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Abstract: (1) Background: Neurogranin is a post-synaptic protein expressed in the neurons of the
hippocampus and cerebral cortex. It has been recently proposed as a promising biomarker of synaptic
dysfunction, especially in Alzheimer’s disease (AD). However, more efforts are needed before intro-
ducing it in clinical practice, including the definition of its reference interval (RI). The aim of the study
was to establish the RI of cerebrospinal fluid (CSF) neurogranin levels in controls and individuals
with non-neurodegenerative neurological diseases; (2) We included a total of 136 individuals that
were sub-grouped as follows: AD patients (n = 33), patients with non-neurodegenerative neurological
diseases (n = 70) and controls (33). We measured CSF neurogranin levels by a commercial ELISA kit.
CSF RI of neurogranin was calculated by a robust method; (3) Results: AD patients showed increased
levels of neurogranin. We also found that neurogranin was significantly correlated with T-tau, P-tau
and mini mental state examination in AD patients. The lower and upper reference limits of the RI
were 2.9 (90%CI 0.1–10.8) and 679 (90%CI 595–779), respectively; (4) Conclusion: This is the first
study establishing the RI of CSF neurogranin.

Keywords: RC3; biomarkers; neurodegeneration; controls; diagnosis; prognosis; tau

1. Introduction

Neurogranin is a calmodulin-binding protein discovered in 1990, but only in recent
years it gained attention as a potential biomarker of neurodegeneration [1]. The term
“neurogranin” refers to its expression in granule-like structures within excitatory neurons
of the hippocampus and cerebral cortex [2]. It is a post-synaptic protein with a pivotal role
in regulating synaptic plasticity and function [3,4]. Neurogranin knockout mice display
a decrease in long-term potentiation (LTP) induction and cognition, while upregulation
promotes LTP and improves cognitive performance [5,6].

In the last few decades, research has focused on the possible role of neurogranin as a
biomarker for synaptic dysfunction in neurodegenerative diseases, such as Alzheimer’s
disease (AD) [7,8]. Synaptic dysfunction, indeed, represents an important phenomenon
in AD pathophysiology, which occurs early in the disease course, and leads to reduced
cognitive function [9]. Neurogranin levels have been found to be markedly reduced in
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the frontal cortex and hippocampus, whereas they are found to be increased in the CSF of
AD patients, indicating loss of post-synaptic elements in the extracellular space [10–13].
Although some authors failed to find an association between neurogranin and AD, most of
the studies showed that it is a reliable biomarker of synaptic dysfunction, especially in AD,
as summarized in two recently published meta-analyses [14,15]. Additionally, a correlation
between CSF neurogranin levels and brain atrophy, as well as amyloid load and cognitive
decline, has also been reported [16]. Finally, increased CSF neurogranin levels have been
proved to be predictive of progression to AD in patients with mild cognitive impairment
(MCI) [17]. Taken together, evidence in the literature supports the role of neurogranin as a
biomarker of synaptic dysfunction in patients with AD [18]. Accordingly, CSF neurogranin
has been proposed to be integrated as a potential new biomarker of synaptic degeneration
and loss in the (N) group of the novel criteria for the diagnosis of AD, which was published
by the National Institute on Aging and Alzheimer’s Association’s (NIA-AA) research
framework [19]. However, there are still some limitations in transferring neurogranin from
bench to bedside, including the lack of a reference interval (RI) and decisional cut-off value.
Indeed, establishing a RI and decisional cut off of neurogranin could help to appropriately
evaluate the clinical usefulness of such biomarker in patients with neurodegenerative
diseases and promote its introduction in clinical practice.

The aim of this study was to evaluate the role of neurogranin as a biomarker of
synaptic dysfunction, especially in AD patients, for its potential diagnostic application.

