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Abstract: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide.
The beta-catenin gene, CTNNB1, is among the most frequently mutated in HCC tissues. However,
mutational analysis of HCC tumors is hampered by the difficulty of obtaining tissue samples using
traditional biopsy. Here, we explored the feasibility of detecting tumor-derived CTNNB1 mutations
in cell-free DNA (cfDNA) extracted from the urine of HCC patients. Using a short amplicon qPCR
assay targeting HCC mutational hotspot CTNNB1 codons 32–37 (exon 3), we detected CTNNB1
mutations in 25% (18/73) of HCC tissues and 24% (15/62) of pre-operative HCC urine samples in
two independent cohorts. Among the CTNNB1-mutation-positive patients with available matched
pre- and post-operative urine (n = 13), nine showed apparent elimination (n = 7) or severalfold
reduction (n = 2) of the mutation in urine following tumor resection. Four of the seven patients
with no detectable mutations in postoperative urine remained recurrence-free within five years
after surgery. In contrast, all six patients with mutation-positive in post-operative urine recurred,
including the two with reduced mutation levels. This is the first report of association between the
presence of CTNNB1 mutations in pre- and post-operative urine cfDNA and HCC recurrence with
implications for minimum residual disease detection.
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1. Introduction

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related deaths
worldwide. The presence of HCC tumor-derived mutations in urine cell-free DNA (cfDNA)
can serve as a non-invasive biomarker for disease detection and precision management [1,2].
Ample evidence exists that the Wnt/beta-catenin pathway plays a pivotal role in HCC de-
velopment [3,4]. In particular, numerous mutations in the beta-catenin gene, CTNNB1, have
been associated with HCC [5,6]. Patients with mutations in CTNNB1 and other Wnt/beta-
catenin pathway genes typically show reduced responses to both kinase inhibitors [7] and
immunotherapy [8]. Somatic CTNNB1 variants have therefore been proposed as potential
markers for HCC detection [9] and therapeutic response monitoring [10–13]. Noninvasive
detection of CTNNB1 variants in urine would greatly facilitate the development of a test
for detection of minimum residual disease after treatment and for monitoring primary and
recurrence HCC.

The annual HCC recurrence rate after surgery exceeds 10% and reaches 80% after
five years [14–16]. Previous studies have shown that early recurrence of HCC is asso-
ciated with low survival [17,18]. Thus, it is critical to identify patients at high risk of
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recurrence as early as possible. At present, no specific biochemical or genetic markers
for HCC recurrence are in clinical use, with most postoperative patients monitored using
serum alpha-fetoprotein (AFP) measurements and imaging tests such as computed tomog-
raphy and MRI. Early detection of tumor-derived CTNNB1 mutations in urine cfDNA
requires an assay, not only with high sensitivity, but with short amplicon size, as we have
demonstrated previously [19]. In this study, a short amplicon (53 bp) qPCR assay targeting
HCC-associated hotspot CTNNB1 exon 3 mutations in codon 32–37 was used for mutation
detection in urine cfDNA from patients with HCC and to investigate the feasibility of
using urine DNA markers as a prognostic marker for HCC recurrence and for detecting
minimum residual disease after treatment. Our results demonstrate that the presence of
detectable CTNNB1 mutations in both pre- and post-operative urine could be an indication
of the presence of minimum residual disease and poor prognosis.

2. Materials and Methods
2.1. Construction of CTNNB1 S37C Plasmid

The CTNNB1 exon 3 region (NCBI Genbank no. AY463360; nt 27,007–27,219) was am-
plified from Hep3B cell genomic DNA by PCR (forward primer: 5′-CTGATTTGATGGAGTT
GG-3′; reverse primer: 5′-CTGATTTGATGGAGTTGG-3′), end-polished, and blunt-end-
ligated into the vector using the Agilent PCR-Script Amp(+) Cloning kit (Agilent Technolo-
gies, Santa Clara, CA, USA). Site-directed mutagenesis was performed using forward (5′-
CTGGAATCCATTGTGGTGCCACTAC-3′) and reverse (5′-GTAGTGGCACCACAATGGA
TTCCAG-3′) primers to generate the exon 3 S37C (hg19 chr3:41,266,113C>G) mutant plas-
mid, pCTNNB1-S37C. The plasmid sequence was verified by Sanger sequencing (data
not shown).

