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Abstract: Hip dysplasia (HD) is a frequent cause of hip pain in skeletally mature patients and may
lead to osteoarthritis (OA). An accurate and early diagnosis may postpone, reduce or even prevent
the onset of OA and ultimately hip arthroplasty at a young age. The overall aim of this study was to
assess the reliability of an algorithm, designed to read pelvic anterior-posterior (AP) radiographs
and to estimate the agreement between the algorithm and human readers for measuring (i) lateral
center edge angle of Wiberg (LCEA) and (ii) Acetabular index angle (AIA). The algorithm was based
on deep-learning models developed using a modified U-net architecture and ResNet 34. The newly
developed algorithm was found to be highly reliable when identifying the anatomical landmarks used
for measuring LCEA and AIA in pelvic radiographs, thus offering highly consistent measurement
outputs. The study showed that manual identification of the same landmarks made by five specialist
readers were subject to variance and the level of agreement between the algorithm and human
readers was consequently poor with mean measured differences from 0.37 to 9.56◦ for right LCEA
measurements. The algorithm displayed the highest agreement with the senior orthopedic surgeon.
With further development, the algorithm may be a good alternative to humans when screening
for HD.

Keywords: machine learning; X-ray; radiology; hip dysplasia; radiography

1. Introduction

Joint deformity as seen in the presence of hip dysplasia is a common cause of hip pain
in young skeletally mature patients and may lead to osteoarthritis (OA) [1]. Traditionally,
first line modality when diagnosing dysplasia of the hip is radiographs, where measure-
ments taken from a standardized anterior-posterior (AP) pelvic radiograph are used to
evaluate the anatomical configuration of the pelvis. The lateral center edge angle of Wiberg
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(LCEA) describes femoral head coverage by the acetabulum and the acetabular index angle
(AIA) quantifies the inclination of the acetabular roof [2].

An accurate and early diagnosis may postpone, reduce or even prevent the onset of
OA and ultimately hip arthroplasty at a young age [3]. It was previously reported, though,
that patients with non-specific hip pain may be left with symptoms for years before the
correct diagnosis of hip dysplasia is made, perhaps because the anatomical deformities
indicative of hip dysplasia are not routinely reported in all departments of radiology. They
found that the correct diagnosis of hip dysplasia was delayed with up to several years
(range: 0–204 months) and more than three confrontations (range: 0–11) with the healthcare
system [4,5]. The anatomical deformities associated with hip dysplasia may be diagnosed
earlier by using artificial intelligence models and algorithms, possibly as a screening tool,
which may also have the potential to improve reader variability and workflow.

The process of developing and testing an algorithm for measuring LCEA and AIA
has recently been published and results indicated that an automatic measurement model
is feasible [6]. Moreover, Fraiwan and colleagues showed the potential of deep transfer
learning for detecting developmental dysplasia of the hip in pelvic radiographs of in-
fants [7]. It has also been suggested that AI is useful for detection and classification of
hip dysplasia using ultrasound images [8]. Clinical tests of algorithms for measuring hip
parameters such as LCEA and AIA in skeletally mature patients are to the best of the
authors’ knowledge limited.

The overall purpose of this study was, in a clinical setting, to assess the performance
of an algorithm designed to read pelvic AP radiographs of skeletally mature patients. We
aimed to assess reliability of the algorithm and agreement between the algorithm and,
respectively, orthopedic surgeons, radiologists and a reporting radiographer for measuring
LCEA and AIA.

2. Materials and Methods
2.1. Study Design

In this retrospective study, we used an algorithm trained to identify several specific
segments related to hip dysplasia. The algorithm was applied to 78 pelvic radiographs that
were consecutively collected from one center. Moreover, two orthopedic surgeons, two
radiologists and one reporting radiographer evaluated all images in regard to LCEA, AIA,
and the width of both obturator foramen. The study was approved by the Danish National
Committee on Health Research Ethics (Project-ID: 2103745) and registered with the regional
health authorities (project-ID: 21/22036). The analyses were carried out in concordance
with current Guidelines for Reporting Reliability and Agreement Studies [9,10].

