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Abstract: In this study, we evaluated the improvement of image quality in digital breast tomosynthe-
sis under low-radiation dose conditions of pre-reconstruction processing using conditional generative
adversarial networks [cGAN (pix2pix)]. Pix2pix pre-reconstruction processing with filtered back
projection (FBP) was compared with and without multiscale bilateral filtering (MSBF) during pre-
reconstruction processing. Noise reduction and preserve contrast rates were compared using full
width at half-maximum (FWHM), contrast-to-noise ratio (CNR), peak signal-to-noise ratio (PSNR),
and structural similarity (SSIM) in the in-focus plane using a BR3D phantom at various radiation
doses [reference-dose (automatic exposure control reference dose: AECrd), 50% and 75% reduc-
tion of AECrd] and phantom thicknesses (40 mm, 50 mm, and 60 mm). The overall performance
of pix2pix pre-reconstruction processing was effective in terms of FWHM, PSNR, and SSIM. At
~50% radiation-dose reduction, FWHM yielded good results independently of the microcalcification
size used in the BR3D phantom, and good noise reduction and preserved contrast. PSNR results
showed that pix2pix pre-reconstruction processing represented the minimum in the error with refer-
ence FBP images at an approximately 50% reduction in radiation-dose. SSIM analysis indicated that
pix2pix pre-reconstruction processing yielded superior similarity when compared with and without
MSBF pre-reconstruction processing at ~50% radiation-dose reduction, with features most similar
to the reference FBP images. Thus, pix2pix pre-reconstruction processing is promising for reducing
noise with preserve contrast and radiation-dose reduction in clinical practice.

Keywords: digital breast tomosynthesis; generative adversarial networks; radiation-dose reduction;
improve image quality

1. Introduction

Digital tomosynthesis provides limited three-dimensional (3D) structural information
about body structures by combining the advantages of digital imaging [1,2] and computed
tomography. More specifically, digital breast tomosynthesis (DBT) reconstructs an entire
image volume from a sequence of projection-view mammograms acquired within a small
number of projection angles over a limited angular range to yield limited 3D structural
information. Effects from the superposition of tissues are reduced with DBT, but in many
situations, such as in dense breasts, such effects can persist. DBT decreases the camouflaging
effects of the overlapping fibroglandular breast tissues, improves the conspicuity of subtle
lesions, and could thus be used to improve the early detection of breast cancer [1,3,4].

To date, several digital mammography-based DBT systems have been developed [5–7],
and there are ongoing studies aiming to define its utility and improvements [1,8]. Wu et al.
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evaluated image quality using a conventional reconstruction algorithm (filtered back projection;
FBP [9]), statistical iterative reconstruction (IR) algorithms (maximum likelihood expectation
maximization; MLEM [3]), and simultaneous IR algorithms (the simultaneous IR technique;
SIRT [10]) and concluded that the MLEM algorithm provided a good balance between
low- and high-frequency features [3], and the exploration of various DBT reconstruction
methods have been reported [11–14]. Other researchers used a total variation–minimization
algorithm (adaptive steepest descent projection onto convex sets) [15] with a gradient-based
penalty term to enhance microcalcifications (MCs) on DBT images [16]. On the other hand,
another study quantitatively compared DBT algorithms in terms of image quality and
radiation doses [17]. In that report, IR was found to effectively decrease quantum noise
and radiation exposure; however, the evaluation in that study was limited and merely
compared existing methods (FBP vs. IR: SIRT and MLEM).

With the aim of overcoming the drawbacks of previous algorithms, a recent report
described the development of an improved processing method for iterative DBT recon-
struction (multiscale bilateral filtering; MSBF) [18] with the simultaneous algebraic recon-
struction technique algorithm [10]. Specifically, this method aimed to improve the contrast
of MCs without compromising the image qualities of masses and soft-tissue background
structures. The previous study evaluated only MCs and not masses.

Existing DBT techniques used in clinical diagnostic studies have enabled the visualiza-
tion of fine tissue structures with a shorter scan time. Nevertheless, all DBT systems are
limited by the issue of patient radiation exposure, which highlights the need to preserve
contrast in order to improve the sharpness of the image and detectability of the object.
Furthermore, radiographic images can be degraded by quantum mottle, a consequence of
spatial incident photon fluctuation. Quantum mottle is inversely associated with exposure,
and therefore, any decrease in patient dose would be restricted by the degree of quantum
mottle, even with a perfect detector. Even with a perfect detector, other factors are present,
including X-ray scatter and X-ray spectrum, number of views, and other factors, to avoid
minimizing image reconstruction and image processing, both of which are very important.
Therefore, further decreases in patient doses and improvements in detection rely on in-
novations such as a new detector type, alternative X-ray sources, and an algorithm that
improves image quality by incorporating suitable approaches.

Moreover, DBT involves the reconstruction of images limited by a low signal-to-noise
ratio due to the superposition of several low-exposure projection images. Furthermore,
this characteristic causes a concurrent loss of plane-relevant details, which reduces the
contrast of the reconstructed images. Several methods have been proposed to suppress
this irrelevant plane information and enhance the image quality of DBT [18,19]. In recon-
structed DBT images, noise further affects the visibility and detectability of subtle MCs.
To overcome this limitation, several noise-suppression techniques have been proposed
to enhance MCs [16,20,21]. However, most of the existing regularization methods for
DBT reconstruction were designed for general image applications and are driven by local
gradients [22,23].