2.2. Study Subjects and Samples

All samples, tissue (cohort 1) and urine (cohort 2), used in this study were obtained
with informed consent from the National Cheng Kung University Hospital, Taiwan, in
accordance with the guidelines of the Institutional Review Board. Information pertaining
to each cohort is listed in Table 1 (cohort 1) and Table 2 (cohort 2). Note, cohort 1 and cohort
2 are two independent study populations. HCC is characterized by AJCC (TNM) staging
and pathological grade 1 for well differentiated, grade 2 for moderate differentiated, grade
3 for poor differentiated, and grade 4 for undifferentiated as noted in each table.

Table 1. Clinicopathological characteristics of the cohort 1 tissue DNA * analyzed in this study.

Diagnosis Hepatitis
(n = 35)

Cirrhosis
(n = 35)

HCC
(n = 73)

Mean age ± SD years 54 ± 12 56 ± 14 60 ± 12

Gender
(Male:Female:Unknown) 17:18:0 23:12:0 45:20:8

Etiology
HBV 3 6 31
HCV 22 17 19

HBV/HCV 9 12 2
Other 0 0 14

Unknown 1 0 7

Stage ˆ NA NA
1 19
2 31
3 12
4 11
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Table 1. Cont.

Diagnosis Hepatitis
(n = 35)

Cirrhosis
(n = 35)

HCC
(n = 73)

Grade # NA NA
1 9
2 41
3 15

Unknown 8

Tumor size, mean ± SD, cm NA NA 5.0±3.3

AFP level, ng/mL NA NA
≤20 28
>20 37

Unknown 8
* Tissue DNA was isolated from tissue sections of the surgical resected FFPE tissue; ˆ, AJCC (TNM) staging,
#, pathological grading for differentiation; AFP, alpha-fetoprotein; HBV, hepatitis B virus; HCC, hepatocellular
carcinoma; HCV, hepatitis C virus; SD, standard deviation; NA, not applicable.

Table 2. Clinicopathological characteristics of the cohort 2 patient urine samples analyzed in this
study.

Diagnosis HCC
(n = 62)

Mean age ± SD years 59.9 ± 11.4

Gender
(Male:Female) 44:18

Etiology
HBV 30
HCV 15

HBV/HCV 1
Other 10

Unknown 6

Stage *
1 18
2 28
3 12
4 2

Unknown 2

Grade #

1 8
2 38
3 14

Unknown 2

Tumor size, mean ± SD, cm 5.26 ± 3.27

AFP level, ng/mL
≤20 38
>20 24

Unknown 0

* AJCC (TNM) staging; # pathological grading for differentiation; AFP, alpha-fetoprotein; HBV, hepatitis B virus;
HCC, hepatocellular carcinoma; HCV, hepatitis C virus; SD, standard deviation.

2.3. Tissue DNA Isolation and Quantitation

DNA from paraffin-embedded tissue sections was isolated using the MasterPure DNA
kit (Epicenter, Madison, WI, USA), according to the manufacturer’s instructions. The
concentration of liver tissue DNA was determined by a real-time PCR assay targeting the
beta-globin gene, as previously described [20].
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2.4. Urine Collection and DNA Isolation and Fractionation

Urine collection and DNA isolation were carried out as described previously [20].
Briefly, 0.5 M EDTA, pH 8.0, was added to a fresh urine sample to a final concentration of
10 mmol/L to inhibit possible nuclease activity, and the preserved sample was stored at
−70 ◦C until DNA Isolation.

To isolate total urine DNA, the frozen urine sample was thawed at room temperature
and mixed with an equal volume of 6 mol/L guanidine thiocyanate by inverting the tube
eight times. Then, 1 mL of resin (Wizard DNA purification kit; Promega, Madison, WI,
USA) was added to the urine lysate, and the sample was incubated with gentle mixing
for two hours to overnight at room temperature. The resin-DNA complex was pelleted
by centrifugation, transferred to a mini-column (provided in the kit), and washed with a
buffer provided by the manufacturer. The DNA was then eluted with Tris-EDTA buffer.
DNA less than 1 kb, designated as low molecular weight (LMW) urine DNA, was obtained
from total urine DNA using carboxylated magnetic beads (Beckman Coulter, Indianapolis,
IN) as previously described [21].

