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Abstract: N6-methyladenosine (m6A) modification remains the most pivotal epigenetic modifica-
tion on RNA. As we know, m6A not only affects physiological processes but is also involved in
carcinoma. Noncoding RNAs play an indispensable role in the occurrence and development of
carcinoma. However, a large amount of research is focused on mRNA currently. Insufficient research
has been done on the relationship between noncoding RNA (ncRNA) methylation and cancer. There-
fore, this review aims to introduce the theoretical knowledge of m6A modification in noncoding
RNA, discuss its function in tumorigenesis and progression, and ultimately summarize its potential
clinical applications.
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1. Introduction

The central dogma declares that DNAs are transcribed into RNAs which are translated
into proteins thereafter [1]. However, with the advent of the human gene program in
June 2000, we realized that only a few genomes of humans encode for proteins via the
transcription of mRNA. Scientists started to dig into the function and mechanism of
noncoding RNAs (ncRNAs), including micro RNAs (miRNA), small nucleolar RNAs
(snoRNAs), long noncoding RNAs (lncRNA), small nuclear RNAs (snRNAs), and circular
RNAs (circRNA) [2–4]. In contrast to mRNA, ncRNAs cannot encode proteins, although
they are involved in epigenetic modifications and gene-transcription regulation at the
RNA level [3].

The concept of N6-methyladenosine (m6A) was first reported by several revolutionary
studies in the 1970s [5,6]. The process of m6A methylates adenosine at the N6 position,
which is common in both coding and noncoding RNAs, acting as the most common process
of methylation of RNAs until now [7]. In 1997, scientists successfully cloned the first m6A
writer, methyltransferase-like protein 3 (METTL3), which methylates nearly all m6A in
mRNA [8]. In 2011, the fat mass and obesity-related protein (FTO) was identified as the
first m6A demethylase, suggesting that m6A modification is reversible and dynamic, which
injected new vitality into epigenetics [9].

Though discovered in the 1970s, the explicit mechanism of how m6A affects gene
transcription and translation was vague until the development of m6A-mapping methods
such as m6A individual-nucleotide-resolution crosslinking and immunoprecipitation (mi-
CLIP), methylated RNA immunoprecipitation sequencing (Me-RIP seq), and DNA-ligation
detection [10–12]. Due to these techniques, m6A modification on ncRNAs was proven to
engage in the etiopathology of many diseases, including cancer.

2. Regulators of m6A
2.1. m6A Writers

There are several methyltransferases related to m6A modification in both coding and
noncoding RNA. MTC, m6A methyltransferase complex, consists of methyltransferase-
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like protein 3/methyltransferase-like protein 14 heterodimer (METTL3/METTL14), Wilms
tumor 1 associated protein (WTAP), zinc finger CCCH-type containing 13 (ZC3H13), vir-
like m6A methyltransferase-associated (VIRMA), Cbl proto-oncogene like 1 (CBLL1, or
Hakai), and RNA-binding motif 15 or its homologous RBM15B (RBM15/15B) [13,14].
METTL3/METTL14 installs methyl group on adenosines in a designated sequence RRACH
(R = A or G; H = A, C, or U). METTL3 is the catalytic part of METTL3/METTL14 [15,16].
By contrast, METTL14 has no methyltransferase activity and plays the role of an allosteric
activator [15,17]. However, once combined with each other, METTL3 and METTL14 have
an increase in the efficiency of transferring a methyl group from the donor substrate S-
adenosyl methionine (SAM) to RNAs [17]. The rest of the MTC subunits perform auxiliary
functions. For instance, WTAP assists MTC in anchoring to chromatin. VIRMA mediates
m6A methylation in the 3′UTR by recruiting polyadenylation specificity factors and is
associated with selective polyadenylation. ZC3H13 bridges between RBM15/15B and
WTAP and executes its duty to help MTC locate in the nucleus [18–20].

METTL16 is another writer found in both nuclear and cytoplasm which has been
demonstrated to methylate U6 snRNA [21,22]. Notably, it is reported that METTL16 could
methylate the long noncoding RNAs (lncRNA) MALAT1 and XIST [23]. In addition to
the writers mentioned above, proteins like METTL5, TRMT112, and ZCCHC4 also play
important roles in the process of N6-methylation.