2. Materials and Methods
2.1. Study Population

We performed a retrospective observational study at the Palermo University Hospital
“P. Giaccone” on a population consisting of controls and patients with NNND, attending the
ALS Clinical Research Center, Palermo, from 2000 to 2020, who underwent lumbar puncture
for CSF analysis as part of their diagnostic evaluation. We also included AD patients
enrolled at the Unit of Neurology, A.U.O.P “P. Giaccone”, Palermo, Italy. The diagnosis of
AD and NNND was achieved by an expert neurologist based on medical history, clinical
examination, neuropsychological testing, neuroimaging, fluorodeoxyglucose PET and CSF
biomarker findings, according to the clinical diagnostic criteria of McKhann et al. and
Albert et al. [20,21].

All the clinical and biological assessments were carried out in accordance with the
Declaration of Helsinki and its amendments. The study protocol was approved by the
Ethics Committee of the University Hospital of Palermo, and all participants gave written,
informed consent that contained the following statement: “the biological material may also
be used for research purposes”.

2.2. CSF Analysis

The CSF samples were collected between 8:00 a.m. and 10:00 a.m. from fasted patients,
and were labeled to ensure anonymity. Specifically, the CSF was obtained by a lumbar
puncture at the L3/4 or L4/5 interspace using a 21-gauge needle. It was collected in
polypropylene tubes, centrifuged at 500× g for 20 min, aliquoted in propylene tubes and
stored at −80 ◦C until analysis, according to international consensus protocols [22].

CSF neurogranin levels were measured by a commercially available ELISA kit (Eu-
roimmun, Lübeck, Germany), according to the manufacturer’s instructions.

The CSF β42, β40, P-tau and T-tau levels were measured by chemiluminescence en-
zyme immunoassay (CLEIA) (Lumipulse GpTau 181 and Lumipulse G Total Tau, Fujirebio
Inc. Europe, Gent, Belgium) on a fully automated platform (Lumipulse G1200 analyzer,
Fu-jirebio Inc. Europe, Gent, Belgium) according to the manufacturer’s instructions.

2.3. Statistical Analysis

Statistical analyses were performed by SPSS statistical software v.17.0 (SPSS Inc.,
Chicago, IL, USA), R Language v.4.0.3 (R Foundation for Statistical Computing, Vienna,
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Austria) and MedCalc Statistical Software v. 20.011 (MedCalc Software Ltd., Ostend,
Belgium). Normality distribution was assessed preliminarily by Q–Q plot and the Shapiro–
Wilk test. Quantitative variables were expressed by the median and interquartile range
(IQR), while qualitative variables were expressed as absolute and relative frequencies.
Differences between the groups, for continuous variables, were estimated by the nonpara-
metric Kruskal–Wallis test (if >2 groups) or Mann–Whitney U-test with Holm–Bonferroni’s
method for multiple comparisons. With the Holm–Bonferroni method, a comparison was
considered statistically significant if the p value was lower than 0.05/(N − r + 1), where
N was the number of p values (in this study N = 15) and r was the rank of the sorted
p values, ordered lowest to highest. The association between quantitative variables was
evaluated by the nonparametric Spearman’s rank-order correlation. Diagnostic accuracy
for the diagnosis of AD was evaluated by ROC curve analysis and reported as AUC with
95% confidence intervals calculated by the DeLong method. The best cut off was evaluated
by the Youden index. The association between Alzheimer diagnosis and neurogranin levels
was also evaluated by multivariate logistic regression.

RI was calculated by the robust method, an iterative process based on robust measures
of location and spread, following the Box–Cox transformation (lambda = 0.461, shift = 0).
The 90% CI of the reference interval was calculated by the bootstrap percentile method
(10,000 bootstrap replicates). Outlier detection was performed on raw data using Hampel’s
test for outliers.