2.2. Study Population

Anterior-posterior pelvic radiographs of adults referred to diagnostic workup in
relation to non-traumatic hip pain at Odense University Hospital were retrospectively iden-
tified and collected in a consecutive manner until the desired sample of 78 was achieved
(Section 2.6. Statistical analyses). Inclusion criteria were weight-bearing pelvic radiographs
of adults (≥18 years). All weight-bearing pelvic radiographs are taken with the legs in-
ternally rotated 15◦. Exclusion criteria were the presence of arthroplasty or other types of
surgical hardware, signs of congenital abnormalities, surgical or fracture sequela. Radio-
graphs that did not include the entirety of the bony pelvis and the proximal femurs were
excluded, as were radiographs that did not show the exposure value. Stratified enrolment
by sex and age was applied, such that a similar number of males and females above and
below the age of 50 years was present in the sample. Ninety-eight pelvic radiographs were
screened consecutively, and inclusion were made according to inclusion and exclusion
criteria until the desired sample of 78 pelvic radiographs were obtained (Figure 1). The
78 pelvic radiographs were analyzed by the algorithm and read by all human readers.
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Figure 1. Flow-chart describing the screening process according to inclusion/exclusion criteria. In
total, 98 pelvic radiographs were screened until the desired sample of 78 radiographs was achieved.

2.3. Anatomic Definitions

All measurements were made in relation to a horizontal reference line adjoining the
most inferior points of the ischial tuberosities. The LCEA was defined as the angle between
two lines both drawn from the center of the femoral head (CFH), a line perpendicular to the
reference line and a line from the CFH to the lateral sourcil of the acetabulum, respectively.
The AIA was defined as the angle between a horizontal line from the medial sourcil (medial
aspect of the sclerotic acetabular roof) parallel to the reference line and a line connecting the
medial and lateral sourcils [11]. Moreover, the foramen obturator index (FOI), an indicator
of pelvis rotation, was calculated as the ratio between the widths of the two foramina. The
widths of the foramina was measured at the widest point of the foramina, parallel to the
reference line (Figure 2) [12].
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head (stabled blue lines), respectively, a vertical line perpendicular to the reference line and a line
connecting the center of the femoral head to the lateral sourcil of the acetabulum. The acetabular
index angle is the angle between the horizontal reference line and a line (solid blue line) connecting
the medial and lateral sourcils of the acetabulum. The foramen width is the length of a line across the
widest part of the obturator foramen (Yellow lines) parallel to the horizontal reference line.

2.4. Algorithm Development and Training

Automatic measurements were extracted from the pelvic radiographs using a newly
developed algorithm (RBhip™, Radiobotics, Copenhagen, Denmark). The algorithm was
developed using deep-learning and computer vision and trained on more than 2900 pelvic
radiographs. The pelvis, including the acetabulum, and the femoral head and neck were
independently segmented using a segmentation model with a modified U-Net architecture
trained using augmentation with ResNet34 as a backbone [13].

The horizontal reference was established as a line through the most inferior points
on the ischial tuberosities. For the LCEA, the circle best encompassing the femoral head
was found through a parameterization of a circle fitted to points along the femoral head
contour using least squares. The sourcils in both hips were independently segmented to
provide the landmarks of the lateral and medial extent of the weight-bearing area. The
sourcil segmentation model was trained primarily using annotations from an orthopedic
surgeon and optimized to find the lateral extent of the acetabular roof. This point does not
necessarily coincide with the lateral acetabular rim [14,15]. For the FOI, the width of each
foramina was calculated at 13 equidistant lines parallel to the horizontal reference line. The
FOI was established as the maximum width for the right foramina relative to the maximum
width of the left foramina. The algorithm flowchart is depicted in Figure 3.
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2.5. Data Collection
2.5.1. Human Readers