2.5. Detection of CTNNB1 Codon 32–37 Hotspot Mutations

Mutations in codons 32–37 (hg19 chr3:41,266,097-41,266,114) of exon 3 of the CTNNB1
gene were detected by the CTNNB1 32–37 mutation 53 bp qPCR assay developed by
(JBS Science, Inc., Doylestown, PA, USA) according to the manufacturer’s protocol. The
18 bp CTNNB1 BNANC[NMe] clamp was purchased from Biosynthesis, Inc. (Lewisville,
TX, USA). To evaluate assay performance, serial dilutions of pCTNNB1-S37C were used,
ranging from 1 to 10,000 copies per reaction. 1500 genome copies of wild-type (WT)
human genomic DNA (Roche Applied Science, Indianapolis, IN, USA) were used as
negative controls. Standards were prepared by spiking mutant plasmid in a background of
WT DNA.

2.6. Sanger Sequencing

Isolated tissue DNA (1 ng) was amplified in a PCR reaction using 0.5 µM primers
(forward: 5′-CTGATTTGATGGAGTTGG-3′, reverse: 5′-GAGTGAAGGACTGAGAAAA-
3′), 200 µM dNTPs, and HotStart Taq Plus polymerase (Qiagen, Valencia, CA, USA) in
PCR buffer. The thermocycling program was as follows: 95 ◦C for 5 min to activate the
polymerase, then 40 cycles at 95 ◦C for 30 s, 54 ◦C for 30 s, and 72 ◦C for 30 s, followed by a
final extension at 72 ◦C for 4 min.

For sequencing of PCR products generated in the presence of the BNANC[NMe]
clamp, tissue DNA (2 ng) was amplified in a PCR reaction using the primers contained in
the CTNNB1 32–37 mutation qPCR assay along with the CTNNB1 BNANC[NMe] clamp.
To increase the size of the amplified PCR product so that it is suitable for Sanger se-
quencing, a second round of PCR was performed using oligos containing an artificial tag
sequence (forward: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′; reverse: 5′-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGTGTGCTCTTCGTGTGTGGTG-
3′). Sanger sequencing was performed in both directions (forward primer: 5′-TCGTCGGCA
GCGTC-3′; reverse primer: 5′-GTCTCGTGGGCTCGGA-3′). All PCR products were puri-
fied using the Zymo DNA Cleanup and Concentration Kit (Zymo Research, Irvine, CA,
USA) according to the manufacturer’s instructions, and sent to the NAPCore Facility
(CHOP, Philadelphia, PA, USA) for sequencing.

3. Results
3.1. Detection of CTNNB1 Hotspot Mutations in HCC and Non-HCC Tissues

Literature analysis revealed that approximately 90% of CTNNB1 mutations in HCC
occur in two hotspot regions, codons 32–37 and 41–45, accounting for 55% and 34% of all
CTNNB1 mutations in HCC, respectively, as detailed in Supplemental Table 1 and summa-
rized in Figure 1. A short amplicon (53 bp) qPCR assay targeting the major hotspot region,
encompassed by codons 32–37 was chosen for mutation detection in urine cfDNA. We
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first determined the sensitivity of the assay by using varying amounts of pCTNNB1-S37C
plasmid, as detailed in Materials and Methods, spiked into a background of 1000 copies of
sonicated WT human genomic DNA containing no mutations in the CTNNB1 target region.
The assay contained a sensitivity of 0.3% variant allele frequency (VAF) for CTNNB1 codon
32–37 mutations and a linearity range of 3–104 copies of mutated DNA (Supplemental
Figure S1).
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Figure 1. CTNNB1 exon 3 mutational frequency in HCC. Data from several studies that sequenced
CTNNB1 exon 3 in patients with HCC were compiled (see Supplemental Table S1). In nearly 90% of
all HCC tumors with a mutation in CTNNB1, the mutation resides within one of two hotspot regions:
region 1 (codons 32–37; 54.6%) and region 2 (codons 41–45; 34.3%). The X-axis denotes the codon
number and amino acid encoded by it. The box linked to an amino acid lists the reported missense
mutations within the codon and the corresponding amino acid changes.

