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Abstract: Background: The purpose of this study was to assess the effectiveness of the radiomic
analysis of contrast-enhanced spectral mammography (CESM) in discriminating between breast
cancers and background parenchymal enhancement (BPE). Methods: This retrospective study in-
cluded 38 patients that underwent CESM examinations for clinical purposes between January 2019–
December 2020. A total of 57 malignant breast lesions and 23 CESM examinations with 31 regions of
BPE were assessed through radiomic analysis using MaZda software. The parameters that demon-
strated to be independent predictors for breast malignancy were exported into the B11 program and a
k-nearest neighbor classifier (k-NN) was trained on the initial groups of patients and was tested using
a validation group. Histopathology results obtained after surgery were considered the gold standard.
Results: Radiomic analysis found WavEnLL_s_2 parameter as an independent predictor for breast
malignancies with a sensitivity of 68.42% and a specificity of 83.87%. The prediction model that
included CH1D6SumAverg, CN4D6Correlat, Kurtosis, Perc01, Perc10, Skewness, and WavEnLL_s_2
parameters had a sensitivity of 73.68% and a specificity of 80.65%. Higher values were obtained
of WavEnLL_s_2 and the prediction model for tumors than for BPEs. The comparison between
the ROC curves provided by the WaveEnLL_s_2 and the entire prediction model did not show
statistically significant results (p = 0.0943). The k-NN classifier based on the parameter WavEnLL_s_2
had a sensitivity and specificity on training and validating groups of 71.93% and 45.16% vs. 60%
and 44.44%, respectively. Conclusion: Radiomic analysis has the potential to differentiate CESM
between malignant lesions and BPE. Further quantitative insight into parenchymal enhancement
patterns should be performed to facilitate the role of BPE in personalized clinical decision-making
and risk assessment.

Keywords: radiomic analysis; contrast-enhanced spectral mammography; breast cancer; background
parenchymal enhancement

1. Introduction

Contrast-enhanced spectral mammography (CESM) represents a growing imaging
technique in the detection of breast cancer, with levels of sensitivity and specificity similar
to those of contrast-enhanced magnetic resonance imaging (MRI) and even better tolerated
by the patients [1–4]. CESM has been proven to be excellent as a problem-solving method
in local staging of breast cancer and in the evaluation of the response to neoadjuvant
chemotherapy (NAC) by predicting the pathologic complete response (pCR), therefore it
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can be used as a replacement technique in patients with contraindications for performing
breast MRI [5,6].

Subtracted images using CESM illustrate areas of uptake of the contrast media, both
as an expression of tumor neoangiogenesis and also as an enhancement of the normal
breast parenchyma, known as background parenchymal enhancement (BPE). With CESM,
BPE is less influenced by hormonal status [7,8].

However, distinguishing multifocal or multicentric disease from BPE may be difficult
in cases with moderate or marked BPE. There is a higher risk for underestimation or even
overestimation, and also a higher number of false-positive results if BPE has a patchy
aspect [9].

Recent advances in the fields of artificial intelligence and medical image analysis have
led to the development of “radiomics”. This allows for an objective and quantitative charac-
terization of the morphology, texture, and pharmacokinetic behavior of breast tumors and
the surrounding parenchyma, which could have an impact on the clinical decision [10,11].

This study aimed to investigate the effectiveness of the radiomics analysis of CESM in
differentiating breast cancer from BPE.

2. Materials and Methods

This retrospective pilot study was approved by the institutional review board and a
waiver consent was obtained owing to its retrospective nature.

2.1. Study Population

Between January 2019 and December 2020, 55 patients undergoing CESM examina-
tions were retrieved from the database. Images were reviewed and cross-referenced with
the medical data by one radiologist, who did not subsequently participate in the radiomic
analysis and statistical analysis of the database.

The study was conducted on the consecutive CESM examinations that were acquired
only for clinical purposes.

The indications for performing CESM examinations were contraindications for breast
magnetic resonance imaging (MRI), problem-solving (e.g., differentiation between surgical
scar and local recurrence), local staging of breast cancer, follow-up during neoadjuvant
chemotherapy (NAC), suspicion of multifocal, multicentric, or even bilateral disease.