Five readers, two senior and three junior readers, all accustomed to reading and
measuring angles and distances related to hip deformities made all the measurements
blinded to each other’s results. No clinical information was available to the readers. The
senior readers were a musculoskeletal (MSK) radiologist (LB) and a consultant hip surgeon
(CV), with 21 and 8 years of experience, respectively. Moreover, a junior MSK radiologist
(JR), a junior hip surgeon (MHH) and a reporting radiographer (LBO) (respectively, 3, 5
and 12 years of experience) made all the measurements. To minimize systematic bias, a
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protocol with definitions of measurements was distributed to each participant prior to
the measurement session (Figure 2). In keeping with daily clinical practice, the readers
made all measurements digitally in a picture archiving and communication system (GE
Healthcare, IL, USA) and recorded the measurements in a database, REDCap (Research
Electronic Data Capture). Five of the radiographs were reported three times by all human
readers. Additionally, the exposure index was collected as indirect indication of digital
image quality, i.e., noise [16].

2.5.2. Algorithm

The algorithm was running as a Software as a service within the hospital firewall.
Images were processed by forwarding the AP radiographs directly from the Picture Archiv-
ing and Communication System to a secure Digital Imaging and Communications in
Medicine destination. The results were returned as a JavaScript Object Notation file and
uploaded electronically to the REDCap database. To assess consistency of the algorithm, all
radiographs were read twice approximately two weeks apart.

2.6. Statistical Analyses

Mean, standard deviation (SD), and range were calculated for all measurements with
scatterplots visualizing bivariate associations. Differences between first and second read
by the algorithm were presented descriptively by mean, SD, min, max, first (Q1), and
third quartile (Q3). Agreement between the algorithm and individual human readers were
estimated and illustrated by Bland-Altman (BA) plots with limits of agreement (LoA), bias,
and respective 95% confidence intervals (CI). Assuming normality of data, the LoA are
estimates of the range within which 95% of all differences between algorithm and human
readers will fall. The bias is the mean measured difference between algorithm and human
reader [17,18].

Linear mixed effect models were used to assess factors influencing variance in human
data by estimating the repeatability coefficient (RC). The RC is a limit below which an
estimated 95% of differences between two measurements is expected to fall. Age, sex, FOI,
and noise were treated as fixed factors. Patient, reader, and repeated measurements were
considered random effects. We derived RCs for (a) Repeatability; the closeness of repeated
measurements of the same patient made under similar conditions by the same reader
(intrarater variability analysis), and (b) Reproducibility; the closeness of measurements
of the same patient made by readers of varying experience in the same measurement
setup (interrater variability analysis). The RCs were calculated as 2.77 times the estimated
within-subject SD as derived from the mixed effect model [19].

Sample size was calculated based on the procedure proposed by Lu et al. (2016) for
sample size assessment of the Bland-Altman method [17,20]. Assuming an SD of 2.1◦ and
a clinical acceptable agreement limit of 5◦ (LCEA), a sample size of 176 was required to
show a similar agreement between algorithm and human readers, with a power of 80% at a
significance level of 5%. Since measurements were carried out on both hips and repeated
three times on five patients (2 × 5 additional measurements), the required number of
patients was 78.

p-values < 0.05 were considered statistically significant. The Stata version 16 (Stata-
Corp. 2019, College Station, TX, USA) was used for all statistical analyses.

3. Results

The algorithm was not able to read seven of the 78 included images. Therefore, 71
radiographs were read by the algorithm, resulting in a sample with an average age of 50.1
years [range; 18 to 91] consisting of 36 females and 35 males for agreement analyses. All
78 radiographs were reported by the human readers and included in repeatability and
reproducibility estimates.
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The algorithm proved highly consistent when double reading all measurements,
displaying variances between first and second read that were identical or within the
range of machine precision (Table 1). Values for all parameters showed a tendency to
be higher when measured by humans, particularly the LCEA measurements. The LCEA
(right hip) for humans ranged from 25.8 to 35.0◦ versus 25.4◦ when measured by the
algorithm. Corresponding values for AIA (right hip) ranged from 4.1 to 6.7◦ for humans
versus 4.7◦ when measured by the algorithm (Table 2). Scatterplots visually depict human
measurements over algorithm measurements (Figure 4).