2.2. m6A Erasers

The course of m6A modification is reversible because of two demethylases, fat mass
and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). Identified as the first
RNA demethylase, FTO is a member of the FeII/α-KG-dependent dioxygenase AlkB family
and removes m6A and N6,2-O-dimethyladenosine (m6Am) in vitro and in vivo [9,24]. It
came as a milestone in the domain of epigenetics and strengthened scientists’ confidence
that m6A modification is dynamic. Consequently, ALKBH5, another eraser demethylating
m6A exclusively, was identified two years later [25]. The nucleotide recognition lid (NRL)
structure in ALKBH5 is responsible for m6A recognition and methylation catalysis [26].
Moreover, AlkB homolog 3 (ALKBH3), another member of AlkB family, is shown to increase
translation productivity via catalyzing m6A demethylation on tRNA [27]. However, albeit
the contribution to the reversible process of m6A removal, m6A erasers only exist in some
definitive tissues and certain circumstances related to emergencies or stress [28].

2.3. m6A Readers

m6A readers, groups of m6A-binding proteins which include the YT521-B homology
(YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-
like growth factor 2 mRNA-binding proteins (IGF2BPs), conduct the function of m6A in
post-transcriptional gene modification by recognizing and combining m6A on RNAs or
changing the structure of RNAs [29–35].

2.3.1. YT521-B Homology (YTH) Domain Family

The YT521-B homology (YTH) domain family, which contains YTHDC1, YTHDC2,
YTHDF1, YTHDF2 and YTHDF3, binds m6A with the YTH domain directly [29]. YTHDC1
preferentially identifies m6A on the X-inactive specific transcript (XIST) of long noncoding
RNA (lncRNA) to engage in the transcriptional silencing of the X chromosome [36]. In
mRNA, YTHDC1 facilitates exon inclusion by recruiting pre-mRNA splicing factor SRSF3
and disturbing the combination between SRSF10 and mRNA [37]. YTHDC2 is abundant
in testicular cells. Although it has been studied for many years, the full mechanism of
YTHDC2 is still unclear. Different from YTHDC1, YTHDC2 binds weakly to m6A on
RNAs [38]. YTHDF2 was the first confirmed reader. The N-terminal region of YTHDF2
interplays with the SH domain of CNOT1, a subunit of CCR4-NOT, inducing the degrada-
tion of m6A-modified RNA by recruiting CCR4-NOT deadenylase complex [30]. YTHDF3
promotes protein translation together with YTHDF1 and affects methylated mRNA degra-
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dation via YTHDF2 [31]. YTHDF1, YTHDF2, and YTHDF3 go through liquid-liquid
phase separation in vivo and in vitro. Polymethylated mRNA combines with YTHDF
proteins and functions as a carrier. Then mRNA-protein complex is segmented into var-
ious compartments, such as P-bodies and stress granules. Notably, a study found the
number and location of m6A sites on mRNA affect the composition of the complex and
liquid-liquid phase [39].

2.3.2. Heterogeneous Nuclear Ribonucleoproteins

Heterogeneous nuclear ribonucleoproteins (HNRNPs) include HNRNPC, HNRNPA2B1,
and HNRNPG. HNRNPC is an RNA-binding protein enriched in pre-mRNA processing.
The M6A-U base pair is unstable because the binding of an m6A-U base pair is weaker
than that of an A-U pair. m6A contributes to the unfolding form of lncRNA and mRNA,
therefore exposing buried binding points and increasing the accessibility of readers to m6A-
RNA. This mechanism is called “the m6A-switch” [40]. As a result, HNRNPC can be easily
bound to the RNA sites and performs its duties [34]. The m6A-switch mechanism also
facilitates the binding of the other two HNRNPs with RNA: HNRNPA2B1 and HNRNPG.
The former is an RNA-binding protein that promotes primary miRNA processing [35]
and the latter is another HNRNP that regulates the expression and the splicing process of
target mRNAs [41].