CESM examinations were not performed in patients with the following conditions: an
impaired renal function defined as estimated glomerular filtration rate (eGFR) < 60 mL/min/
1.73 m2, history of iodinated contrast allergy, pregnancy or breastfeeding, poor asthma
control, and medical conditions that may make the patient more likely to develop a severe
contrast reaction (such as hyperthyroidism or radioactive iodine therapy).

The inclusion criteria were malignant breast lesions detected upon mammography or
ultrasound with pathological confirmation, as well as examinations with moderate and
marked BPE and regions with moderate or marked BPE included in the sectorectomy or
mastectomy specimen, in order to have the whole piece pathology as a confirmation that
the area represented indeed BPE and not another malignant lesion.

Figure 1 summarizes the flowchart of patients and BPE inclusion.
For the validation group, five consecutive patients with 10 malignant lesions that met

the same criteria and underwent CESM between January 2021 and May 2021 were selected.
Only three patients qualified for BPE assessment.

2.2. Image Acquisition and Interpretation

All of the CESM examinations were acquired using a Senographe Essential unit
(GE Healthcare, Rue de la La Miniere, Buc, France). Patients received 1.5 mL/kg body
weight intravenous iodinated contrast media (Visipaque 320 mg I/mL; GE Healthcare,
Oslo, Norway) with a flow rate of 3 mL/s, using an automatic syringe injector with a
mean injected volume of 100 mL. Two min from the start of the injection, high-energy
(45–49 kVp) and low-energy (26–30 kVp) exposures of both breasts were acquired in the
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craniocaudal (CC) and mediolateral oblique (MLO) projection, beginning each time with
the non-pathological breast. The mean examination time was approximately 6 min. A
subtracted image for each projection was automatically generated by CESM software on
the mammography unit and sent to the reading station.
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Figure 1. Flowchart of patients and background parenchymal enhancement (BPE) inclusion.

CESM images were all in DICOM format and were evaluated by a single radiologist
with over 25 years of experience in reading mammography and 5 years experience in
reading CESM exams.

Breast density was assessed on the low-energy images using the American College
of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) and classified
as follows: A—almost entirely fatty; B—scattered areas of fibroglandular densities; C—
heterogeneously dense; D—extremely dense.

BPE was categorized using both subtracted CC and MLO views. In the absence of
widely accepted BPE classification criteria for CESM, BPE was categorized according to the
BI-RADS MRI grading system as minimal, mild, moderate, and marked.
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2.3. Reference Standard

The histopathology results obtained from breast conservative surgery or mastectomy
specimens were considered as the gold standard. The entire excised tissue was patho-
logically evaluated to determine the number of malignant lesions. The reports included
the histological tumor grade and the immunohistochemical (IHC) assessment of estrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2
(HER2) status.

2.4. Texture Analysis Protocol

The TA protocol comprised the following five steps: image pre-processing, lesion
segmentation, feature extraction, feature selection, and prediction.

2.4.1. Image Pre-Processing and Segmentation

Tumor and BPE segmentation was performed by a radiologist with over 2 years of
experience in radiomics analysis, at the indications and under the surveillance of the
experienced breast radiologist.

Contours were depicted on either CC or MLO view depending on which provided
the best visualization of the lesion or BPE and in the section on which the rim artifact was
less visible.

In patients with multifocal lesions, all the lesions corresponding to the inclusion
and exclusion criteria were selected. Bilaterality of breast tumors was not observed in
any patient.

The BPE was delineated in areas with an obvious appearance at more than 1 cm from
the lesion so as to avoid abnormal enhancement around the lesion and not superimposed
over the rim artifact.

A semi-automatic level-set technique was used for the definition and positioning of
each region of interest (ROI) using gradient and geometry coordinates. As this technique
does not require the manual delineation of the structure of interest contours, the inter- and
intra-observer reproducibility was not assessed in this study. The researcher placed a seed
in the area of interest and the software automatically delineated the area based on gradient
and geometrical contours. When necessary, manual corrections were applied (Figure 2).
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By applying a limitation of dynamics to µ ± 3σ (µ = gray-level mean; σ = gray-level
standard deviation), the gray level was normalized to reduce the influence of contrast and
brightness that could affect the true image textures [12].

