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Abstract: Prostate-specific membrane antigen (PSMA) positron emission tomography/computed
tomography (PSMA-PET/CT) scans can facilitate diagnosis and treatment of prostate disease.
Radiomics signature (RS) is widely used for the analysis of overall survival (OS) in cancer diseases.
This study aims at investigating the role of radiomics features (RFs) and RS from pretherapeutic
gallium-68 (68Ga)-PSMA-PET/CT findings and patient-specific clinical parameters to analyze overall
survival of prostate cancer (PC) patients when treated with lutethium-177 (177Lu)-PSMA. A cohort
of 83 patients with advanced PC was retrospectively analyzed. Average values of 73 RFs of 2070
malignant hotspots as well as 22 clinical parameters were analyzed for each patient. From the Cox
proportional hazard model, the least absolute shrinkage and selection operator (LASSO) regular-
ization method is used to select most relevant features (standardized uptake value (SUV)Min and
kurtosis with the coefficients of 0.984 and −0.118, respectively) and to calculate the RS from the
RFs. Kaplan–Meier (KM) estimator was used to analyze the potential of RFs and conventional
clinical parameters, such as metabolic tumor volume (MTV) and standardized uptake value (SUV)
for the prediction of survival. As a result, SUVMin, kurtosis, the calculated RS, SUVMean, as well as
Hemoglobin (Hb)1, C-reactive protein (CRP)1, and ECOG1 (clinical parameters) achieved p-values
less than 0.05, which suggest the potential of findings from 68Ga-PSMA-PET/CT scans as well as
patient-specific clinical parameters for the prediction of OS for patients with advanced PC treated
with 177Lu-PSMA therapy.

Keywords: prostate cancer (PC); prostate specific membrane antigen (PSMA); positron emission
tomography (PET); computed tomography (CT); overall survival (OS); radiomics signature (RS)

1. Introduction

Computer-aided diagnosis (CAD), leveraging state-of-the-art statistical methods, has
gained critical importance in diagnosis and therapy planning in recent years. Radiomics fea-
tures (RFs) extracted from base-line prostate-specific membrane antigen (PSMA) positron
emission tomography/computed tomography (PSMA-PET/CT) scans, together with
patient-specific clinical parameters, can facilitate diagnosis and treatment of prostate
disease [1,2]. As PSMA-PET/CT is gaining importance in the diagnosis and treatment
planning of patients with advanced prostate cancer [3], obtaining additional information
using radiomics features is of great interest, especially in the use of therapy planning [4].
Within the concept of theranostics, using the same ligand to PSMA either labeled with the
positron emitter gallium-68 (68Ga) or the therapeutic beta-emitter lutethium-177 (177Lu) [5],
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this question is of special interest as one may speculate that the distribution of the 68Ga-
PSMA may predict therapeutic use of 177Lu-PSMA in a symbiotic way.

In this study, we investigate the role of conventional parameters and RS from prether-
apeutic 68Ga-PSMA-PET/CT findings, as well as patient-specific clinical parameters, to an-
alyze overall survival (OS) of PC patients when treated with 177Lu-PSMA. First, the study
cohort will be introduced. Then the study set-up, including the third-party as well as
in-house developed software, will be described in detail. Finally, based on the results,
the potential of each feature or parameter to predict the OS will be analyzed and quantified.
To the best of our knowledge, the presented findings would be novel for the analysis of
survival for PSMA-PET/CT, although for other modalities such as MRI or other markers
such as FDG-PET, there is quite some work [6–9].

2. Materials and Methods
2.1. Methodological Background

Conventionally, variables such as metabolic tumor volume (MTV), total lesion Glycoly-
sis (TLG), and standardized uptake value (SUV)Mean/Max have been in focus for the analysis
of overall survival (OS). For example, analysis of Fluorodeoxyglucose (FDG)-PET/CT for
non-small-cell lung cancer (NSCLC) [10], FDG-PET for esophageal cancer patients [11],
and FDG-PET/CT for patients with relapsing/refractory non-Hodgkin lymphoma [12].
Moon et al. [11] also provided a summary of literature for PET or PET/CT analyses based
on TLG, MTV, and SUVMean/Max.