In addition to the readers mentioned above, several RNA binding proteins can also
mediate gene expressions, such as insulin-like growth factor 2 mRNA-binding proteins
1/2/3 (IGF2BP1/2/3) and Fragile X mental retardation RNA binding protein (FMRP). The
mechanism of how readers choose the binding sites on RNA is still not clear by now. Here
are three hypotheses: First, readers may choose a unique site on RNA by interplaying with
other readers to identify the intrinsic characters of RNA [42]. Secondly, the enrichment
of m6A regions denotes more opportunities for readers to encounter them. In addition,
the distinct array of RNA sequences induces the binding of readers with certain RNA
transcripts. For example, FMR1 is a typical sequence-array-based reader which could
regulate RNA translation [43]. Finally, reader proteins may gather in specific cellular
components in a heterologous way. For instance, stress granules (SGs) are RNP granules
synthesized once a cellular stress condition occurs. Being a part of the SG proteome,
YTHDF1-3 forms clusters in SG core clusters [44]. The function of regulators is summarized
in Table 1.

Table 1. A summary of writers, erasers, and readers in RNA m6A-modification.

Enzyme Location Function Ref.

Writers METTL3 nucleus and cytoplasm a catalytic subunit of METTL3/METTL14 dipolymer [28,45]

METTL14 nucleus a platform for METTL3 in the process of RNA
recognition and catalyzation [13,45]

METTL16 nucleus and cytoplasm A catalytic subunit methylating U6 snRNA, MALAT1,
and XIST [21,46]

ZC3H13 nucleus bridges between RBM15/15B and WTAP and promotes
the localization of MTC in the nucleus [20]

VIRMA nucleus recruits METTL3/METTL14/WTAP to catalyze selective
methylation on specific region of RNA [18]

WTAP nuclear speckle mediates the localization of METTL3 and METTL14 into
nuclear speckles [47]

HAKAI - stabilizes the methyltransferase complex [48]

RBM15/15B - mediates m6A formation in XIST [36]

METTL5 nucleolus and synapse an enzyme mediating 18S rRNA m6A modification [49,50]
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Table 1. Cont.

Enzyme Location Function Ref.

TRMT112 nucleus a methyltransferase activator attaching to METTL5 to
mediate m6A modification [51–53]

ZCCHC4 nucleolus an enzyme mediating 28S rRNA m6A modification [54,55]

Erasers FTO nucleus and cytoplasm demethylates m6A unspecifically [24,28]

ALKBH5 nucleus demethylates m6A via oxidation [24,28]

ALKBH3 nucleus and cytoplasm catalyzes m6A demethylation on tRNA [27]

Reader YTHDF1 cytoplasm
YTHDF1, YTHDF2, and YTHDF3 act together to induce

the degradation of mRNA

[56]

YTHDF2 cytoplasm [56]

YTHDF3 cytoplasm [56]

YTHDC1 nucleus binds to noncoding RNAs like XIST to repress
transcription [57,58]

YTHDC2 nucleus and cytoplasm promotes RNA translation; predominately mediates the
degradation of mRNA [38,59,60]

HNRNPA2B1 nucleus promotes primary miRNA processing [33,35]

HNRNPG nucleus regulates the expression and the splicing process of
objective mRNAs [41]

HNRNPC nucleus binds to flanking sequence of RNA to engage in
precursor mRNAs (pre-mRNAs) splicing [34]

IGF2BP1/2/3 nucleus and cytoplasm promotes the stability of mRNA under both normal and
stress conditions [42]

FMRP nucleus and cytoplasm stabilizes mRNA via m6A-modification [61]

3. m6A-Modification and ncRNA
3.1. m6A-Modification in miRNA

miRNAs are short ncRNAs with an average length of 22 nt. A mature miRNA derives
from a primary miRNA (pri-miRNA) which is cleaved by RNA Polymerase II (Pol II)
from DNA. Then, the pri-miRNA is processed into a precursor miRNA (pre-miRNA)
with the assistance of a microprocessor complex, consisting of Drosha, a ribonuclease III
enzyme, and DiGeorge Syndrome Critical Region 8 (DGCR8) [62,63]. The lack of METTL-3
is proven to affect miRNA biogenesis by reducing the binding between DGCR8 and pri-
miRNA [64]. As a result, the number of mature miRNAs decreases, and pri-miRNAs
without cleavage accumulate.