Table 1. First read by algorithm (mean, SD, range, 1st and 3rd percentiles) and differences (Diff)
between 1st and 2nd algorithm read. (n = 71).

Mean
(SD)

Mean
(SD) Diff Range [min; ma×] Range Diff

[min; ma×] Q1 Q1
Diff Q3 Q3

Diff

LCEARight 25.43 (6.96) 3.97 × 10−14 (4.9 × 10−14) [2.77; 38.65] [0; 0] 21.10 0 31.16 9.95 × 10−14

LCEALeft 25.91 (7.51) 4.78 × 10−14 (5.03 × 10−14) [10.03; 42.16] [0; 1.03 × 10−12] 20.84 0 31.33 9.95 × 10−14

AIARight 4.69 (5.67) 4.8 × 10−15 (1.72 × 10−14) [−7.22; 20.03] [−1.02 × 10−14;
9.95 × 10−14] 0.23 0 8.29 9.77 × 10−15

AIALeft 4.03 (5.40) 8.14 × 10−15 (2.58 × 10−14) [−6.06; 15.55] [−1.02 × 10−14;
−9.95 × 10−14] −0.23 0 8.11 8.88 × 10−14

SD; Standard deviation, Diff; difference between 1st and 2nd read, min, minimum, max; maximum, Q1; 1st
percentile, Q3; 3rd percentile, LCEA; lateral center edge angle, AIA; acetabular index angle.

Table 2. Mean measurements of LCEA and AIA including SD and range for all readers and Algorithm
(A) (n = 71).

LCEA (SD) [Range] AIA (SD) [Range]
Right Left Right Left

O1 29.5 (7.0) [7 to 43] 31.2 (7.8) [11 to 48] 6.7 (5.9) [−7 to 28] 5.0 (6.6) [−10 to 22]
O2 31.4 (7.4) [11 to 48] 31.4 (7.8) [17 to 49] 6.4 (5.8) [−5 to 29] 6.0 (6.1) [−7 to 23]
O3 25.8 (6.6) [4 to 43] 29.5 (6.6) [13 to 43] 6.4 (5.5) [−4 to 23] 5.6 (5.3) [−7 to 20]
O4 33.6 (7.8) [13 to 48] 34.7 (8.1) [14 to 54] 4.1 (5.5) [−9 to 17] 4.5 (6.0) [−8 to 20]
O5 35.0 (9.0) [14 to 59] 36.0 (8.9) [13 to 60] 6.3 (6.6) [−6 to 29] 3.6 (7.0) [−14 to 20]
A 25.4 (7.0) [3 to 39] 25.9 (7.5) [10 to 42] 4.7 (5.7) [−7 to 20] 4.0 (5.4) [−6 to 16]

LCEA; Lateral center edge angle, AIA; Acetabular index angle, SD; standard deviation, O1; reporting radiog-
rapher, O2; Orthopedic surgeon < 5 years of experience, O3; Orthopedic surgeon > 5 years of experience, O4;
Radiologist < 5 years of experience, O5; Radiologist > 5 years of experience.

Using the BA LoA analyses, the bias estimate between human readers and algorithm
for bilateral LCEA was statistically different from 0, apart from the right LCEA measure-
ments made by the experienced orthopedic surgeon. Mean measured difference between
human readers and the algorithm for the right LCEA ranged from 0.37◦ (95% CI: −0.61 to
1.36) to 9.56◦ (95% CI: 8.14 to 10.97), for the experienced orthopedic surgeon and the experi-
enced radiologist, respectively. The corresponding values for left LCEA were 3.56◦ (95%
CI: 2.41 to 4.74) and 10.01◦ (95% CI: 8.37 to 11.82). Bias for AIA measurements displayed a
tendency to center around the zero line for all readers ranging from −0.17◦ (left) to 2.06◦

(right) as measured by the junior radiologist and the reporting radiographer, respectively
(Figures 5 and 6). Bland-Altman inter-observer agreement between the algorithm and
individual human readers, including the LoA and 95% CI, are presented for LCEA and
AIA in Tables 3 and 4.