For the analyses of single features, Kaplan–Meier (KM) statistics [13] are applied
which subdivide the study cohorts based on cut-off values of the features. The cut-off
values are either chosen based on previous findings or by subdividing the cohorts into
subgroups with high- and low- risk (and sometimes middle). Consecutively, the p-values of
the KM statistics are calculated based on log-rank tests [14] to find significantly correlating
features with overall survival.

As the processing power to apply more sophisticated statistical methods on bigger
data-sets advanced, simultaneous analyses of more variables became more popular. As a
result, there is a wide set of computer-based tools and software packages [15,16] to support
physicians and scientists to conduct time-to-event analyses more accurately. Addition-
ally, for the prediction of OS, radiomics features (RFs) extracted from different imaging
modalities can be processed by the software packages to quantify their potential for the
OS analysis. For example, the Cox proportional hazard model (CPH) [17] is used in many
studies for this purpose [6–9].

Dealing with the problem of having fewer subjects than features in the field of ra-
diomics, the so-called term “radiomics signature” (RS) is referred and used in a bunch of
studies for MRI [6–8] and FDG-PET/CT for lung cancer [9]. Most of the studies in this
group deal with large numbers (often more than 1000) of radiomics features. Here, as a
common approach, first a stepwise feature selection is applied followed by least absolute
shrinkage and selection operator (LASSO) [18] to end up with the radiomics signature.
Then the survival prediction metrics (like KM or cumulative hazard) are used to assess
and quantify the predictive outcome of the calculated RS and compare it with that of the
conventional or the clinical parameters.

2.2. Patients and Volume of Interest (VoI) Definition and Annotation

83 male patients who had been histologically diagnosed with prostate carcinoma
and were referred for 68Ga-PSMA PET/CT were included in this retrospective study.
An intravenous injection of 98 to 159 MBq in-house produced 68GA-HBED-CC PSMA
carried out about 40 to 80 minutes before each base-line scan. To acquire the low-dose
CT (16mAs, 130 kV) from the base of skull to mid-thigh, as well as the PET scan over
the same area with 3 or 4 minutes per bed position based on the body weight of the
patient, a Biograph 2 PET/CT system (Siemens Medical Solutions, Erlangen, Germany)
was used. The PET and CT data were reconstructed in 128 × 128 and 512 × 512 matrices,
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respectively. Both PET and CT data had 5 mm slice thicknesses. An attenuation-weighted
ordered subsets expectation maximization algorithm was used for attenuation and scatter
corrections (8 iterations, 16 subsets) and a 5 mm Gaussian post-reconstruction-filter was
applied afterwards by the manufacturer.

A trained nuclear medicine (NM) physician (board certified with 7 years’ experience
in PET/CT analysis) identified and delineated all the pathological hotspots for each scan,
using InterView Fusion software (Mediso Medical Imaging, Budapest, Hungary, Version
3.08.005) which resulted in 2070 pathological hotspots. All the primary tumors if present
as well as all the metastatic uptakes in all of the organs were identified as the hotspots.
A total of 73 (37 PET-based + 36 CT-based) radiomics features, including first and higher
order statistics (mean, max, kurtosis, etc.), shape-based (max diameter), textural (entropy,
contrast, homogeneity, etc.), and volumetric zone and run length statistics features (grey-
level non-uniformity, short run emphasis, etc.) were calculated for each hotspot (Table 1).

Table 1. List of the radiomics features from both positron emission tomography (PET) and computed tomography (CT)
modalities. Please note that the metabolic tumor volume (MTV) is PET-specific.