3. Results

One hundred and thirty-six subjects were enrolled in this study. They were sub-
grouped, according to previous clinical diagnosis, into AD (n = 33, 24.3%); patients with
NNNDs, including patients with cerebrovascular diseases (n = 12, 8.8%), such as vascular
encephalopathy and cerebral aneurysm, inflammatory CNS diseases (n = 10, 7.4%), such as
myelitis and myeloradicoloneurites, peripheral neuropathy (n = 41, 30.1%), such as muscu-
lar dystrophy and multifocal motor neuropathy, other neurological diseases (n = 7, 5.1%),
such as epilepsy and brain cancer; and controls (n = 33, 24.3%). Demographic characteristics
(sex and age) are shown in Table 1.

Table 1. Demographic characteristics and neurogranin levels.

Group Sex, M Age
(Median, IQR)

Neurogranin, pg/mL
(Median, IQR)

AD (n = 33) 52% 71 (66–77) 401 (270–521)
Cerebrovascular diseases (n = 12) 75% 60 (52–67) 114 (58–281)
Inflammatory CNS diseases (n = 10) 30% 64 (58–76) 200 (76–303)
Peripheral Neuropathy (n = 41) 61% 60 (48–71) 260 (89–352)
Other neurological diseases (n = 7) 43% 63 (48–72) 163 (38–338)
Controls (n = 33) 58% 52 (39–67) 109 (54–373)

AD, Alzheimer’s disease; CNS, central nervous system; M, male sex; IQR, inter quartile range.

Neurogranin levels were significantly different among the groups (overall Kruskal–
Wallis test p < 0.001) (Figure 1). In particular, taking into account Holm–Bonferroni’s
method for multiple comparisons, AD patients displayed significantly higher median
neurogranin levels than the controls (p < 0.001) and patients with cerebrovascular diseases
(p < 0.001), inflammatory CNS diseases (p = 0.002) and peripheral neuropathy (p < 0.001).
For the comparison of AD vs. other neurological diseases, the p value obtained (p = 0.015)
was higher than the critical limit for significance calculated by the Holm–Bonferroni method
(limit = 0.0045), which was then considered not significant. All other p values obtained
were higher than 0.05 and ranged from 0.121 to 0.921. Neurogranin levels were also
significantly higher in AD patients (n = 33) than patients of all NNNDs grouped together
(n = 70) (median 401 vs. 212; p < 0.001). Moreover, a multivariate logistic regression using
neurogranin, age and sex, confirmed that neurogranin was independently associated with



Diagnostics 2021, 11, 2339 4 of 9

AD (OR 1.004, 95%CI 1.001–1.006). Similar results were obtained excluding controls from
the multivariate model (OR 1.003, 95%CI 1.001–1.006).
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Figure 1. Boxplots of neurogranin levels in the groups investigated. A (controls), B (Alzheimer),
C (cerebrovascular disease), D (inflammatory CNS disease), E (peripheral neuropathy) and F (other
neurological diseases).

The RI of neurogranin was calculated in the population, including both controls and
patients with NNNDs (n = 103). Three outliers were identified and eliminated (respectively,
807, 819 and 924). Using the remaining data (n = 100), the lower and upper reference limits
of the RI were 2.9 (90%CI 0.1–10.8) and 679 (90%CI 595–779), respectively.

The diagnostic performances of neurogranin for AD were evaluated by receiver
operating characteristic (ROC) curve analysis (Figure 2). The area under the curve (AUC)
was 0.78 (95%CI 0.69–0.87). According to Youden’s index, the best-calculated cut off was
319 pg/mL. At this cut off, sensitivity, specificity, positive predictive value and negative
predictive values were 0.73, 0.73, 0.46 and 0.89, respectively.

Levels of CSF core biomarkers, namely amyloid β1-42 (β42), β1-40 (β40), total tau
(T-tau), phosphorylated tau at threonine 181 (P-tau) and amyloid β1-42/ β1-40 ratio
(β42/40 ratio), were further evaluated in AD patients. Neurogranin levels were found
to be associated to varying extents with T-tau (rho = 0.808, p < 0.001), P-tau (rho = 0.655,
p < 0.001) and β42/40 ratio (rho = −0.592, p = 0.001) (Table 2). Moreover, neurogranin was
also found to be moderately and inversely associated with Mini-Mental State examination
(MMSE) score (rho = −0.474; p = 0.012).
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Figure 2. ROC curve of neurogranin for AD diagnosis. Dashed line indicates reference line.