In further studies, METTL-3 was found to accelerate the maturation of pri-miR221/222
via interplaying with DGCR8, leading to the oncogenesis of bladder cancer [65]. In addi-
tion, METTL-3 was revealed to promote the modification of miR-181d-5p in some patients
with resistance to 5-Fluorouracil (5-FU), which was attributed to the interaction between
METTL-3 and DGCR8 [66]. Besides DGCR8, METTL-3 was reported to engage in the axis of
METTL3-miR-25-3p-PHLPP2-AKT as an outcome of smoking. Cigarette smoke condensate
(CSC) triggers the overexpression of METTL-3, which catalyzes the methylation thereafter
being decoded by an m6A reader, NF-κB associated protein (NKAP). Methylation could
affect the maturity of miR-25-3p, then prohibit PH domain leucine-rich repeat protein phos-
phatase 2 (PHLPP2), which provokes the oncogenic signaling of AKT-p70S6K and finally
causes pancreatic cancer [67]. In hepatocellular carcinoma (HCC), METTL-14 can also
interact with DGCR8. Downregulation of METTL-14 inhibits the expression of miRNA 126
(a cancer suppressor) and gives rise to the proliferation of HCC [68].

Recently, FTO was discovered to increase the expression of ADP ribosylation factors
like GTPase 5B (ARL5B) in breast cancer cells by inhibiting miR-181b-3p. MiR-181b-3p
is an miRNA that takes part in the FTO/miR-181b-3p/ARL5B axis [69]. Yes-associated
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protein (YAP) is an important transcriptional regulator controlled by m6A modification
on miRNA in cancer progression. Overexpression of ALKBH5 reduces the expression of
miR-107. However, silencing depends on Human antigen R (HuR), which can reverse this
process and decrease YAP activity by intervening in the axis of miR-107/LATS2 depending
on HuR, which indicates ALKBH5 is a suppressing factor in the oncogenesis of nonsmall-
cell lung cancer (NSCLC) [70,71].

RALY (HNRNPCL2) is newly found as an RNA-binding protein associated with
the aggressiveness of colorectal cancer (CRC). As a part of the Drosha complex, RALY
processes the maturation of a group of miRNAs, such as miR-483, miR-676, and miR-
877. Consequently, these miRNAs downregulate relative genes in the mitochondria and
contribute to the growth of CRC cells [72]. HNRNPA2B1 interacts with DGCR8 to promote
the generation of pre-miRNA [33]. In tamoxifen-resistant breast cancer cells, HNRNPA2B1
was reported to be upregulated, which led to the hypothesis that HNRNPA2B1 facilitates
endocrine resistance by affecting the expression of miRNA. A follow-up study revealed
that the overexpression of HNRNPA2/B1 reduced miR-29a-3p, miR-29b-3p, and miR-222.
On the contrary, miR-1266-5p, miR-1268a, and miR-671-3p were upregulated in MCF-7
cells [73]. The result manifests the overexpressed HNRNPA2B1 and contributes to the
reduction of certain miRNA, which leads to tamoxifen resistance in breast cancer cells.

The evidence above confirms that m6A-modification plays an important part in
miRNA in the occurrence and development of cancer. However, further studies are
still needed.

3.2. m6A-Modification in lncRNA

lncRNAs are ncRNA transcripts with at least 200 nucleotides that interact with RNA
and proteins to regulate transcription and epigenetic modifications in carcinogenesis [74].