2.4.2. Feature Extraction

The feature computation from every ROI was automatically performed by the MaZda
software (the Technical University of Lodz, Institute of Electronics).

The extracted parameters were derived from six texture classes (Table 1). In total,
245 parameters were computed from every ROI.

Table 1. Texture parameters.

Class Parameters Number of Parameters Variations Computation

Absolute gradient

GrMean, GrVariance,
GrSkewness, GrKurtosis,

GrNonZeros, and percentage of
pixels with nonzero gradient

5 - 4 bits/pixel

Histogram Mean, Variance, Skewness,
Kurtosis, and Perc.01–99% 5 - -

Run Length Matrix
RLNonUni, GLevNonU,
LngREmph, ShrtREmp,

and Fraction
20 4 directions 6 bits/pixel

Co-occurrence Matrix

AngScMom, Contrast, Correlat,
SumOfSqs, InvDfMom,
SumAverg, SumVarnc,

SumEntrp, Entropy, DifVarnc,
and DifEntrp

220 4 directions
6 bits/pixel;

5 between-pixels
distances

Auto-regressive Model Teta 1–4 andSigma 5 - -
Wavelet transformation WavEn 20 4 frequency bands 5 scales

Mean—histogram’s mean; Variance—histogram’s variance; Skewness—histogram’s skewness; Kurtosis—histogram’s kurtosis; Perc.01–
99%—1–99% percentile; GrMean—absolute gradient mean; GrVariance—absolute gradient variance; GrSkewness—absolute gradient
skewness; GrKurtosis—absolute gradient kurtosis; GrNonZeros; RLNonUni—run-length nonuniformity; GLevNonU—grey level nonunifor-
mity; LngREmph—long-run emphasis; ShrtREmp—short-run emphasis; Fraction—fraction of image in runs; AngScMom—angular second
moment; Contrast—contrast; Correlat—correlation; SumOfSqs—sum of squares; InvDfMom—inverse difference moment; SumAverg—sum
average; SumVarnc—sum variance; SumEntrp—sum entropy; Entropy—entropy; DifVarnc—difference variance; DifEntrp—difference
entropy; Teta 1–4—parameters θ1–θ4; Sigma—parameter σ; WavEn—wavelet energy.

2.4.3. Feature Selection

To assess the texture differences between the breast tumors and BPEs comprised in
the training group, three feature reduction techniques were applied. These techniques
ensured the selection of the most discriminative parameters based on Fisher coefficients,
mutual information (MI), and the probability of classification error and average correlation
coefficients (POE + ACC). Each of the three techniques provided a set of ten features.

Afterward, the parameters highlighted by the three methods underwent common
statistical analysis tests. The Mann–Whitney U test was used to compare the absolute values
recorded by the parameters between the two groups. The statistical significance level was
set at a p-value of bellow 0.00172 after Bonferroni correction (which implied dividing the
standard 0.05 value to 29 variables; 26 were represented by the unique parameters provided
by the reduction methods, one corresponding to the patients’ age, and two represented the
compared histopathological entity groups).

2.4.4. Class Prediction

To demonstrate which of the texture features that previously showed statistically
significant results following the Mann–Whitney U test were independent predictors of
malignancy, a multivariate analysis was conducted.

This analysis was build using the “enter” input model, and then the variance inflation
factor (VIF) was computed. As a high VIF value is an indicator of multicollinearity, features



Diagnostics 2021, 11, 1248 6 of 12

that recorded a VIF of ≥104 were excluded from further analysis. The prediction values
were saved and integrated into a receiver operating characteristics (ROC) analysis to
further investigate its capability in detecting malignancies. The ROC analysis was also
used to determine the diagnostic power of the texture parameters that were independently
associated with malignant lesions. The area under the curve (AUC) along with sensitivity
and specificity were calculated with 95% confidence intervals (CIs). Optimal cut-off values
were established using an optimization step that maximized the Youden index (J) for
predicting patients with malignancies. Sensitivity (Se) and specificity (Sp) were calculated
from the same data, without further adjustments.