Table 2. Correlation analysis among CSF biomarkers in AD patients.

Neurogranin T-tau P-tau β42 β40 β42/40
Ratio

Neurogranin 0.808
p < 0.001

0.655
p < 0.001

0.053
p = 0.780

0.321
p = 0.118

−0.592
p = 0.001

T-tau 0.810
p < 0.001

−0.030
p = 0.877

0.254
p = 0.221

−0.492
p = 0.006

P-tau 0.013
p = 0.947

0.333
p = 0.104

−0.563
p = 0.001

β42 0.764
p < 0.001

0.463
p = 0.010

β40 −0.024
p = 0.908

β42/40 ratio

4. Discussion

Neurodegenerative diseases are an important health burden and their early identifica-
tion is crucial, but this is still challenging today. CSF biomarkers represent precious tools for
assessing neurodegenerative disorders, providing in vivo information on the underlying
pathology [23–27]. Specifically, CSF is an ideal biofluid due to its proximity to the brain
parenchyma, the lower intrinsic protease activity than blood, the moderately low cost in
comparison to positron emission tomography (PET) imaging and the safety of lumbar
puncture. To date, CSF biomarkers, including β42, β42/40 ratio, T-tau and P-tau, have
been integrated in the diagnostic work-up of AD [19]. Neurogranin has recently emerged
as a promising biomarker of synaptic dysfunction, especially in AD. Thus, it could provide
integrative information to the core CSF biomarkers for AD management. It could also give
important information for longitudinal monitoring of disease progression and drug effects
on synaptic degeneration in clinical trials of disease-modifying therapies for AD.

It is noteworthy that although literature evidence encourages the introduction of
neurogranin as biomarker of synaptic dysfunction, efforts are still required before imple-
menting it in clinical practice. An essential issue is the definition of its RI. Indeed, the
clinical laboratory test result has no value in isolation and, consequently, RI and decisional
cut-off value are mandatory for appropriately interpreting the laboratory data [28–32].
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However, especially for CSF biomarkers, establishing an RI is an arduous task due to
the difficulties of obtaining such biological fluid in healthy individuals. In this study,
we established the RI of neurogranin in a population of controls and individuals with
non-neurodegenerative neurological diseases, which were not characterized by synaptic
degeneration and, consequently, should not influence neurogranin levels. We applied the
robust method, as suggested by the IFCC/CLSI document, when the number of individuals
was lower than 120 [33]. The lower and upper reference limits of the RI, calculated by
the robust method with bootstrapped 90% CI, were 2.9 (90%CI 0.25–10.1) and 679 (90%CI
595–779), respectively. In addition, we established 319 pg/mL as the decisional cut-off
value of neurogranin for diagnosing AD. At this cut-off value, neurogranin showed good
diagnostic accuracy, with an AUC of 0.78, and a sensitivity and specificity of 0.73. Finally,
we found a strong correlation between neurogranin and CSF biomarkers of synapsis loss,
T-tau and P-tau, as well as with MMSE. Whereas synapse loss and neuronal degeneration
are pathogenic mechanisms interrelated in AD, it has been suggested that the evaluation of
biomarkers reflecting both processes should be performed. Overall, our findings support
the use of neurogranin as a biomarker of synaptic dysfunction.