For the mixed effects model, measurements from all 78 cases and the five human
readers were included. For LCEA right, the mixed effect model revealed that patient, reader,
and repeated measurement variance were 39.46, 11.88, and 7.44, respectively, indicating
the between-patient variance to be the prevailing contributor to variance in data. The
RC for a repeated measurement of the same patient by the same human reader was 11.69
(2.77 times

√
17.80), where the RC increased to 15.09 (2.77 times

√
(17.80 + 11.88)) when

the same measurement was made on the same patient but by a different human reader. As
expected, the between-patient variance was dominant across all measurements. The RCs
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(same patient, same reader) for AIA was 8.28 and 8.22◦ for right and left hip, respectively.
Corresponding RCs for same patient, different reader increased slightly to 8.85 and 8.52◦.
In Table 5, the estimated variances derived from the mixed effect model including 95% CI
are shown. In Table 6, the estimated RCs for between and within reader measurements
are presented.
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LCEA; Lateral center edge angle, AIA; Acetabular index angle. Scatter plots in the top row line
(LCEA) depict a tendency that human readers measure the LCEA at a higher value than the algorithm,
although the senior orthopedic surgeon agree the most with the algorithm (green dots seen in close
proximity to the red identity line).

Table 3. Lateral center edge angle. Bland Altman limits of agreement and bias (mean and SD).
Agreement between algorithm and individual human readers. (n = 71).

Bias
Mean (SD)

Bias
95% CI

Limits of
Agreement

Lower Limit of
Agreement

95% CI

Upper Limit of
Agreement

95% CI

LCEAright O1 4.13 (3.62) 3.28 to 4.99 −2.95 to 11.22 −4.43 to −1.99 10.25 to 12.69
O2 5.93 (5.12) 4.72 to 7.15 −4.10 to 15.97 −6.19 to −2.73 14.60 to 18.05
O3 0.37 (4.16) −0.61 to 1.36 −7.79 to 8.53 −9.48 to −6.67 7.42 to 10.23
O4 8.15 (4.14) 7.17 to 9.13 0.02 to 16.27 −1.66 to 1.13 15.16 to 17.96
O5 9.56 (5.98) 8.14 to 10.97 −2.16 to 21.27 −4.59 to −0.56 19.67 to 23.70

LCEAleft O1 5.29 (3.91) 4.37 to 6.22 −2.37 to 12.95 −3.96 to −1.32 11.90 to 14.54
O2 5.53 (5.04) 4.34 to 6.73 −4.36 to 15.42 −6.41 to −3.01 14.07 to 17.47
O3 3.56 (4.87) 2.41 to 4.74 −5.99 to 13.10 −7.97 to −4.68 11.80 to 15.09
O4 8.76 (4.70) 7.65 to 9.87 −0.45 to 17.96 −2.36 to 0.81 16.70 to 19.87
O5 10.01 (7.29) 8.37 to 11.82 −4.19 to 24.38 −7.16 to −2.24 22.43 to 27.35

LCEA; Lateral center edge angle, SD; Standard deviation, CI; confidence interval, O1; Reporting Radiographer
> 5 years of experience, O2; Orthopedic surgeon < 5 years of experience, O3; Orthopedic surgeon > 5 years of
experience, O4; Radiologist < 5 years of experience, O5; Radiologist > 5 years of experience.
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confidence intervals.