In the accelerating evolution of deep learning, the transition from a convolutional neural
network [24] to a generative adversarial network (GAN) [25,26] has contributed to digital
tomosynthesis imaging [27–36]. Prior studies reported that GANs are particularly useful for
reducing metal artifacts [29,30] and noise [27] and are expected to contribute to improvements
in image quality processes to reduce the exposure dose. Some studies have recently reported
the usefulness of deep learning to improve image quality and reduce noise in tomosynthe-
sis [27,29]. Noise and radiation-dose reductions using deep learning for digital tomosynthesis
of the breast and metal artifact reduction are possible [27,30]. Thus, application of deep
learning can be used to improve image quality further and reduce the radiation-dose. In the
DBT imaging field, recent reports have detailed the detection of masses and the image quality
improvement process that introduces deep learning [28,31–35]. With regard to image quality
improvement processing that uses conditional GAN (cGAN, or pix2pix) [25], “pix2pix”,
which approximates the object image to the referenced image using the concept of an
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adversarial network using “generator” and “discriminator”, has been shown to be useful
for noise reduction. cGAN provides a powerful image translation framework that works well
in many areas. In addition to cGAN, cycleGAN can be considered, but it requires at least
two discriminators and generators, which complicates the structure. Therefore, cGAN can
be used as a general-purpose solution to the image-to-image translation problem. Using the
conventional approach to image processing and image reconstruction, it is difficult to accelerate
the detection of masses and preserve the normal structure with accuracy [11–16,18,37]. In
particular, as the noise associated with low dose imaging is increased, there is a tradeoff
in the acceleration of the detection of masses and preservation of normal structure (e.g.,
structural distortion, oversmoothing or sharpness, occurrence artifact, etc.). However, with
the use of pix2pix, it might be possible to overcome the problems of the conventional
method in DBT imaging.

Studies conducted to date have quantitatively compared various DBT algorithms in
terms of image quality and radiation doses [38,39]. Although those reports demonstrated
that IR could effectively decrease quantum noise and radiation exposure, the evaluations
were limited and merely compared existing methods. In a related recent report, Gao et al.
reported that denoising a deep convolutional neural network using adversarial training was
useful for improving the MCs contrast in DBT using in silico data and applied to physical
phantom images as a learning set [27]. Among the studies using deep learning, there are no
reports on the quantitative evaluation of improvements in image quality or dose reduction
of MCs and the detection of masses under various conditions with automatic exposure
control (AEC) as the referenced dose because of changes in breast thickness. In particular,
considering that pix2pix has the potential to reduce the dose and improve image quality, it
can be expected that this logic (image-to-image translation process, in which a low dose
image can be applied to the reference dose image) can be applied to DBT to improve the
acquisition of image quality deterioration under low dose.

In this paper, we report our experience using the application of pix2pix pre-reconstruction
processing (FBP reconstruction after preprocessing pix2pix) to improve image quality with
dose reduction and amend processing. Because the usefulness of preprocessing has been
reported in improving image quality using deep learning processing of tomosynthesis [27],
in this study we performed deep learning processing (pix2pix) on projection-based data.
In addition, because the purpose of this study was not to compare the reconstruction
algorithms, we used the exact solution (FBP) for evaluation. Our proposed preprocessing
pix2pix exploits both the improved detection of MCs and the preservation of normal struc-
tures to improve both spatial resolution and contrast preservation. Our proposed pix2pix
pre-reconstruction processing may overcome a previously unresolved problem associated
with conventional algorithms, namely, the improved detection of MCs and preserved con-
trast of masses, by correcting reconstruction processing with dose reduction. In addition,
we evaluate the usefulness of pix2pix pre-reconstruction processing for the purpose of
improving image quality under dose reduction. Specifically, pix2pix pre-reconstruction
processing is applied to the projection data (reference dose [automatic exposure control
reference dose: AECrd] and low dose [approximately 50% and 75% reduction of AECrd])
when the phantom thickness is changed and the reconstructed image (FBP) with physical
evaluation (spatial resolution, contrast, error, similarity).

2. Materials and Methods
2.1. DBT

This study used a DBT system (Selenia Dimensions; Hologic Inc., Bedford, MA, USA)
that consists of an X-ray tube with a 0.3 mm focal spot (tube target: W, filtration: 0.7 mm
aluminum equivalent) and a digital flat-panel amorphous selenium detector. A total
acquisition time of 3.7 s and an acquisition angle of 15◦ were set for all DBT procedures.
The projection images were sampled during a single tomographic pass (15 projections,
1280 × 2048 matrix). To produce reconstructed tomograms of the required height, we used
a 512 × 1024 matrix with 32 bits (single-precision floating number) per image.
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2.2. Phantom Specifications

The BR3D phantom (model 020; Computerized Imaging Reference Systems, Inc.,
Norfolk, VA, USA) comprises multiple heterogeneous slabs and is intended to mimic the
composition of glandular and adipose tissues and parenchymal patterns in the human
breast. The slabs are composed of epoxy resins with X-ray attenuation properties corre-
sponding to 50% glandular or 50% adipose breast tissue. In the phantom, the target slab
was surrounded by nontarget slabs (top: 30, 40, 50 mm; bottom: 10 mm).