Next, we determined the accuracy of CTNNB1 32–37 qPCR assay by detecting muta-
tions in liver tissue DNA from patients with hepatitis (n = 35), cirrhosis (n = 35), or HCC
(n = 73) and validating by Sanger sequencing. Sociodemographic and clinicopathological
characteristics of these patients are presented in Table 1. Of the 73 HCC samples tested,
24.6% (n = 18) contained a detectable mutation (Figure 2A), consistent with the reported
detection rate of 20–25% [22,23]. HCC-adjacent tissues from the 18 CTNNB1-mutation-
positive patients contained no detectable mutations, suggesting that the CTNNB1 mutations
detected in the tumor tissues were somatic rather than germline. None of the hepatitis or
cirrhosis samples tested contained a detectable mutation at a limit of detection (LOD) of
10 copies/3 ng DNA. Thus, the CTNNB1 32–37 hotspot mutation rate was significantly
higher in HCC than non-HCC liver tissue (p < 0.001, Chi-square test).
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Figure 2. Analysis of CTNNB1 mutations in tissue samples from patients with different liver diseases.
(A) CTNNB1 hotspot mutant allele frequencies obtained by the CTNNB1 32–37 mutation qPCR assay
in liver tissues of patients with HCC, hepatitis, or cirrhosis. In the HCC subset (n = 73), 18 patients
tested positive, while all of the hepatitis (n = 35) and cirrhosis (n = 35) samples tested negative.
***, p < 0.001. (B) Validation of the CTNNB1 32–37 mutation qPCR assay by Sanger sequencing.
Five samples identified as positive by the qPCR assay with mutation frequencies of >15% were
evaluated by Sanger sequencing. Of these five samples, three had detectable CTNNB1 mutations.
When Sanger sequencing was repeated after enrichment for the mutation using the BNANC[NMe] in
the PCR amplification reaction, CTNNB1 mutations in the other two samples were also confirmed. The
right panel shows Sanger sequencing chromatograms with and without BNANC[NMe] enrichment.
The mutation position is shaded in gray.

By PCR-Sanger sequencing analysis in 5 HCC tissue samples with >15% CTNNB1
32–37 VAF, the CTNNB1 mutations were verified in 3 of the 5 samples, A10K, A48K,
and A38K (Figure 2B). To increase the sensitivity of the method, we re-sequenced the
samples with the BNANC[NMe] clamp (see Materials and Methods) included in the PCR
amplification before sequencing. This approach confirmed the mutations in the remaining
two samples, A64K and A65K (Figure 2C). We then randomly selected 23 HCC tissues
negative for CTNNB1 mutation for PCR-Sanger sequencing analysis. All 23 were found to
contain only WT sequences in the region analyzed (Supplemental Figure S2).

3.2. Detection of CTNNB1 Hotspot Mutations in Urine of HCC Patients

Upon validation of the CTNNB1 32–37 qPCR assay for detection of hotspot mutations
in tissue DNA, we screened for CTNNB1 32–37 mutations in urine cfDNA of HCC patients.
We screened a total of 62 HCC urine samples from a second, independent cohort (Table 2)
by the CTNNB1 assay and detected mutations in 24.1% (n = 15) of the patients. For 13 of
these 15 patients, urine samples collected both before and after surgical resection of the
tumor were available. Urine had been collected a day prior to surgery and then again at
a follow-up visit (Table 3). Seven of the patients whose urine DNA contained CTNNB1
mutations before surgery showed no detectable mutations after surgery. Among them was
patient U13, who had the highest mutant copy number before surgery, indicating that the
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CTNNB1 mutation detected in this patient’s preoperative urine was likely derived from
the resected tumor. However, the other six patients remained positive for the CTNNB1
mutation after surgery. Analysis of clinical follow-up records revealed that all 6 of these
patients developed HCC recurrence within five years post-resection. One of these patients,
U3, was diagnosed with lung metastasis slightly less than a year after surgery. Only four
patients (31%, 4/13) were negative for recurrence at five years, and all four were also
negative for CTNNB1 hotspot mutations in postoperative urine. The overall sensitivity and
specificity of the post-resection assay as a predictor of recurrence in this group of patients
were 0.67 and 1.00, respectively.

Table 3. Detection of CTNNB1 hotspot mutations in urine of HCC patients before and after tumor resection.

