & editing, L.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported National Natural Science Foundation of China (62073061) and
Fundamental Research Funds for the Central Universities (N2004020).

Institutional Review Board Statement: Ethical review and approval were waived for this study,
because all data used in this study are public data set.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

3. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

4. Ronneberger, O.; Fischer, P.; Brox, T. UNet: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

5. Ben-Cohen, A.; Diamant, I.; Klang, E.; Amitai, M.; Greenspan, H. Fully Convolutional Network for Liver Segmentation and
Lesions Detection. In International Workshop on Deep Learning in Medical Image Analysis; Springer: Cham, Switzerland, 2016;
pp. 77–85.

6. Sun, C.; Guo, S.; Zhang, H.; Li, J.; Chen, M.; Ma, S.; Jin, L.; Liu, X.; Li, X.; Qian, X. Automatic segmentation of liver tumors from
multiphase contrast-enhanced CT images based on FCNs. Artif. Intell. Med. 2017, 83, 58–66. [CrossRef] [PubMed]

7. Chlebus, G.; Schenk, A.; Moltz, J.H.; van Ginneken, B.; Hahn, H.K.; Meine, H. Automatic liver tumor segmentation in CT with
fully convolutional neural networks and object-based post-processing. Sci. Rep. 2018, 8, 15497. [CrossRef] [PubMed]

8. Lu, F.; Wu, F.; Hu, P.; Peng, Z.; Kong, D. Automatic 3D liver location and segmentation via convolutional neural network and
graph cut. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 171–182. [CrossRef] [PubMed]

9. Qayyum, A.; Lalande, A.; Meriaudeau, F. Automatic segmentation of tumors and affected organs in the abdomen using a 3D
hybrid model for computed tomography imaging. Comput. Biol. Med. 2020, 127, 104097. [CrossRef] [PubMed]

10. Jiang, H.; Shi, T.; Bai, Z.; Huang, L. AHCNet: An Application of Attention Mechanism and Hybrid Connection for Liver Tumor
Segmentation in CT Volumes. IEEE Access 2019, 7, 24898–24909. [CrossRef]

11. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

12. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 6450–6458.

13. Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.
In Proceedings of the Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571.

14. Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor
Segmentation from CT Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [CrossRef] [PubMed]

15. Bi, L.; Kim, J.; Kumar, A. Automatic Liver Lesion Detection using Cascaded Deep Residual Networks. arXiv 2017, arXiv:170402703.
16. Yuan, Y. Hierarchical Convolutional-Deconvolutional Neural Networks for Automatic Liver and Tumor Segmentation. arXiv

2017, arXiv:171004540.
17. Kaluva, K.C.; Khened, M.; Kori, A.; Krishnamurthi, G. 2D-Densely Connected Convolution Neural Networks for automatic Liver

and Tumor Segmentation. arXiv 2018, arXiv:180202182.
18. Vorontsov, E.; Tang, A.; Pal, C.; Kadoury, S. Liver lesion segmentation informed by joint liver segmentation. arXiv 2017,

arXiv:170707734.

http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1016/j.artmed.2017.03.008
http://www.ncbi.nlm.nih.gov/pubmed/28347562
http://doi.org/10.1038/s41598-018-33860-7
http://www.ncbi.nlm.nih.gov/pubmed/30341319
http://doi.org/10.1007/s11548-016-1467-3
http://www.ncbi.nlm.nih.gov/pubmed/27604760
http://doi.org/10.1016/j.compbiomed.2020.104097
http://www.ncbi.nlm.nih.gov/pubmed/33142142
http://doi.org/10.1109/ACCESS.2019.2899608
http://doi.org/10.1109/TMI.2018.2845918
http://www.ncbi.nlm.nih.gov/pubmed/29994201


Diagnostics 2021, 11, 1806 17 of 17

19. Liu, Z.; Song, Y.Q.; Sheng, V.S.; Wang, L.; Jiang, R.; Zhang, X.; Yuan, D. Liver CT sequence segmentation based with improved
U-Net and graph cut. Expert Syst. Appl. 2018, 126, 54–63. [CrossRef]

20. Guo, X.; Schwartz, L.H.; Zhao, B. Automatic liver segmentation by integrating fully convolutional networks into active contour
models. Med. Phys. 2019, 46, 4455–4469. [CrossRef] [PubMed]

21. Meng, L.; Tian, Y.; Bu, S. Liver tumor segmentation based on 3D convolutional neural network with dual scale. J. Appl. Clin. Med.
Phys. 2020, 21, 144–157. [CrossRef] [PubMed]

22. Fang, X.Y.P.; Xu, S. Deep learning-based liver segmentation for fusion-guided intervention. Int. J. Comput. Assist. Radiol. Surg.
2020, 15, 963–972. [CrossRef] [PubMed]

http://doi.org/10.1016/j.eswa.2019.01.055
http://doi.org/10.1002/mp.13735
http://www.ncbi.nlm.nih.gov/pubmed/31356688
http://doi.org/10.1002/acm2.12784
http://www.ncbi.nlm.nih.gov/pubmed/31793212
http://doi.org/10.1007/s11548-020-02147-6
http://www.ncbi.nlm.nih.gov/pubmed/32314228

	Introduction 
	Method 
	Overall Process 
	Stage One: DCUNet-Liver for Liver Segmentation 
	Stage Two: DCUNet-Tumor for Liver Tumor Segmentation 
	Mixed Loss Function 

	Experimental Results 
	Experimental Environment and Parameters 
	Data Sets and Quantitative Evaluation Metrics 
	Training and Verification of the Network Model 
	The Results and Analysis of This Algorithm 

	Discussion 
	References