2.3. Radiation-Dose Measurement

For each radiation-dose setup, the reference radiation-dose (AECrd = exposure con-
dition at 40-, 50-, and 60-mm thickness and predetermined tube voltage, current, and
exposure time) was set at 29 kVp 145 mA 310 ms, 31 kVp 170 mA 310 ms, and 33 kVp
200 mA 320 ms. The average glandular dose (AGD) for DBT was calculated according to
Dance et al. [40]. To measure the radiation exposure, we used a Piranha dosimeter (RTI Elec-
tronics AB, Mölndal, Sweden) to convert the established exposure condition into the AGD.
The AGD results were as follows: reference radiation-dose (AECrd), 1.36 mGy (40 mm),
1.77 mGy (50 mm), 2.35 mGy (60 mm); approximately 50% reduction of AECrd, 0.66 mGy
(40 mm), 0.74 mGy (50 mm), 1.13 mGy (60 mm); and approximately 75% reduction of
AECrd, 0.31 mGy (40 mm), 0.37 mGy (50 mm), and 0.61 mGy (60 mm).

2.4. Pix2pix

Pix2pix is a GAN that trains generators and discriminators by providing various
additional information and allowing it to be conditioned. Because of constraints on the ad-
ditional information, the generator produces certain types of output, and the discriminator
accepts only additional information that matches the real sample. The training objectives
of the discriminator and generator can be expressed mathematically as follows:

min
D
LGANc = Epld, pre f

[
log D

(
pld, pre f

)]
+Epld,z [log(1− D(pld,G(pld,z))]

(1)

min
G
LGANl1 = Epld, pre f ,z

[∥∥∥Pre f − G(pld,z)
∥∥∥

1

]
(2)

where Pld is the low dose projection domain, Pre f is the reference dose projection domain,
D is the discriminator, G is the generator, and z is the random noise vector (Gaussian noise).
The training data set included 180 projection images, and each of the corresponding images
related to the input image pair (Pld(90), Pre f (90)) were randomly selected as the training set.

The pix2pix was developed to solve the following problem:

pld
† = argmin

G
max

D
LGANc(G, D) + αmin

G
LGANl1(G). (3)

where α controls the relative importance of the two objectives LGANc and LGANl1 . In
this study, α was set to 50, the initial learning rate was set to 0.0002, and the momentum
parameters were set to β1 = 0.5, β2 = 0.999 [25].

In pix2pix, we used the Adam optimization algorithm [41] with a batch size of 1.
Appendix A (Table A1) shows the architecture of the building components.

2.5. Optimization Parameters for Epochs

The optimization epochs in the pix2pix network were evaluated based on the mean
square error (MSE) [42] and structural similarity (SSIM) [43] for the projection image
(straightforward on the detector; 0 degree). The MSE of the identified projection image can
be obtained as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[
IDBT_re f (i, j)− IDBT_low(i, j)

]2

(4)
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where IDBT_re f (i, j) is the (i, j)th entry of the reference dose projection image, and IDBT_low(i, j)
is the (i, j)th entry of the low dose projection image in each epoch.

The SSIM index between pixel values i and j was calculated as follows:

SSIM(i, j) = [Lumi(i, j)]ε · [Cont(i, j)]φ · [Stru(i, j)]η (5)

where Lumi is the luminance, Cont is the contrast, and Stru is the structure (ε = φ = η = 1.0).
The mean SSIM (MSSIM) was then used to evaluate the overall image quality as follows:

MSSIM[IDBT_re f (i, j), IDBT_low(i, j)] =
1
Q

Q

∑
r=1

SSIM(ir, jr) (6)

where ir and jr are the image contents at the rth pixel and Q is the number of pixels in
the image.

Optimization was evaluated based on the MSE and MSSIM for 40-mm phantom thick-
ness. The lowest MSE, highest MSSIM, and epochs were selected as the optimum parameters.

2.6. Evaluation of Image Quality

The DBT system-derived real projection data were used for FBP reconstruction. We
used MATLAB (MathWorks, Natick, MA, USA) to reconstruct and process all images
(custom script for MATLAB environment). For each phantom image, we calculated the
full width at half-maximum (FWHM), contrast-to-noise ratio (CNR), peak signal-to-noise
ratio (PSNR), and SSIM and in the in-focus plane to evaluate the effects of each processing
method. The target images of FWHM, CNR, PSNR, and SSIM were evaluated by selecting
different in-focus planes in the longitudinal direction. For the FWHM in the in-focus
plane (0.196, 0.23, and 0.29 mm; CaCO3), the derived spatial resolution was evaluated as a
quantitative measure of the reconstructed image quality. Subsequently, the FWHMs were
measured for selected intensity profiles intersecting the five MCs on reconstructed DBT
slices. Next, four summation neighboring (i.e., parallel and perpendicular to the X-ray
sweep direction) were arranged to obtain an intensity profile.