X inactive-specific transcript (Xist) is a regulatory site located on the X chromosome
which can produce a lncRNA 15 to 17 kb in length [75]. Knockdown of METTL14 reduces
m6A modification on Xist and enhances the expression of Xist which consequently promotes
the metastasis and aggressiveness of CRC. Intriguingly, Xist methylated with m6A can be
recognized by YTHDF2, resulting in the degradation of Xist [76]. The evidence further
confirms the function of Xist is negatively correlated to METTL14 and YTHDF2. In gastric
cancer (GC) cells, THAP7-AS1 is a lncRNA which obviously upregulated compared with
normal gastric cells. METTL3-mediated m6A modifies the activation of THAP7-AS1 by SP1.
SP1 is a transcription factor that carries out the function of oncogenesis and supports the
characteristic of THAP7-AS1 in facilitating lymphatic metastasis. Notably, this process is not
only modulated by METTL3 but also with the engagement of IGF2BP1 to decipher the signal
of m6A methylation [77]. In NSCLC, ABHD11-AS1, a lncRNA, is upregulated. MeRIP-Seq
proved ABHD11-AS1 had specific methylation sites which were prone to be installed with
m6A by METTL3. As a result, METTL3 induces the upexpression of ABHD11-AS1, thus
promoting the proliferation of NSCLC tissue [78]. Another study analyzed the interaction
between LNCAROD, an oncogenic lncRNA, and METTL3/METTL14. METTL3/METTL14-
induced m6A methylation stabilized LNCAROD in head and neck squamous cell carcinoma
(HNSCC) tissue, which augmented malignant cell multiplication and invasion in vivo and
in vitro [79]. In nasopharyngeal carcinoma (NPC), WTAP fine-tuned by KAT3A-mediated
H3K27 acetylation is required to stabilize the m6A methylation of DIAPH1-AS1, a lncRNA,
and plays an essential role in the growth and metastasis of NPC [80].

As for m6A erasers, FTO is reported to demethylate m6A on LINC00022, a lipogenesis-
related lncRNA, leading to the upregulation of LINC00022 in esophageal squamous cell
carcinoma (ESCC) cells [81,82]. Though progress has been made in discovering the reg-
ulation of ESCC, the mechanism of m6A modification in lncRNA cancer susceptibility
candidate 15 (CASC15) is poorly identified. A study revealed FTO mediated the demethy-
lation process on CASC15. The absence of FTO impaired neoplastic proliferation and
prompted apoptosis of ESCC cells conducted by CASC15 [83], which demonstrated the
interaction between erasers and lncRNA in oncogenesis.
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Additionally, in pancreatic cancer, IGF2BP2 was reported to combine with LncRNA-
PACERR. LncRNA-PACERR is a stimulator of protumor macrophages to increase the
stability of KLF12 and c-myc [84] which denotes the critical role of m6A regulators in the
polarization of tissue-associated macrophages (TAMs). Of note, besides direct interplay
with m6A regulators, lncRNA can encode a peptide with 71 amino acids called RNA-
binding regulatory peptide (RBRP) to indirectly bind to IGF2BP1. Therefore, IGF2BP1
recognizes m6A on RNAs and causes tumors [85].

3.3. m6A-Modification in circRNA

circRNAs are covalently closed RNAs produced through the back-splicing of exons in
eukaryotes. Unlike linear RNAs, circRNAs are unique both in structure and biomedical
functions, such as transcription, splicing, and translation [86]. Currently, studies have
proved that m6A modification can regulate circRNAs via m6A writers, erasers, and readers
and vice versa [87–89]. There are four main aspects that m6A interacts with circRNAs:
(1) m6A regulates the biogenesis of circRNAs. In NSCLC, circIGF2BP3 is methylated with
m6A by METTL3 and circulated in a YTHDC1-dependent manner to impair the immune
response of cancer [90]. (2) m6A prompts the nuclear exportation of circRNAs. circNSUN2,
a circRNA upregulated in liver-metastatic colon cancer, can be exported from the nucleus
to cytosol with the presence of YTHDC1. Additionally, METTL3 is found to facilitate the
transfer of circNSUN2 [91]. (3) m6A modulates the translation of circRNAs. Different from
other ncRNAs, circRNAs are capable to encode proteins driven by m6A modification. The
process is mediated by YTHDF3 and enhanced by METTL3/14. M6A-driven circRNA
translation was widespread [92]. (4) m6A is associated with the degradation of circRNA. In
gefitinib-resistant cells, m6A-modified circASK1 is downregulated due to the increase of
endoribonucleolytic cleavage induced by YTHDF2 [93].