Diagnostics 2022, 12, 2597 9 of 13Diagnostics 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. Bland-Altman plots with Limits of Agreement and respective 95% CI depicting agreement 
between human readers and algorithm for acetabular index angle. Differences between measure-
ments are plotted against the mean of the measurements. Solid black lines depict upper and lower 
limits of agreement. Shaded blue areas depict the 95% confidence intervals. Dotted black lines are 
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Figure 6. Bland-Altman plots with Limits of Agreement and respective 95% CI depicting agreement
between human readers and algorithm for acetabular index angle. Differences between measurements
are plotted against the mean of the measurements. Solid black lines depict upper and lower limits of
agreement. Shaded blue areas depict the 95% confidence intervals. Dotted black lines are the mean
measured differences with the shaded green areas illustrating the 95% confidence intervals.
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Table 4. Acetabular index angle. Bland Altman limits of agreement and bias (mean and SD).
Agreement between algorithm and individual human readers. (n = 71).

Bias
Mean (SD)

Bias
95% CI

Limits of
Agreement

Lower Limit of
Agreement

95% CI

Upper Limit of
Agreement

95% CI

AIAright O1 2.06 (3.57) 1.21 to 2.90 −4.94 to 9.05 −6.39 to −3.98 8.10 to 10.50
O2 1.69 (3.48) 0.87 to 2.51 −5.13 to 8.51 −6.55 to −4.20 7.58 to 9.93
O3 1.70 (3.48) 0.88 to 2.53 −5.11 to 8.53 −6.54 to −4.19 7.59 to 9.94
O4 −0.58 (3.12) −1.32 to 0.16 −6.69 to 5.5 −7.96 to −5.86 4.70 to 6.80
O5 1.62 (3.19) 0.86 to 2.37 −4.63 to 7.87 −5.93 to −3.78 7.02 to 9.17

AIAleft O1 0.35 (5.29) −0.90 to 1.60 −10.01 to 10.72 −12.17 to −8.60 9.30 to 12.87
O2 1.28 (5.44) −0.01 to 2.57 −9.37 to 11.93 −11.58 to −7.92 10.48 to 14.15
O3 0.93 (4.22) −0.07 to 1.93 −7.34 to 9.19 −9.05 to −6.21 8.06 to 10.91
O4 −0.17 (4.21) −1.17 to 0.83 −8.42 to 8.08 −10.13 to −7.29 6.95 to 9.79
O5 −1.09 (5.22) −2.32 to 0.15 −11.32 to 9.15 −13.45 to −9.92 7.75 to 11.28

AIA, Acetabular index angle, SD Standard deviation, CI confidence interval, O1 Reporting Radiographer > 5 years
of experience, O2 Orthopedic surgeon < 5 years of experience, O3 Orthopedic surgeon > 5 years of experience, O4

Radiologist < 5 years of experience, O5 Radiologist > 5 years of experience.

Table 5. Estimated variances derived from the linear effects model. Five human readers, LCEA and
AIA. (n = 78).

Component Estimate 95 % CI p-Value

LCEARight

Constant 26.03 19.25 to 32.82 <0.0001
Patient variance 39.46 27.80 to 56.01
Reader variance 11.88 2.9 to 48.62

Repeated measure
variance 7.44 0.87 to 63.49

Residual variance 17.80 15.36 to 20.62
LCEALeft

Constant 28.55 21.70 to 35.39 <0.0001
Patient variance 46.32 32.77 to 65.49
Reader variance 7.73 1.86 to 32.14

Repeated measure
variance 7.16 0.82 to 62.39

Residual variance 19.08 16.47 to 22.10
AIARight

Constant 4.84 0.66 to 9.02 0.023
Patient variance 25.36 17.97 to 35.79
Reader variance 1.27 0.29 to 5.70

Repeated measure
variance 1.25 N/A

Residual variance 8.93 7.71 to 10.34
AIALeft

Constant 3.27 −1.40 to 7.93 0.170
Patient variance 33.39 23.82 to 46.82
Reader variance 0.65 0.13 to 3.23

Repeated measure
variance 4.89 N/A

Residual variance 8.80 7.60 to 10.20
Residual variance 111.37 96.18 to 128.97

LCEA; Lateral center edge angle, AIA; Acetabular index angle, SD; standard deviation, N/A; Not available.