In addition, the contrast was derived from the CNR in the in-focus plane (3.9 and
4.7 mm ϕ; spheroidal masses [epoxy resin]) and used to quantitatively measure the recon-
structed image quality. Tomosynthesis applications frequently use the CNR to estimate
low-contrast detectability. In this study, we defined the CNR as follows:

CNR =
µFeature − µBG

σBG
(7)

where µFeature represents the mean object pixel value, µBG represents the mean background
area pixel value, and σBG represents the standard deviation of the background pixel values
(set up in four locations around the masses; up, down, left, right). Of these parameters, the
latter includes both photon statistics and electronic noise from the results, and structural
noise that might obscure the object of interest. For all regions of interest (ROIs) used to
measure the CNR, the sizes were adjusted to an internal signal (circular ROI, 3.9 mm
[diameter: 28 pixels], 4.7 mm [diameter: 40 pixels]). To assess the improvement of image
quality on each in-focus plane image, the conventional algorithms (FBP reconstruction from
the MSBF processing projections) were compared.

PSNR represents the ratio of the maximum power that a signal can take and the noise
that causes degradation, which affects the reproducibility of image quality on each in-focus
plane image. The PSNR was defined as follows:

PSNR = 10 log10

(
PV2

MSE

)
(8)
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We used a PV value of 1.0 because we assumed that the image data (single-precision
floating number) was in the range [0, 1.0]. The MSE was calculated between the reference
dose and low dose FBP images.

This study compared the performance of pix2pix pre-reconstruction processing with
that of MSBF pre-reconstruction processing. Here, the parameter settings (σd) were de-
terminants of the image quality. Except for σd, all other set values were as previously
reported [18]. In this study, the parameter σd was chosen to be 1.0 from the perspective of
contrast preservation, in accordance with a previous study (α: 0.375, wα: 5 × 5 Laplacian
filter, σr: 0.01) [18].

The impulse shape of each reconstructed image was restored using two-dimensional
image filtering, which multiplied the Fourier transform by a Ramachandran and Lakshmi-
narayanan kernel, which generally produced precise 3D reconstruction images [11].

In this study, we compared the FWHM values with and without MSBF pre-reconstruction
processing at different radiation doses between the four groups (reference dose, low dose
without MSBF pre-reconstruction processing, low dose with pix2pix pre-reconstruction
processing, and low dose with MSBF pre-reconstruction processing). The numbers of
samples in the groups were reference dose (0.19 mm: 30; 0.23 mm: 36; and 0.29 mm:
36), low dose without MSBF pre-reconstruction processing (0.19 mm: 60; 0.23 mm: 72;
and 0.29 mm: 72), low dose with pix2pix pre-reconstruction processing (0.19 mm: 60;
0.23 mm: 72; and 0.29 mm: 72), and low dose with MSBF pre-reconstruction processing
(0.19 mm: 56; 0.23 mm: 70; and 0.29 mm: 72). Statistical analyses were performed using
IBM SPSS Statistics version 21.0 for Windows (SPSS Inc., Chicago, IL, USA). Probability
(p) values < 0.05 were considered statistically significant.

3. Results
3.1. Optimization Parameters

After measuring the MSE and SSIM of each training network at different phantom
thicknesses (40, 50, and 60 mm) and radiation doses (approximately 50% and 75% reduction
of AECrd), the optimal epoch was selected at the lowest MSE and highest SSIM. Using
the results of the optimization verification, each training network image was generated by
setting 300 epochs for pix2pix, and then evaluated and compared with those of the images
obtained using the conventional approach with and without MSBF pre-reconstruction
processing (Figure 1). The training was performed on a TITAN RTX (24 GB of memory)
GPU. The total calculation time required to process pix2pix was 13.63 h (epochs 300).

3.2. Image Quality

Figures 2–4 show the reconstructed images of the B3RD phantom acquired with
pix2pix pre-reconstruction processing and each of the established methods for reconstruc-
tion with and without MSBF pre-reconstruction processing at a reduced radiation-dose
(approximately 50% and 75% reduction of AECrd) and reference radiation-dose. Re-
markably, the DBT images produced using pix2pix pre-reconstruction processing showed
reduced noise and preservation of contrast in the radiographic vertical and horizontal
direction, specifically in the peripheral regions of the MCs and masses. On the other
hand, images produced with the help of MSBF pre-reconstruction processing demon-
strated noise. Comparison of the differences between pix2pix pre-reconstruction processing
and the conventional approach with and without MSBF pre-reconstruction processing
resulted in the smallest with MSBF pre-reconstruction processing for noise reduction. With
MSBF pre-reconstruction processing showed a certain reduction in noise, but the lack of
preservation of contrast generated from around the MCs was remarkable. Without MSBF
pre-reconstruction processing, higher noise levels increased with radiation-dose reduction,
resulting in a deterioration in image quality.
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Figure 1. Optimization results for parameter (epochs) determination for pix2pix pre-reconstruction
processing at different radiation-dose levels: (a) 0.66 mGy (approximately 50% of automatic exposure
control reference dose [AECrd]), (b) 0.31 mGy (approximately 50% reduction of AECrd), (c) 0.66 mGy
(approximately 75% reduction of AECrd), and (d) 0.31 mGy (approximately 75% reduction of AECrd).
BR3D phantom thickness: 40 mm.