Sample ID Serum AFP
(ng/mL)

Tumor CTNNB1 32–37 Mutation
(Copies per mL of Urine) # Urine Collection

Post-Tumor
Resection (Months)

Recurrence ˆ

Stage * Grade # Size (cm) Before
Resection

After
Resection Detected Months

Post-Resection

U1 6.9 1 G2 1.9 2–20 ND 10 No NA
U2 5.0 1 G2 3.5 2–20 29 3 Yes 26

U3 19.1 2 G3 14.5 2–20 881 3 Lung
metastasis 13

U4 1.8 3A G2 8.0 2–20 23 2 Yes 51
U5 11.7 2 G3 4.4 2–20 2–20 2 Yes 21
U6 6.5 3A G2 3.5 21 ND 2 No NA
U7 NT 2 G2 1.5 24 ND 10 Yes 21
U8 3.8 1 G2 1.5 29 ND 2 No NA
U9 6101.0 2 G2 3.0 39 ND 1 Yes 4

U10 4.0 1 G1 2.0 42 ND 3 No NA
U11 <1.5 3C G3 6.0 101 34 2 Yes 7
U12 NT 1 G2 4.0 142 26 1 Yes 47
U13 4.3 3A G3 5.0 498 ND 1 Yes 57

ˆ Recurrence was monitored for five years after surgery and detected by CT scan or MRI; * AJCC (TNM) staging; # pathological grading for
differentiation; NT, not tested; ND, not detected; NA, not applicable; # average of two experiments.

4. Discussion

Using a short-amplicon qPCR assay, we demonstrated for the first time, the detection
of CTNNB1 mutations in urine of HCC patients, and the prognostic utility of mutated
CTNNB1 in postoperative urine for HCC patients whose urine contained such mutations
before surgery. Together, our findings, consistent with our previous reports [19,20,24,25]
show that urine can serve as a source of tumor-derived cfDNA for noninvasive mutation
detection in patients with HCC. In our patient cohorts, we detected CTNNB1 mutations in
tissue (25%) and urine (24%) samples at frequencies consistent with previous estimates of
CTNNB1 mutation frequency in HCC [26–30].

Compared with blood and tissue, the use of urine for detecting HCC mutations holds
three major advantages: (1) urine is easy to collect in large volumes, (2) its collection does
not require trained clinical personnel, and (3) the procedure is entirely noninvasive and can
be repeated as frequently as necessary. However, compared with plasma cfDNA, urinary
cfDNA is even more fragmented [31]. To overcome this, short-amplicon (<60 bp) PCR-based
assays are needed for detection of specific mutations in highly fragmented cfDNA [19,20,32].
The ability to detect CTNNB1 hotspot mutations in urine of HCC patients undergoing
curative surgery may also contribute substantially to HCC precision medicine. CTNNB1
has recently emerged as a potential biomarker to identify immunotherapy responders
and non-responders [8,33]. The utility of detecting CTNNB1 mutations in HCC therapy
guidance remains to be evaluated.

Our study has several limitations. The number of HCC patients positive for CTNNB1
mutations before resection for whom a postoperative urine sample was also available was
small (n = 13). Nevertheless, six of these patients were shown to retain detectable levels
of CTNNB1 mutations after surgery, and all 6 developed HCC recurrence. However, 3 of
the 7 patients negative for CTNNB1 mutations in postoperative urine did recur within
5 years. These observations may indicate that even higher sensitivity is needed to detect
the low postoperative levels of CTNNB1 mutations in some HCC patients. Alternatively,
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new tumors may arise independently of the original malignancy, a frequently reported
complication in patients with HCC [34,35]. Another limitation is that the assay does not
distinguish among different mutations in the target region. It is therefore possible that
some of the patients shown to be positive after surgery had a different variant prior to it.
The possibility of the assay detecting some mutations adjacent to the codon 32–37 region
also cannot be ruled out.

Taken together, our results (1) demonstrate the feasibility of detection of HCC-derived
mutations in the CTNNB1 gene in urine cfDNA, (2) provide evidence of association between
the presence of CTNNB1 mutations in urine and the presence of minimum residual disease
or HCC recurrence, and (3) warrant a further study for the application of urinary CTNNB1
mutation analysis in HCC precision medicine/disease management. Larger, multi-center
studies of the correlation between CTNNB1 mutations in urine cfDNA and HCC tumor
status are needed to evaluate the potential clinical utility of urinary CTNNB1 mutation
detection in liver cancer management and precision medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11081475/s1, Table S1. Frequency of CTNNB1 mutation in exon 3, Figure S1.
Amplification curves of spiked-in standards and controls in the BNANC[NMe] clamp-mediated
CTNNB1 32–37 mutation qPCR assay, Figure S2. DNA sequencing of HCC tissue samples negative
for CTNNB1 mutation.
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