First or Higher
Order Statistics Shape and Size Textural Volumetric Zone Length Statistics Volumetric Run Length Statistics

Deviation
Mean
Max
Min
Sum

PET-MTV
Kurtosis

Max. Diameter

Entropy
Homogeneity
Correlation

Contrast
Size Variation

Intensity Variation
Coarseness
Busyness

Complexity

Short Zone Emphasis
Long Zone Emphasis

Low Grey-Level Zone Emphasis
High Grey-Level Zone Emphasis

Short Zone Low Grey-Level Emphasis
Short Zone High Grey-Level Emphasis
Long Zone Low Grey-Level Emphasis
Long Zone High Grey-Level Emphasis

Zone Percentage

Short Run Emphasis
Long Run Emphasis

Low Grey-Level Run Emphasis
High Grey-Level Run Emphasis

Short Run Low Grey-Level Emphasis
Short Run High Grey-Level Emphasis
Long Run Low Grey-Level Emphasis
Long Run High Grey-Level Emphasis

Grey-Level Non-Uniformity
Run Length Non-Uniformity

Run Percentage

Furthermore, for each individual patient, 14 numerical (such as age, weight, and height)
as well as 8 categorical therapeutic clinical parameters (such as Gleason score, ECOG1,
and ALP1) were included (Table 2).

Table 2. Descriptions of the clinical parameters (PSMA: prostate specific membrane antigen, PET:
positron emission tomography).

Parameter Description
Age Age at the first PSMA PET

Weight Weight at the first PSMA PET
Height Height at the first PSMA PET

Gleason Score Describes abnormality degree of cancer cells in prostate
ALP1 Serum alkaline phosphatase at the first PSMA PET
PSA1 Serum PSA level at the first PSMA PET

Time Difference Time between the first diagnosis and the first PSMA PET
Crea1 Serum creatinine at the first PSMA PET
GGT1 Gamma-glutamyltransferase at the first PSMA PET
CRP1 C-reactive protein in serum at the first PSMA PET
Hb1 Hemoglobin at the first PSMA PET

Erys1 Erythrocytes at the first PSMA PET
Thrombose1 Thrombocytes at the first PSMA PET

Leukos1 Leicocytes at the First PSMA PET
ECOG1 Scale of the performance status of the patient

Prostatectomy whether the patient underwent prostatectomy
Hormonal therapy whether the patient underwent hormonal therapy

Chemotherapy whether the patient underwent chemotherapy
Bisphosphonate whether the patient had taken bisphosphonates

Radiotherapy Prostate whether the patient underwent radiotherapy of prostate
Radiotherapy Bones whether the patient underwent radiotherapy of bones

Radiotherapy LN whether the patient underwent radiotherapy of lymph nodes
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All the numerical variables were standardized prior to analyses steps using the Min-
MaxScaler method provided by SciKit-Learn library [19].

For the imaging procedure and for the anonymized evaluation of the data, all the
patients gave written and informed consent. Due to the retrospective character of the data
analysis, an ethical statement was waived by the institutional ethical review board.

2.3. Statistical Analyses

For the statistical analyses pipeline, both of the univariate and multivariate approaches
for the analysis of overall survival were considered. First, the Cox proportional Hazard
model was used as the multivariate method [20] to analyze the radiomics features and
also to select the most significant features, which results in the calculation of the radiomics
signature using the LASSO method. Consecutively, linear regression tests were performed
to confirm the significance of the selected variables and that of RS. This was followed by
KM statistics to assess the predictive outcome of the variables for OS analysis.

To form the standard structured input for the survival analysis pipeline with right-
censoring, the information about the time of death for the patients who had died by the
date on which the study began, or if the patients were still alive on that date, were taken
into account. The standard structured survival information included two parameters:
One Boolean variable indicating the status of the patient on the date the experiment started
(dead = True or alive = False) and one integer variable indicating the number of months
the patient had lived until the time of death or censoring, respectively.