Figures 5–7 depict the areas of MCs in a BR3D phantom and a plot of the FWHM
results. For MCs of 0.23 mm or greater, the reference dose and pix2pix pre-reconstruction
processing (approximately 50% and 75% reduction of AECrd) showed equal average
and median characteristics, but at 0.19 mm with approximately 75% reduction of AE-
Crd, the result deteriorated at a horizontal direction of 50 mm or greater. At a pix2pix
pre-reconstruction processing of up to approximately 50% reduction of the AECrd, the
structure of the MCs was preserved regardless of the BR3D phantom thickness or MCs
size, as compared with the reference dose. A comparison between reference dose and
without MSBF pre-reconstruction processing (approximately 50% and 75% reduction of
AECrd) showed comparable mean and median characteristics at greater than 0.23 mm;
deterioration was observed at a vertical direction of all BR3D phantom thicknesses at a
vertical direction of 0.19 mm. Comparisons between the reference and with MSBF pre-
reconstruction processing (approximately 50% and 75% reduction of AECrd) deteriorated
at all BR3D phantom thicknesses and MCs sizes. In particular, the result was affected with
a size of 0.23 mm or greater. For all sizes of MCs, the differences in the FWHM, except
for pix2pix pre-reconstruction processing compared with the reference and without MSBF
pre-reconstruction processing (approximately 50% and 75% reduction of AECrd), were
not statistically significant (Tables 1–3). For MCs of all sizes, the differences in the FWHM,
except for pix2pix pre-reconstruction processing compared with MSBF pre-reconstruction
processing (approximately 50% and 75% reduction of AECrd), were statistically signifi-
cant (p < 0.05; Tables 1–3). These FWHM results showed that pix2pix pre-reconstruction
processing was preserved in areas with MCs of BR3D phantom.
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Figure 2. Comparisons between pix2pix pre-reconstruction processing and conventional multiscale
bilateral filtering (MSBF) pre-reconstruction processing with and without noise reduction (microcalci-
fications (MCs) [showing window: 0.41–0.70]; masses [3.9 mm: 0.41–0.70, 4.7 mm: 0.35–0.64]) in the
in-focus plane (BR3D phantom thickness: 40 mm). The display referring to the image contrast of the
BR3D phantom was changed for visual comparison of the signal and background gray levels. h: ap-
proximately 50% reduction of automatic exposure control reference dose (AECrd), q: approximately
75% reduction of AECrd.

Figure 3. Comparisons between pix2pix pre-reconstruction processing and conventional multiscale
bilateral filtering (MSBF) pre-reconstruction processing with and without noise reduction (microcalci-
fications (MCs) [showing window: 0.39–0.68]; masses [3.9 mm: 0.39–0.68; 4.7 mm: 0.28–0.57]) in the
in-focus plane (BR3D phantom thickness: 50 mm). The display referring to the image contrast of the
BR3D phantom was changed for visual comparison of the signal and background gray levels. h: ap-
proximately 50% reduction of automatic exposure control reference dose (AECrd); q: approximately
75% reduction of AECrd.
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Figure 4. Comparisons between pix2pix pre-reconstruction processing and the conventional multi-
scale bilateral filtering (MSBF) pre-reconstruction processing with and without noise reduction (mi-
crocalcifications (MCs) [showing window: 0.30–0.59]; masses [3.9 mm: 0.30–0.59; 4.7 mm: 0.23–0.52])
in the in-focus plane (BR3D phantom thickness; 60 mm). The display referring to the image con-
trast of the BR3D phantom was changed for visual comparison of the signal and background gray
levels. h: approximately 50% reduction of automatic exposure control reference dose (AECrd); q:
approximately 75% reduction of AECrd.

Figure 5. Comparisons of the full width at half-maximum (FWHM) determined for in-focus plane
images obtained using pix2pix pre-reconstruction processing and reference, with and without mul-
tiscale bilateral filtering (MSBF) pre-reconstruction processing, for low dose with variant phantom
thickness [microcalcifications (MCs) size: 0.19 mm]. (a) Vertical direction 40 mm; (b) vertical direction
50 mm; (c) vertical direction 60 mm; (d) horizontal direction 40 mm; (e) horizontal direction 50 mm;
and (f) horizontal direction 60 mm. h: approximately 50% reduction of automatic exposure control
reference dose (AECrd); q: approximately 75% reduction of AECrd.
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Figure 6. Comparisons of the full width at half-maximum (FWHM) determined for in-focus plane
images obtained using pix2pix pre-reconstruction processing and reference, with and without mul-
tiscale bilateral filtering (MSBF) pre-reconstruction processing, for low dose with variant phantom
thickness [microcalcifications (MCs) size: 0.23 mm]. (a) Vertical direction 40 mm; (b) vertical direction
50 mm; (c) vertical direction 60 mm; (d) horizontal direction 40 mm; (e) horizontal direction 50 mm;
and (f) horizontal direction 60 mm. h: approximately 50% reduction of automatic exposure control
reference dose (AECrd); q: approximately 75% reduction of AECrd.