Table 6. Estimated repeatability coefficients for between and within reader measurements based on
the linear effects model. Five human readers, LCEA and AIA. (n = 78).

Repeatability Coefficient
Same Patient, Same Reader Same Patient, Different Reader

LCEARight 11.69 15.09
LCEALeft 12.10 14.34
AIARight 8.28 8.85
AIALeft 8.22 8.52

LCEA; Lateral center edge angle, AIA; Acetabular index angle.
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4. Discussion

To the best of our knowledge, this is the first study presenting an algorithm that
assesses hip dysplasia in adults in a clinical setting. Radiographic evaluation of the pelvis
is commonly the first-line approach in patients suspicious of hip dysplasia, where a set of
measurements are used to describe anatomy of the pelvis. Several of those measurements
are, however, associated with reader variability [11].

We evaluated an algorithm that provided highly consistent measurements of LCEA
and AIA. Agreements between algorithm and human readers were associated with subjec-
tive variability. Our data showed that particularly for LCEA measurements, the human
readers appeared to obtain higher values than the algorithm. If this holds true, the al-
gorithm will identify more people with potential dysplasia based on the LCEA than the
human readers. This finding correlates with previous studies reporting that hip dysplasia
may be underdiagnosed radiologically and that an accurate diagnosis of hip dysplasia
can be delayed, at times, for several years and following more contacts to the healthcare
system [4,5,21]. Perhaps reader variance combined with a systematic overestimation of
particularly the LCEA may, in part, explain why hip dysplasia is under-diagnosed. As a
technical note, the algorithm, including identification of the extent of the lateral sourcil,
was trained based on annotations made primarily by an orthopedic surgeon, which could
explain the higher correlation between the senior surgeon and the algorithm found in the
current study. This, however, seems to be a suitable fit considering it is the surgeon that
ultimately decides whether an operation is required.

An inherent limitation in the current study is the lack of a ground truth against which
the algorithm and human measurements can be compared. Establishing a ground truth is,
however, a common challenge in radiographic measurements. The proposed algorithm
in the current study was consistent but accuracy remains to be proven. However, the bias
between the algorithm and the five human readers were noted to be similar to the between-
reader variability estimated by the mixed effects model. High measurement variability
between human readers has previously been reported in regard to radiographic measure-
ments used to assess hip dysplasia. Although the human readers in the current study were
presented with a protocol defining the measurements, the repeatability coefficient was high
from a clinical perspective, i.e., ranging from 12 to 15◦ for LCEA measurements. Perhaps a
consensus meeting with all human readers, prior to the measuring sessions, could have
clarified definition of landmarks further; particularly, the extent of the lateral sourcil may
have affected inter-observer variance. Moreover, the human readers electronically drew
and manually positioned a best-fit circle for the femoral head in the PACS which is also
an inherent limitation that may have contributed to inconsistency in LCEA measurements.
Although the BA LoA for the right LCEA was narrow for reader 3, no other systematic
differences in measurement variability were uncovered. Hence, educational background or
experience cannot explain the variation in data.

In conclusion, the newly developed algorithm based on deep learning offered consis-
tent measurement outputs for LCEA and AIA when reading pelvic radiographs. Manual
identification of the same landmarks made by five human readers were subject to variance,
and the level of agreement between the algorithm and human readers was consequently
poor, although a tendency was revealed that the senior orthopedic surgeon agreed the most
with the algorithm, particularly for LCEA right measurements.

Clinical Implication

We predict this algorithm as a promising tool in the future with the potential to im-
prove measurement consistency. Potentially, with further development, this algorithm can
act as a screening tool within departments of radiology and orthopedic surgery, minimizing
delayed diagnosis by identifying abnormal findings on pelvic radiographs suspicious of
dysplasia. Considering the vast rising bundle of medical imaging, tools to assist radiolo-
gist, physicians and reporting radiographers are needed and integrating locally validated
algorithms into clinical practice is essential.
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