The parameters demonstrated to be independent predictors for breast malignancy
were exported into the B11 program (part of MaZda package). Within the B11 program,
the ability of those parameters to detect malignant lesions was further evaluated by the use
of classifiers. A k-nearest neighbor classifier (k-NN) was trained on the initial groups of
patients and the model was tested using the validation group.

The classifier’s ability to distinguish between the malignant breast lesions and BPE
was shown by quantifying its Se (true positive rate), Sp (true negative rate), and accuracy
(Acc, percentage of correct classified lesions) with 95% CI.

3. Results

Of the 2107 patients referred to our institution during the study period, 38 patients
with 57 lesions were selected for the study (44 + 9.32, mean age + SD). According to
their final pathological result, the patients were distributed into malignant lesions (n = 57;
44 + 9.32, mean age + SD) and BPE (n = 31, 40.8 + 5.12 mean age + SD). We included in
study 5 invasive lobular carcinomas and 52 invasive ductal carcinomas, with 9 special
types (2 mucinous and 7 cribriform types). Molecular subtypes in the training group were
in the proportion of 52.63% luminal B, 36.84% luminal A, 7.9% triple-negative, and 2.63%
HER2 positive. Molecular subtypes in the validating group were in the proportion of 60%
luminal B, 20% luminal A, and 20% triple-negative. Details of the pathological results of
training and validating groups are listed in Table 2.

Table 2. Pathological results of the patients included in the training and validating group.

Age

Pathological Results

Nottingham Hormonal Status Her2 Ki67

I II III ER+ vs.
ER−

PR+ vs.
PR− + − <14% ≥14%

Training
group

30–71
(mean 44)

11/57
(19.2%)

26/57
(46.6%)

20/57
(35.1%)

51/57
(89.4%) vs.

6/57
(10.5%)

45/57
(78.9%) vs.

12/57
(21%)

9/57
(15.7%)

48/57
(84.2%)

15/57
(26.3%)

42/57
(73.6%)

Validating
group

40–68
(mean 49.4)

1/5
(20%)

3/5
(60%)

1/5
(20%)

4/5
(80%) vs.

1/5
(20%)

2/5
(40%) vs.

3/5
(60%)

1/5
(20%)

4/5
(80%)

1/5
(20%)

4/5
(80%)

All of the patients included in the study happened to have dense breast tissue (31.58%
were ACR type D and 68.42% ACR type C).

After applying the reduction methods, the 10th percentile (Perc 10) and one variation
of the sum average parameter (CH5D6SumAverg) were selected by both the Fisher and
MI techniques. Another variation of the sum average parameter (CH1D6SumAverg) was
selected by both the POE + ACC and MI methods. In total, 26 unique texture parameters
were highlighted by the two selection methods (Table 3).
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Table 3. The parameters selected by the reduction techniques univariate analysis (Mann–Whitney U test) results following
the comparison between the two groups. Bold values are statistically significant.

Parameter p-Value
M-W

Malignant Lesions BPE

Median IQR Median IQR

Fisher
CZ5D6SumAverg <0.0001 53.82 43.43–68.16 41.74 36.56–45.22
CN5D6SumAverg <0.0001 53.72 43.5–68.12 41.85 36.59–45.14
CZ4D6SumAverg <0.0001 53.68 43.38–68.08 41.7 36.53–45.16

Perc10 <0.0001 75 59.5–94.75 58 48.5–63
CN4D6SumAverg <0.0001 53.6 43.43–68.04 41.79 36.55–45.09
CV5D6SumAverg <0.0001 53.55 43.39–68.03 41.75 36.5–45.09
CH5D6SumAverg <0.0001 53.61 43.36–68.04 41.67 36.53–45.17
CZ3D6SumAverg <0.0001 53.49 43.31–67.98 41.66 36.49–45.09
CV4D6SumAverg <0.0001 53.44 43.34–67.96 41.71 36.48–45.04
CN3D6SumAverg <0.0001 53.46 43.36–67.96 41.73 36.51–45.02

POE + ACC
Kurtosis 0.0007 −0.1448 −0.3243 to −0.02027 −0.003272 −0.06681 to 0.1240