Figure 7. Comparisons of the full width at half-maximum (FWHM) determined for in-focus plane
images obtained using pix2pix pre-reconstruction processing and reference, with and without mul-
tiscale bilateral filtering (MSBF) pre-reconstruction processing, for low dose with variant phantom
thickness [microcalcifications (MCs) size: 0.29 mm]. (a) Vertical direction 40 mm; (b) vertical direction
50 mm; (c) vertical direction 60 mm; (d) horizontal direction 40 mm; (e) horizontal direction 50 mm;
and (f) horizontal direction 60 mm. h: approximately 50% reduction of automatic exposure control
reference dose (AECrd); q: approximately 75% reduction of AECrd.
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Table 1. Spatial resolution of microcalcifications (MCs) performances of tomosynthesis processing
methods. (Tukey–Kramer test; p < 0.05 indicates a significant difference).

MCs: 0.196 mm

Variable Difference Standard Error p 95% CI *

Lower Limit Upper Limit

Ref vs. Without pre-reconstruction processing −0.3407 0.24671 0.513 −0.9799 0.2895
vs. MSBF −0.6529 0.24963 0.047 −1.2996 −0.0061

vs. pix2pix −0.0553 0.24671 0.996 −0.6945 0.5838
Without pre-reconstruction processing vs. Ref 0.3407 0.24671 0.513 −0.2985 0.9799

vs. MSBF −0.3122 0.20500 0.426 −0.8433 0.2190
vs. pix2pix 0.2854 0.20143 0.490 −0.2365 0.8073

MSBF vs. Ref 0.6529 0.24963 0.047 0.0061 1.2996
vs. Without pre-reconstruction processing 0.3122 0.20500 0.426 −0.2190 0.8433

vs. pix2pix 0.5975 0.20500 0.021 0.0664 1.1287
Pix2pix vs. Ref 0.0553 0.24671 0.996 −0.5838 0.6945

vs. Without pre-reconstruction processing −0.2854 0.20143 0.490 −0.8073 0.2365
vs. MSBF −0.5975 0.20500 0.021 −1.1287 −0.0664

Source of Variation df * Sums of Squares Mean Square F p
Processing 2 10.394 5.197 4.269 0.015

Dose 1 0.023 0.023 0.019 0.890
Processing × Dose 2 0.127 0.063 0.052 0.949

Error 199 242.237 1.217 - -

* CI: confidence interval, dependent variable: FWHM value. * df: degree of freedom, dependent variable:
FWHM value.

Table 2. Spatial resolution of microcalcifications (MCs) performances of tomosynthesis processing
methods. (Tukey–Kramer test; p < 0.05 indicates a significant difference).

MCs: 0.23 mm

Variable Difference Standard Error p 95% CI *

Lower Limit Upper Limit

Ref vs. Without pre-reconstruction processing 0.0363 0.16756 0.996 −0.3972 0.4697
vs. MSBF −0.6841 0.16835 0.000 −1.1197 −0.2486

vs. pix2pix −0.1218 0.16756 0.886 −0.5553 0.3116
Without pre-reconstruction processing vs. Ref −0.0363 0.16756 0.996 −0.4697 0.3972

vs. MSBF −0.7204 0.13778 0.000 −1.0768 −0.3640
vs. pix2pix −0.1581 0.13681 0.656 −0.5120 0.1959

MSBF vs. Ref 0.6841 0.16835 0.000 0.2486 1.1197
vs. Without pre-reconstruction processing 0.7204 0.13778 0.000 0.3640 1.0768

vs. pix2pix 0.5623 0.13778 0.000 0.2059 0.9188
Pix2pix vs. Ref 0.1218 0.16756 0.886 −0.3116 0.5553

vs. Without pre-reconstruction processing 0.1581 0.13681 0.656 −0.1959 0.5120
vs. MSBF −0.5623 0.13778 0.000 −0.9188 −0.2059

Source of Variation df * Sums of Squares Mean Square F p
Processing 2 20.275 10.138 15.045 0.000

Dose 1 0.275 0.275 0.409 0.523
Processing × Dose 2 0.642 0.321 0.477 0.621

Error 243 163.734 0.674 - -

* CI: confidence interval, dependent variable: FWHM value. * df: degree of freedom, dependent variable:
FWHM value.

Figures 8 and 9 show the whole image areas of the BR3D phantom and a plot of
the SSIM and PSNR results. With regard to the similarity and error of the reference
dose, pix2pix pre-reconstruction processing showed high similarity and low error under
all conditions, regardless of low dose level (approximately 50% and 75% reduction of
AECrd) and BR3D phantom thickness. Regarding PSNR, in pix2pix pre-reconstruction
processing, PSNR decreased and errors increased in parts of in-focus planes (Figure 9a)
for approximately 75% reduction of AECrd. MSBF pre-reconstruction processing showed
high similarity compared without pre-reconstruction processing, but the result was that
the error was large.



Diagnostics 2022, 12, 495 12 of 18

Table 3. Spatial resolution of microcalcifications (MCs) performances of tomosynthesis processing
methods. (Tukey–Kramer test; p < 0.05 indicates a significant difference).