As the number of input variables of the dataset (a total of 95 variables including 73 ra-
diomics features, 14 numerical, and 8 categorical clinical parameters) exceeded the number
of subjects (83), it was reasonable to apply feature selection prior to the survival analysis.
To this end, from the Cox proportional hazard model provided by glmnet library of R
programming [12], the least absolute shrinkage and selection operator (LASSO) method,
also known as L1 regularization [18], was applied. This method was used to identify the
most relevant features for the prediction of overall survival (OS). Furthermore, it provided
coefficients for the selected variables, which were consecutively used to calculate the
so-called radiomics signature (RS) for each subject.

To confirm the significance of the selected RFs by LASSO method, as well as that of
the calculated RS, linear regression was applied. To this end, the normalized values of
the selected variables and the RS were analyzed in connection with the overall survival
in months.

To achieve more interpretable outcomes, from the survival analyses package from
SciKitSurvival, the Kaplan–Meier (KM) estimator [21] was used. Based on predefined cut-
off values, the KM estimator helps to analyze whether different groups of subjects separated
by different values of a given variable have significantly different survival times. To avoid
ending up with too small groups of subjects which would affect the generalizability of the
results, the median value of the numerical variables and different possible values of the
categorical variables were used as the cut-off values for this study.

As the final step, the predictive performance of the conventional features (e.g., MTV and
SUVMean/Max) as well as the clinical parameters are compared to that of the selected
variables and the calculated RS as provided by the LASSO method. An overview of the
study pipeline is shown in Figure 1.
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Figure 1. The study pipeline. First, the positron emission tomography/computed tomography (PET/CT) images are
manually segmented and annotated by an experienced NM physician. Then the radiomics features are extracted and
the most relevant features among them are chosen by LASSO method [18] to calculate the radiomics signature. Finally,
the Kaplan–Meier estimator [20] is used to analyze and visualize the survival prediction results.

3. Results
3.1. Clinical Characteristics of the Patient Cohort

The age range of the study cohort varied between 48 and 87 years and the serum
PSA levels ranged from 4.7 to 5910 ng/mL. Their Gleason scores also varied between 6
and 10. The baseline 68Ga-PSMA PET/CT scans were carried out from November 2014 to
August 2019 and their 177Lu-PSMA treatment followed five to 21 days thereafter. Table 3
summarizes the clinical characteristics of the participants and gives an overview about the
therapeutic aspects of the study cohort.

Table 3. (A) Mean values and ranges of the clinical parameters and (B) the therapy information of
the patients.

(A) Clinical Characteristic Mean Value Range (Min.: Max.)

Age [years]
Weight [Kilograms]

prostate specific antigen (PSA)
level [ng/mL]
Gleason Score

Hb1 [g/dL]
CRP1 [mg/L]

70
79

493
8
11

23.6

48:87
49:125

4.7:5910
6:10

6:13.6
0.2:275

(B) Diagnosis or Therapy Type Number of Patients

Prostatectomy
Hormonal therapy

Chemotherapy Bisphosphonates
Radiotherapy of prostate
Radiotherapy of bones

Radiotherapy of lymph nodes

40
81
59
66
44
44
75

3.2. Selected Features and Radiomics Signature

From the 73 radiomics features, the LASSO method identified SUVMin and kurtosis as
the most correlating features with the overall survival time. The corresponding coefficients
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of 0.984 and −0.118 were calculated, respectively. To form the radiomics signature of each
patient the calculated coefficients were used as follows:

RS(i) = SUVMin (i) × 0.984 + Kurtosis(i) × (−0.118) (1)

where the RS(i) is the radiomics signature for the patient number i and SUVMin (i) and
Kurtosis(i) are the values of the selected variables for the patient number i i (Equation (1)).

Regression tests results confirm the significance of the selected RFs and the calculated
RS, as they achieve p-values less than 0.05. Figure 2 illustrates the regression diagrams for
the selected variables as well as the calculated RS.

Figure 2. The linear regression diagrams for overall survival (in months) based on (a) SUVMin,
(b) kurtosis, and (c) radiomics signature.
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3.3. Survival Prediction

Among all the variables included in the Kaplan–Meier estimation experiment, SUVMin,
kurtosis, the calculated RS, SUVMean, as well as three clinical parameters (Hb1, CRP1,
and ECOG1) achieved p-values less than 0.05. Figure 3 shows the Kaplan–Meier diagrams
of these variables.