In this study, we included only patients with AD, as a model of neurodegenerative dis-
eases. Indeed, AD represents the most common form of dementia in the general population
worldwide. Additionally, we did not compare AD with other dementia or neurodegenera-
tive diseases, such as Lewy bodies dementia and Parkinson’s disease. Thus, we could not
state that neurogranin is a specific biomarker of AD and further studies must be performed
to assess whether neurogranin could be used as a biomarker for differential diagnosis
among neurodegenerative diseases. Recently, Willemse et al. showed that neurogranin did
not differentiate AD from non-AD dementia in two dementia cohorts, one included clinical
AD and non-AD patients with high CSF tau levels and the other included patients with
a definite post-mortem diagnosis, independently from CSF biomarkers [34]. The authors
concluded that neurogranin could reflect a general pathophysiological process of synap-
tic degeneration and it was not specific for AD. On the contrary, Portelius et al. found
that neurogranin was significantly increased in AD patients compared with patients with
non-AD neurodegenerative diseases, including Parkinson’s disease and frontotemporal
dementia [35]. Additionally, they showed that increased levels of neurogranin were associ-
ated with greater Aβ neuritic plaque and tau tangle pathology scores. Thus, the authors
concluded that neurogranin could be a specific biomarker of AD. Overall, a definite conclu-
sion on the specificity of neurogranin for AD could not be drawn, and further studies are
required to address such question. To date, neurogranin certainly represents a biomarker
of synaptic degeneration in AD.

Our findings are in accordance with previous studies, which showed good accuracy
of neurogranin for AD, with an AUC ranging from 0.696 to 0.85 (Table 3). It is noteworthy
that the decisional cut-off value, as well as the sensitivity and specificity, have not been
specified in most of the studies, making it difficult to compare findings among studies.

The limitation and strengths in our study must be mentioned. The small number
of AD is the main limitation, while the well-characterized patient groups, the use of a
validated assay and the appropriate pre-analytical sample handling represent strengths
in our study. It is noteworthy that the established cut-off value of neurogranin is based
only on statistical calculation (Youden index). When considering the RI, a different cut
off maybe selected based on the desired specificity and/or sensitivity. The validity of
the cut-off value established in our study shall be confirmed in further studies by using
an external validation cohort, including patients classified according to laboratory and
clinical findings.

To the best of our knowledge, this is the first study defining the RIs of CSF neurogranin
levels. We measured CSF neurogranin by a commercially available ELISA kit. Thus, it is
plausible that using different ELISA kits or analytical methods, the RI could be slightly
different. Thus, the RI established in our study can be transferred to other laboratories only
after appropriate verification [28].
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Table 3. Studies on the accuracy of CSF neurogranin for AD diagnosis.

Study Population Assay AUC Sensitivity Specificity Optimal Cut-Off
Value (pg/mL)

Xue et al. [36]
111 cognitively-normal

controls, 193 MCI,
95 AD

Electrochemiluminescence
technology using Ng7 0.71 NA NA NA

Fan et al. [37] 65 cognitively-normal
controls, 65 AD

Electrochemiluminescence
technology using Ng7 0.783 NA NA NA

Galasko et al. [38] 90 normal controls,
46 AD

ELISA (EUROIMMUN,
Lübeck, Germany) 0.504 0.200

(0.022–0.311)
0.854

(0.640–0.932) 167.78

Schipke et al. [39] 20 MDD, 20 AD In-house ELISA 0.696 NA NA NA

Mattsson et al. [40] 93 controls, 93 AD In-house ELISA 0.85 NA NA 254.7

Tarawneh et al. [41] 207 controls, 95 AD

2-site immunoassay uses
an affinity-efficient

trapping and purification
technique for polyclonal

antibodies

0.71 NA NA NA

Janelidze et al. [42] 74 AD In-house ELISA 0.761 NA NA NA

MCI, mild cognitive impairment; AD, Alzheimer’s disease; NA, not available; ELISA, enzyme-linked immunosorbent assay; MDD, major
depressive disorder.
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17. Dulewicz, M.; Kulczyńska-Przybik, A.; Mroczko, B. Neurogranin and VILIP-1 as Molecular Indicators of Neurodegeneration in
Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 8335. [CrossRef] [PubMed]
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