MCs: 0.29 mm

Variable Difference Standard Error p 95% CI *

Lower Limit Upper Limit

Ref vs. Without pre-reconstruction processing 0.0238 0.11462 0.997 −0.2728 0.3203
vs. MSBF −0.8083 0.11462 0.000 −1.1048 −0.5118

vs. pix2pix −0.1958 0.11462 0.321 −0.4923 0.1007
Without pre-reconstruction processing vs. Ref −0.0238 0.11462 0.997 −0.3203 0.2728

vs. MSBF −0.8321 0.09359 0.000 −1.0742 −0.5900
vs. pix2pix −0.2196 0.09359 0.091 −0.4617 0.0225

MSBF vs. Ref 0.8083 0.11462 0.000 0.5118 1.1048
vs. Without pre-reconstruction processing 0.8321 0.09359 0.000 0.5900 1.0742

vs. pix2pix 0.6125 0.09359 0.000 0.3704 0.8546
Pix2pix vs. Ref 0.1958 0.11462 0.321 −0.1007 0.4923

vs. Without pre-reconstruction processing 0.2196 0.09359 0.091 −0.0225 0.4617
vs. MSBF −0.6125 0.09359 0.000 −0.8546 −0.3704

Source of Variation df * Sums of Squares Mean Square F p
Processing 2 26.778 13.389 42.460 0.000

Dose 1 0.092 0.092 0.291 0.590
Processing × Dose 2 0.028 0.014 0.044 0.957

Error 245 77.256 0.315 - -

* CI: confidence interval, dependent variable: FWHM value. * df: degree of freedom, dependent variable:
FWHM value.

Figure 8. Plots of the structural similarity (SSIM) vs. reference vs. without pre-reconstruction
processing, reference vs. with multiscale bilateral filtering (MSBF) pre-reconstruction processing,
reference vs. pix2pix pre-reconstruction processing from the in-focus plane for low dose with
variant phantom thickness. (a) In-focus plane for evaluation of 0.19- and 0.23-mm microcalcifications
(MCs); (b) in-focus plane for evaluation of 0.29-mm MCs and 3.9-mm masses; (c) in-focus plane for
evaluation of 4.7-mm mass. h: approximately 50% reduction of automatic exposure control reference
dose (AECrd); q: approximately 75% reduction of AECrd. (Tukey–Kramer test; p < 0.05 indicates a
significant difference, *: significant).
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Figure 9. Plots of the peak signal-to-noise ratio (PSNR) vs. reference vs. without pre-reconstruction
processing, reference vs. with multiscale bilateral filtering (MSBF) pre-reconstruction processing,
reference vs. pix2pix pre-reconstruction processing from the in-focus plane for low dose with
variant phantom thickness. (a) In-focus plane for evaluation of 0.19- and 0.23-mm microcalcifications
(MCs). (b) In-focus plane for evaluation of 0.29-mm MCs and 3.9-mm masses. (c) In-focus plane for
evaluation of 4.7-mm mass. h: approximately 50% reduction of automatic exposure control reference
dose (AECrd); q: approximately 75% reduction of AECrd. (Tukey–Kramer test; p < 0.05 indicates a
significant difference, *: significant).

Figure 10 depicts the placement of the ROI over an image of the BR3D phantom and a
plot of the CNR results. With regard to the contrast of masses, with MSBF pre-reconstruction
processing was the highest, followed by pix2pix pre-reconstruction processing, and without
MSBF pre-reconstruction processing showed the lowest contrast characteristics for 4.7 mm
mass. For pix2pix, the CNR was equivalent to that of reference under dose reduction
(approximately 50% and 75% reduction of AECrd).

There was no deterioration in image quality with pix2pix pre-reconstruction processing
under the low dose level (approximately 50% reduction of AECrd) conditions associated
with changes in BR3D phantom thickness in FWHM, SSIM, and MSE, except for the contrast
of masses. This result indicates that pix2pix may be useful for radiation-dose-reduction
technology without a subsequent deterioration in image quality.
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Figure 10. Plots of the contrast-to-noise ratio (CNR) vs. pre-reconstruction processing, with and
without multiscale bilateral filtering (MSBF) pre-reconstruction processing from the in-focus plane.
Comparisons of the CNR of the in-focus plane images obtained via the reference, low dose [ap-
proximately 50% and 25% of automatic exposure control reference dose (AECrd)] with and without
pre-reconstruction processing with varying phantom thicknesses. (a) 4.7 mm mass; (b) 3.9 mm mass.
The in-focus plane image shows the masses and background areas of the CNR. h: approximately
50% reduction of AECrd; q: approximately 75% reduction of AECrd. (Tukey–Kramer test; p < 0.05
indicates a significant difference, *: significant, NS: not significant).

4. Discussion

Our experimental results clearly demonstrated the ability of pix2pix pre-reconstruction
processing to improve the quality of DBT images for the low dose condition. In this study,
the in-focus plane intensities of pix2pix pre-reconstruction processing, as compared with
existing MSBF pre-reconstruction processing, improved spatial resolution, similarity, and
image error without deterioration of the MCs images with whole image. Furthermore,
pix2pix pre-reconstruction processing has the potential to reduce the radiation-dose by
approximately 50% reduction of AECrd. Thus, pix2pix pre-reconstruction processing is a
promising new option for imaging denoising, as it generated noise-reduced images and
reduced radiation doses that were far superior to those obtained from images processed
using conventional algorithms. The flexibility of pix2pix pre-reconstruction processing in
the choice of imaging parameters, which is based on the desired final images and low dose
DBT imaging conditions, promises increased usability.