Figure 3. The results of Kaplan–Meier analyses for (a) radiomics signature, (b) Hb1, (c) CRP1, (d) ECOG1, (e) kurtosis,
(f) SUVMin, and (g) SUVMean.
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4. Discussion

Treatment of advanced prostate carcinoma using 177Lu-PSMA is gaining importance
and numbers of treatments are increasing recently. However, not all patients are responding
well and about one third of treatments fail [22]. Therefore, the aim of this study was to
analyze radiomics and clinical features for their predictive value for OS of prostate cancer
patients undergoing 177Lu-PSMA treatment.

Out of 73 radiomics features, we identified the most relevant ones for the analysis
of OS by means of the state-of-the-art statistical methods. First, the multivariate feature
selection method (LASSO) identified SUVMin and kurtosis as the most important variables
among all the 73 radiomics features, which together formed the radiomics signature. Then,
Kaplan–Meier statistics was applied to quantify the predictive potential of the radiomics
signature as well as each individual radiomics feature or clinical parameter. Our findings
confirm the important role of the conventional parameters, such as SUV. This may be
surprising, as we found in other studies that conventional parameters, such as mean SUV
or maximum SUV, did not show predictive power [22,23]. Another surprising point is
that the minimum SUV seems to have predicting power. The reason for this may be
that the low SUV values within the segmented volume may represent also some kind of
heterogeneity, as it may correlate with a broader spectrum of activity values within a tumor.
In addition, textural heterogeneity parameters, such as kurtosis, taken from pretherapeutic
68Ga-PSMA-PET/CT scans were found as strong parameters in this study, which is in
accordance with previous findings [4]. However, in this study the parameters were just
correlated individually.

Although the study outcome reveals the potential of radiomics signature and textual
heterogeneity parameters, even in the absence of clinical parameters, the importance of
the clinical parameters such as Hb and especially ECOG is shown. This corresponds
to the study by Ferdinandus et al. who also found, for example, Hb to be a predictive
parameter [22]. These findings suggest that, as much as possible, clinical information needs
to be included in therapy decision support systems and not only obvious data, such as
imaging data or tumor markers.

We included 2070 pathological hotspots from 83 subjects as well as a total of 95 vari-
ables in this study. The results illustrate the potential of the investigated variables and
the corresponding statistical methods to address the problem of overall survival predic-
tion for patients with advanced prostate carcinoma. However, to make the results more
generalizable, experiments with larger cohorts need to be conducted.

The annotations of the 68Ga-PSMA-PET/CT findings by an experienced NM physician
are used as the ground truth instead of histopathological information. This might be con-
sidered as a drawback of the current study; however, considering the ethical perspectives
regarding patient examinations, the non-invasive approach was chosen.

5. Conclusions

Radiomics features and radiomics signature from pretherapeutic 68Ga-PSMA-PET/CT
scans as well as patient-specific clinical parameters hold promise for the prediction of overall
survival for patients with advanced prostate carcinoma treated with 177Lu-PSMA therapy.
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Abbreviations

PC prostate cancer
PSMA prostate specific membrane antigen
PSA prostate specific antigen
PET positron emission tomography
CT computed tomography
OS overall survival
RF radiomics feature
PET positron emission tomography
CT computed tomography
OS overall survival
RF radiomics feature
RS radiomics signature
NSCLC non-small-cell lung cancer
FDG Fluorodeoxyglucose
SUV standardized uptake value
MTV metabolic tumor volume
TLG total lesion glycolysis
Hb hemoglobin
CRP C-reactive protein
CPH Cox proportional hazard
KM Kaplan–Meier
LASSO least absolute shrinkage and selection operator
GLNU grey level-non-uniformity
LRE long run emphasis
BMD bone mineral density
LZE long zone emphasis
LZHG_LE long zone high grey-level emphasis
SRE short run emphasis
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