Notably, the expression and functions of m6A writers, erasers, and readers can be
influenced by circRNAs. For example, circRNA can play the role of a miRNA sponge to
regulate the expression of YTHDF1 [88]. In addition, ircZbtb20, another circRNA, recruits
ALKBH5 to demethylize the m6A on mRNA [94]. To summarize, circRNAs widely interact
with m6A in oncogenesis throughout its lifespan. The interaction between ncRNA and
their m6A regulators in oncogenesis is summarized in Table 2 and Figures 1–3.

Table 2. The relationship between ncRNA and m6A regulators in oncogenesis.

Related ncRNA Regulator Name Function Mechanism Ref.

miRNA METTL3 1. promotes
oncogenesis

1© causes bladder cancer by accelerating
maturation of pri-miR221/222 via

interplaying with DGCR8
[65]

2© causes pancreatic cancer by affecting
maturation of miR-25-3p and subsequently

prohibits PH domain leucine-rich repeat
protein phosphatase 2 (PHLPP2) which

provokes AKT-p70S6K

[67]

2. facilitates resistance
to 5-Fluorouracil (5-FU)

interacts with DGCR8 to modify
miR-181d-5p [66]

METTL14 suppresses oncogenesis reduces hepatocelluar carcinoma by
prohibiting the expression of miRNA 126 [68]

FTO

promotes the
expression of GTPase
5B (ARL5B) in breast

cancer cells

Inhibits miR-181b-3p in the
FTO/miR-181b-3p/ARL5B axis [69]
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Table 2. Cont.

Related ncRNA Regulator Name Function Mechanism Ref.

ALKBH5 suppresses oncogenesis
Reduces the expression of miR-107 in the

oncogenesis of nonsmall-cell lung
cancer (NSCLC)

[70,71]

RALY(HNRNPCL2) promotes oncogenesis
causes colorectal cancer (CRC) by

processing maturation of miR-483, miR-676,
and miR-877

[72]

HNRNPA2B1
facilitates resistance to

tamoxifen in
breast cancer

reduces the expression of miRNA [33]

lncRNA METTL3 promotes oncogenesis
1© promotes lymphatic metastasis by

activating THAP7-AS1 [77]

2© causes NSCLC by promoting the
expression of ABHD11-AS1 [78]

METTL14 suppresses oncogenesis reduces CRC by facilitating m6A
modification on Xist [76]

METTL3/METTL14 promotes oncogenesis causes nasopharyngeal carcinoma (NPC) by
stabilizing LNCAROD [79]

WTAP promotes oncogenesis
promotes growth and metastasis of NPC by

stabilizing m6A methylation of
DIAPH1-AS1

[80]

FTO promotes oncogenesis
causes the upregulation of LINC00022 in

esophageal squamous cell carcinoma
(ESCC) cells

[81–83]

IGF2BP1 promotes oncogenesis
indirectly causes tumor by recognizing m6A

on mRNA with the assistance of
lncRNA-decoded protein

[85]

IGF2BP2 promotes oncogenesis causes pancreatic cancer by combing with
LncRNA-PACERR [84]

circRNA METTL3 promotes oncogenesis
causes NSCLC by impairing immune

response of cancer via methylating
circIGF2BP3

[90]

YTHDC1 promotes oncogenesis
causes the transfer of circNSUN2 from

nucleus to cytoplasm in liver-metastatic
colon cancer

[91]

YTHDF2 facilitates resistance
to gefitinib

Induces endoribonucleolytic cleavage to
downregulate m6A-modified circASK1 [93]



Diagnostics 2022, 12, 2996 8 of 15Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 1. The interaction between miRNA and its m6A regulators. 

 

Figure 2. The interaction between lncRNA and its m6A regulators. 

Figure 1. The interaction between miRNA and its m6A regulators.

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 1. The interaction between miRNA and its m6A regulators. 

 

Figure 2. The interaction between lncRNA and its m6A regulators. 
Figure 2. The interaction between lncRNA and its m6A regulators.