RHD6ShrtREmp 0.1916 0.915 0.9092 to 0.9195 0.9114 0.9089 to 0.9179
Skewness 0.0007 0.006708 −0.1117 to 0.1364 0.09351 0.03894 to 0.2256

CZ5D6Correlat 0.0047 0.5239 0.3777 to 0.7047 0.4212 0.2712 to 0.5196
ATeta3 0.0563 0.3143 0.3075 to 0.3308 0.3081 0.3000 to 0.3212

CN4D6Correlat 0.0009 0.5855 0.3871 to 0.7316 0.4671 0.2817 to 0.5469
GD4Kurtosis 0.3432 0.295 0.2392 to 0.3738 0.2973 0.2242 to 0.3229

Perc01 0.0001 51 43.75–67 40 30.5000 to 47.0000
RVD6ShrtREmp 0.5851 0.9151 0.9105 to 0.9199 0.9138 0.9077 to 0.9192

CH1D6SumAverg <0.0001 53.08 43.16–67.73 41.57 36.4–44.84
Mutual Information

CZ2D6DifEntrp 0.0829 1.02 1–1.04 0.9988 0.98–1.03
WavEnLL_s-1 <0.0001 11,307.18 7250.37–18,682.45 6814.86 5219.29–7871.86
WavEnLL_s-2 <0.0001 11,213.75 7112.81–18,445.7 6724.37 5125.37–7693.77

CH2D6SumAverg <0.0001 53.17 43.21–67.81 41.59 36.43–44.94
CH3D6SumAverg <0.0001 53.32 43.27–67.89 41.62 36.47–45.03
CH4D6SumAverg <0.0001 53.46 43.32–67.97 41.64 36.5–45.1
CN1D6SumAverg <0.0001 53.09 43.19–67.77 41.61 36.41–44.86

IQR—interquartile range; POE + ACC, the probability of classification error and average correlation coefficients.

Twenty-one unique features showed statistically significant results in the univariate
analysis and were further integrated into the multiple regression analysis. Eleven features
were excluded from the model for exceeding the VIF > 104 value (ten variations of the
different variance and one of the wavelet energy parameter). The multivariate analysis
showed a significant level of p = 0.0001, an R2 coefficient of determination of 0.3015, an
adjusted R2 of 0.2404, and a multiple correlation coefficient of 0.5491. One parameter was
identified as an independent predictor for breast malignancies (WavEnLL_s_2) (Table 4).
The prediction model was build based on the predicted values expressed by the seven
parameters that exhibited the lowest VIF (CH1D6SumAverg, CN4D6Correlat, Kurtosis,
Perc01, Perc10, Skewness, and WavEnLL_s_2). The ROC analysis results are displayed in
Table 5 and Figure 3. The comparison between the ROC curves provided by the indepen-
dent predictor (WaveEnLL_s_2) and the entire prediction model did not show statistically
significant results (p = 0.0943).

The k-NN training and testing results based on the parameter WavEnLL_s_2 are
displayed in Table 6.
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Table 4. Multivariate analysis results showing the parameters independently associated with the
presence of malignant lesions. Bold values are statistically significant (p < 0.05). VIF—variance
inflation factor.

Parameter Coefficient Standard Error p-Value VIF

CH1D6SumAverg 0.017 0.041 0.67 250.56
CN4D6Correlat 0.308 0.552 0.578 5.887

Kurtosis −0.307 0.2337 0.192 2.565
Perc01 −0.018 0.021 0.387 71.517
Perc10 0.03 0.035 0.3847 364.574

Skewness −0.366 0.386 0.346 4.708
WavEnLL_s_2 <−0.001 <0.001 0.035 49.354

Table 5. The receiver operating characteristic analysis results of the prediction model and the one texture parameter
independently associated with breast malignancies. The numbers in the brackets are the values corresponding to 95%
confidential interval. J—Youden index; Se—sensitivity; Sp—specificity.