The projection-space combination of adversarial training approaches described here
can be used to generate images to formulate denoising as a deep learning algorithm for
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projection completion problems, with the aim of improving the generalization and ro-
bustness of the framework. Because the direct regression of accurate projection data is
difficult [17,18], we propose incorporating the prior projection image generation procedure
and adopting a combination of adversarial networks and a projection completion strategy.
This method can improve image quality by reducing noise while preserving masses and
normal structures, which are common drawbacks of projection completion-based adversar-
ial training methods. Therefore, we believe that our adversarial training approaches could
effectively reduce noise in actual practice.

The ability of pix2pix pre-reconstruction processing to obtain denoising and contrast-
preserving images and to reduce the radiation-dose by approximately 50% reduction of
AECrd (Figures 5–9) may be due to the benefits of the first process, pix2pix. The image-
to-image translation framework of pix2pix requires fully associated images. pix2pix is
different from conventional noise reduction by reconstruction/processing, because it can
preserve the structures and reduce the noise, therefore solving this problem. pix2pix has a
generator that attempts to minimize this objective against an adversarial discriminator that
tries to maximize. The generators use a U-Net [44] structure, and the two discriminators
have a Patch-GAN-based structure [45] for learning. By applying another style to the image
during the translation process, the low dose projection image can then be applied to the
reference dose projection image.

In MSBF pre-reconstruction processing, Laplacian pyramid decomposition (LPD)
is used to achieve multiscale structure decomposition during MSBF pre-reconstruction
processing. However, this function is not unique to LPD, and other multiscale analysis
methods may be sufficient. In this regard, however, the MCs detected via MSBF pre-
reconstruction processing may not have strong directional geometric features. Therefore, a
directional multiscale analysis method, such as wavelet transform, may not be superior to
the LPD method [18].

The image artifacts from MCs leads to the appearance of noticeable objects comprising
artifact-free voxels that contrast with the background. These artifacts from MCs are a
drawback of the FBP algorithm and are conspicuous when images generated using this
method are compared with artifact-free images. Therefore, based on the results of this
study, future research should consider conducting evaluations using the IR algorithm.

There were some limitations to this phantom study. First, the materials constituting the
BR3D phantom were only simulations of the mammary gland, because actual mammary
gland tissues were not tested. Alternatively, we suppose that the consistency of the BR3D
phantom indicates that it is an accurate representation of actual mammary gland tissue.
Second, we did not perform a clinical study using human subjects. The utility of pix2pix
pre-reconstruction processing was confirmed by basic evaluation. In a future observational
study, we plan to investigate the correlation between spatial resolution and contrast. We
believe that pix2pix pre-reconstruction processing will allow for optimization of the use
of dose in future DBT imaging and radiation-dose reduction technology and improve the
accuracy of medical images. Third, the experiment was evaluated by a single vendor system.
We think that a study using a multi-vendor system is necessary. Fourth, optimization
of projection data analysis of MSE and SSIM was for the central projection only; the
performance at other angles will depend on the object’s shape. Evaluations will be relevant
to checking the sensitivity of optimization according to the projection view angle with
respect to the detector. Fifth, evaluation of the in-focus slice of the reconstruction volume
only; consideration of any out-of-plane features/artefacts is necessary. Sixth, use of the
FBP algorithm only, without optimization (kernel; Ramachandran and Lakshminarayanan).
This leaves opportunities for future work (i.e., evaluation of IR algorithms). Seventh, we
believe that the CNR evaluation of masses is limited and requires assessment using a wider
variety of sizes, shapes and margin types (e.g., smooth, spiculated) to improve accuracy. In
addition, we considered using more advanced methods such as a detectability index [27],
where the influence of anatomical noise can be included.
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5. Conclusions

This phantom study revealed that an approximately 50% reduction in radiation-
dose is feasible using our proposed pix2pix pre-reconstruction processing. The pix2pix
pre-reconstruction processing was particularly useful in reducing noise and yielded better
results equivalent to that of the reference dose, with no significant difference in the statistical
results (0.196 mm: p = 0.996; 0.23 mm: p = 0.886; 0.29 mm: p = 0.321) in terms of preserving
the structure of MCs as compared with variant phantom thickness. Thus, pix2pix shows
promise for integration into the clinical application workflow to reduce image noise while
maintaining image quality in breast tomosynthesis.
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Appendix A

Pix2pix architecture of the building components.

Table A1. Channel, Kernel, Stride, Padding, and Activation denote the configurations of the convolu-
tion layers in the blocks.

Network Block Count Channel Kernel Stride Padding Activation

Generator

encoder

1 128

4 × 4 2

same LRelu
2 256

1 LRelu + BN

3 512
4 1024
5 1024
6 1024
7 1024

decoder

1 1024

4 × 4 2 same LRelu + BN

2 1024 + 1024 #

3 1024 + 1024 #

4 1024 + 1024 #

5 512 + 512 #

6 256 + 256 #

7
128 + 128 #

1 - - - Tanh

Discriminator

1 128

4 × 4 2 1

LRelu
2 256

LRelu + BN3 512
4 1024
5 1 1 0 Sigmoid

BN: Batch Normalization; LRelu: Leaky Rectified Linear Unit; Tanh: Hyperbolic Tangent function;
#: U-net connect.
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