Diagnostics 2022, 12, 2996 9 of 15
Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 3. The interaction between circRNA and its m6A regulators. 

4. Clinical Applications of m6A for ncRNA in Cancer 

Noncoding RNA methylation is closely associated with the occurrence and progres-

sion of cancer. However, most of the research still stays in the laboratory stage, and clinical 

applications were insufficient. This part summarizes the relevant literature regarding its 

clinical application, hoping to provide new ideas for the diagnosis and treatment of can-

cer. 

4.1. Role of ncRNA Methylation in Predicting Prognosis of Cancer 

Noncoding RNA methylation can be used as a marker to predict prognosis. For ex-

ample, overexpression of miR-25-3p caused by METTL3 indicates a poor survival of pan-

creatic cancer [67]. METTL3 increases the biogenesis of miR-143-3p, which was negatively 

correlated with the overall survival (OS) rate of lung cancer [95]. M6A may upregulate the 

expression of LNCAROD by enhancing its stability. LNCAROD increases the expression 

of pyruvate kinase isoform PKM2 to activate glycolysis in hepatocellular carcinoma cells, 

eventually elevating the malignancy of HCC. Thus, LNCAROD indicates a poor progno-

sis for HCC patients [96]. The m6A level of the long noncoding RNA NEAT1 was a pow-

erful predictor of eventual death [97]. Furthermore, METTL3 increases the stability of 

Lung Cancer Associated Transcript 3 (LCAT3). LCAT3 is known as a long noncoding 

RNA. Upregulation of LCAT3 represents the poor prognosis of lung adenocarcinoma 

(LUAD) patients [98]. In addition, Circ3823 facilitates metastasis and angiogenesis of CRC 

via the circ3823/miR-30c-5p/TCF7 axis. In CRC patients, Circ3823 indicated a worse prog-

nosis [99]. METTL3 promotes the maturation of pri-miR221/ 222 and was associated with 

poor prognosis in bladder cancer patients [65]. 

METTL-14 inhibits the expression of miRNA 126, and downregulation of METTL-14 

is an adverse prognosis factor in hepatocellular carcinoma [68]. METTL14 downregulates 

the expression of long noncoding RNA XIST depending on YTHDF2. Decreased expres-

sion of METTL14 was associated with an unfavorable prognosis for CRC patients [76]. In 

gastric cancer, lower expression of METTL14 is associated with poor prognosis. Mechan-

ically, reduced expression of METTL14 upregulated the expression of circORC5. 

Figure 3. The interaction between circRNA and its m6A regulators.

4. Clinical Applications of m6A for ncRNA in Cancer

Noncoding RNA methylation is closely associated with the occurrence and progression
of cancer. However, most of the research still stays in the laboratory stage, and clinical
applications were insufficient. This part summarizes the relevant literature regarding its
clinical application, hoping to provide new ideas for the diagnosis and treatment of cancer.

4.1. Role of ncRNA Methylation in Predicting Prognosis of Cancer

Noncoding RNA methylation can be used as a marker to predict prognosis. For
example, overexpression of miR-25-3p caused by METTL3 indicates a poor survival of pan-
creatic cancer [67]. METTL3 increases the biogenesis of miR-143-3p, which was negatively
correlated with the overall survival (OS) rate of lung cancer [95]. M6A may upregulate
the expression of LNCAROD by enhancing its stability. LNCAROD increases the expres-
sion of pyruvate kinase isoform PKM2 to activate glycolysis in hepatocellular carcinoma
cells, eventually elevating the malignancy of HCC. Thus, LNCAROD indicates a poor
prognosis for HCC patients [96]. The m6A level of the long noncoding RNA NEAT1 was
a powerful predictor of eventual death [97]. Furthermore, METTL3 increases the stability
of Lung Cancer Associated Transcript 3 (LCAT3). LCAT3 is known as a long noncoding
RNA. Upregulation of LCAT3 represents the poor prognosis of lung adenocarcinoma
(LUAD) patients [98]. In addition, Circ3823 facilitates metastasis and angiogenesis of
CRC via the circ3823/miR-30c-5p/TCF7 axis. In CRC patients, Circ3823 indicated a worse
prognosis [99]. METTL3 promotes the maturation of pri-miR221/ 222 and was associated
with poor prognosis in bladder cancer patients [65].