Parameter AUC Sign.lvl. J Cut-Off Se (%) Sp (%)

WavEnLL_s_2 0.771 (0.67–0.854) <0.0001 0.5229 >8082.88 68.42 (54.8–80.1) 83.87 (66.3–94.5)
Prediction model 0.824 (0.728–0.897) <0.0001 0.5433 >0.55 73.68 (60.3–84.5) 80.65 (62.5–92.5)Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 13 
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prediction model.

Table 6. The k-NN training and testing results.

Misclassified Lesions
Accuracy (%) Se (%) Sp (%)

Total Cancer BPE

Training group 33/88 (37.5%) 16/57 (28%) 17/31 (54.8%) 62.50
(51.53–72.6)

71.93
(58.46–83.03)

45.16
(27.32–63.97)

Validation group 8/19 (42.1%) 4/10 (40%) 5/9 (55.5%) 52.63
(28.86–75.55)

60
(26.24–87.84)

44.44
(13.70–78.8)
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4. Discussion

Our results showed that one parameter (WavEnLL_s_2) was independently associated
with the presence of breast malignancies. Wavelet transformation is a multiresolution
technique for transforming images into representations that include both spatial and
frequency detail [13]. This transformation allows for the quantification of an image’s
frequency data, which is proportional to the image’s gray-level variations. In the first step
of this process, images are scaled up five times in both horizontal and vertical directions.
Secondly, high and low pass filters are applied to separate the image data. Thirdly, the
image is subdivided into four parts, each corresponding to different frequency components.
The result is a five-scaled image by sub bands, with four frequency encodings on each
scale. The wavelet energy feature can be calculated from each sub band, and it quantifies
the variations in pixel intensity within an image [14]. We obtained higher values of
WavEnLL_s_2 and the prediction model for tumors than for BPEs (median: 11,213.75 versus
6724.37). A possible explanation may be the internal heterogeneity of tumors that depends
on both internal angiogenesis and histopathology. Breast tumors with positive ER have
a lower proliferation rate, while tumors with negative ER, a high histological grade, and
HER2 positive status have a higher proliferation rate and have areas of necrosis and
fibrosis that can be visualized on dynamic contrast-enhanced MRI (DCE MRI) and contrast-
enhanced ultrasound (CEUS) as an inhomogeneous appearance because of perfusion
defects or even rim enhancement in cases with central necrosis [15]. These characteristics
are qualitative, subjective assessments and sometimes too discreet to be perceived by the
human eye, so that radiomics analysis offers the possibility to extract imaging features
representative of the phenotype and genotype of tumors.

Marino et al. [16,17] found in their radiomics studies that DCE MRI and CESM features
were able to distinguish breast cancers invasiveness, hormone receptor status, and tumor
grade with great accuracy.

La Forgia et al. [18] concluded that radiomics analysis of CESM images can distinguish
HER2 positive and triple-negative breast cancers. Wang et al. [19] found that CESM-
derived radiomics nomogram may predict the response to NAC. Braman et al. [20] showed
that radiomic features extracted from intratumoral and peritumoral regions on contrast-
enhanced MRI can predict the pCR to NAC with areas under the ROC curve ranging from
0.83 to 0.93.

There are studies in the literature that evaluated the role of radiomics in evaluat-
ing CESM and DCE-MRI images in the context of mild, moderate, and marked BPE.
Fanizzi et al. [21] concluded that radiomics is able to differentiate at CESM benign and
malignant lesions with a high performance (sensitivity of 87.5% and specificity 91.7%) even
in the context of moderate and marked BPE. Losurdo et al. [22] found in their preliminary
experimental evaluation that radiomics is also able to detect breast lesions at DCE-MRI,
especially in patients with a mild or moderate degree of BPE, with an accuracy of over 75%.

The classifier distinguished between malignant breast lesions and BPE with a higher
Se for the training group compared with the validating group. Misclassified breast tumors
from the training group were in a proportion of 28.07% compared with 40% from the
validating group. We did not find an explanation for this aspect as the histology was
comparable in both groups. In the training group, 93.75% of misclassified cancers were
ER+, 81.25% PR+, and 100% HER2 negative, and 75% had a low histological grade (I and II).
In the validating group, 100% of misclassified cancers were ER+, 60% PR+, and 100% HER2
negative, and 80% had a low histological grade (I and II). However, in the study, we did
not take into account the entire tumor biology (tumor cellularity, areas of hyaline stroma,
tumor-infiltrating mononuclear lymphoid cells, areas of necrosis, and microcalcifications)
that might influence this parameter. Another aspect to consider in future studies is whether,
by including HER2-positive breast cancers, tumors with a high histological grade (III) or
with negative ER, the WavEnLL_s_2 parameter could distinguish them from BPE with
greater accuracy. Furthermore, the misclassified lesions were mainly luminal B subtype
(68.75% in the training group and 60% in the validating group). The luminal B subtype has
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a stronger biological proliferative capacity and can take more pixels, so the pixels seem to
be more uniform and could be misclassified as BPE. Wang et al. [23] found DCE MRI texture
analysis parameters capable to distinguish between luminal A and luminal B subtypes.
AUC for kurtosis, heterogeneity, and entropy were 0.832, 0.859, and 0.891, respectively.
Inhomogeneity and entropy that reflect the randomness and average information on the
histogram were lower in the luminal B subtype compared with luminal A, which reinforces
the idea that luminal B subtype tumors are more homogeneous and can be confused
with BPE.

The role of radiomic analysis in personalized breast cancer diagnosis and treatment
response monitoring was evaluated in several studies. Some of them [24,25] suggested
associations between radiomic characterizations of BPE at MRI and breast cancer risk.
Others concluded that including surrounding BPE within the peritumoral region can result
in improved diagnostic and predictive performance [20,26–28]. Mazurowski et al. [26]
found an increased ratio of tumor to BPE in luminal B compared with other subtypes. We
did not focus only on the luminal B subtype, but a detailed analysis of the relationship
between the imaging features and this subtype could be considered in further studies.

In addition, Dilorenzo et al. [29] observed that mild BPE was significant more prevalent
in luminal B subtype. In our study, however, although we included only moderate and
marked BPE, the most common histological subtype was also luminal B.

Wu et al. [30] found from the background parenchyma texture analysis of 60 women
diagnosed with invasive breast cancer that radiomic features characterizing BPE hetero-
geneity were associated with relapse-free survival (RFS). Furthermore, the tumor necrosis
signaling factor was found to be associated with the radiomic features, suggesting that
heterogeneous BPE was associated with tumor necrosis and poor survival.

An interesting aspect is that the 14 excluded patients due to minimal or mild BPE
had dense breasts (ACR type C or D), and 33% of these patients were under 40 years. In
this study we did not take into account pre- or post-menopausal status, menstrual cycle
timing, contraceptive treatment, or hormone replacement therapy. Regarding misclassified
BPE, the mean age of patients in the training group was 40.35 years and in the validating
group 50.5 years. In the validating group, there were no patients under 40 years with
misclassified BPE, while in the training group 58.83% of the women were under 40 years
old. An interesting idea arising from this study is that BPE at CESM might represent active
breast tissue with a proliferative potential, which could be confused with tumors with
homogeneous features in radiomic analysis.

We acknowledge that our study has some limitations. It is a single institution retro-
spective study. The sample size is very small, limiting accurate analysis. Some histological
and molecular subtypes are too poorly represented. Hormone-responsive or low-graded
tumors were more easily mis-classified, probably due to their activity and neoangiogenesis.
The radiologist who reviewed the images and was aware of the final diagnosis was not
involved in the stages of textural and statistical analysis. It was essential to our study to
ensure that we considered only histologically proven malignant lesions, because patients
with multiple tumors were included. Multiple malignant breast lesions and multiple BPE
were analyzed from the same patients, but we partially counteracted the effect of clustered
data because we reduced the threshold of statistical significance. Menstrual status, con-
traceptive treatment, and hormone replacement therapy were not mentioned in all of the
medical documents, and therefore for uniformity, we decided to exclude it.

5. Conclusions

The results of our study suggest that radiomic analysis has the potential to differentiate
CESM between malignant lesions and BPE. Further quantitative insight into parenchy-
mal enhancement patterns should be performed in order to facilitate the role of BPE in
personalized clinical decision-making and risk assessment.
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