METTL-14 inhibits the expression of miRNA 126, and downregulation of METTL-14 is
an adverse prognosis factor in hepatocellular carcinoma [68]. METTL14 downregulates the
expression of long noncoding RNA XIST depending on YTHDF2. Decreased expression of
METTL14 was associated with an unfavorable prognosis for CRC patients [76]. In gastric
cancer, lower expression of METTL14 is associated with poor prognosis. Mechanically,
reduced expression of METTL14 upregulated the expression of circORC5. circORC5 could
sponge miR-30c-2-3p and downregulate AKT1S1 and EIF4B. Meanwhile, upregulation of
circORC5 represents poor prognosis too [100].
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The FTO/miR-181b-3p/ARL5B axis modulates the migration and invasion of breast
cancer cells. Overexpression of FTO predicts poor prognosis and advanced TNM stage
[P = 0.001] [69].

Higher expression of LINC00460 represents poor disease-free and five-year overall
survival. LINC00460 interacts with IGF2BP2 and DHX9 to enhance the stability of high-
mobility group AT-hook 1 (HMGA1) mRNA [101]. LINC00266-1 encodes RBRP which
could interact with IGF2BP1. A high level of RBRP was correlated with poor prognosis [85].
RAL Y is known as a novel m6A reader. Overexpression of RAL Y is associated with a poor
prognosis of colorectal cancer [72].

With the advancement of detection technologies, noncoding RNA can be utilized as
a reliable indicator to evaluate the prognosis of various cancer.

4.2. m6A Inhibitors as Potential Treatment and Diagnostic Target for Cancer

The complex interplay between lncRNA and cancer provides a promising idea for
a therapeutic invention for cancer. Moreover, ncRNA may become novel noninvasive
diagnosis biomarkers for early detection.

Rhein is known as the first cell-active FTO inhibitor [102] and was demonstrated
to inhibit the occurrence of breast cancer [103]. However, the selectivity of Rhein was
not optimistic [104]. Meclofenamic acid (MA) is a more specific FTO inhibitor than
ALKBH5 [105,106]. MA is able to restrict the growth and self-renewal of glioblastoma
stem cells [107]. Furthermore, MO-I-500 was found to be a selective FTO inhibitor, which re-
strains the survival and colony formation of breast cancer cells [108]. R-2-hydroxyglutarate
(R-2HG) is a metabolic product of mutant IDH1/2 which exert its function by inhibiting
the m6A demethylase activity of FTO to suppress the progression of leukemic cells [109].
Moreover, FB23-2 is also an FTO inhibitor that significantly restrains the progression of
AML cells [110].

In addition to FTO inhibitors, plenty of ALKBH5 inhibitors have been discovered.
MV1035 is one of the inhibitors of ALKBH5 which suppress the migration and aggres-
siveness of glioblastoma [111]. As an inhibitor for METTL3, STM2457 is effective in the
inhibition of AML [112–114].

Overall, m6A inhibitors offer a new direction for the treatment and diagnosis of
different cancers. However, the clinical application of these inhibitors is still insufficient.
The efficacy along with the adverse effect of these inhibitors needs further validation.

5. Conclusions

In summary, noncoding RNA methylation plays an important role in tumorigenesis
and progression. ncRNA can be used as a target for tumor diagnosis and treatment. Based
on the current progression and dilemma, we speculate that future research directions could
be focused on the following points: Firstly, there is an urgent need to explore novel m6A
regulators in-depth, especially whether there is a regulator dedicated to ncRNA. Secondly,
further investigation is needed regarding whether there is a link between ncRNA and
mRNA methylation. Further research is needed to depict the complex network constituted
by both of them in the process of carcinoma. Finally, the clinical application of ncRNA
methylation in tumors is inadequate. ncRNA with clinically value still need to be probed.
The safety and efficacy of m6A inhibitors still needs to be evaluated in the future.
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