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Abstract: Background: Resting-state functional magnetic resonance imaging (rs-fMRI) can evaluate
brain functional connectivity without requiring subjects to perform a specific task. This rs-fMRI is
very useful in patients with cognitive decline or unable to respond to tasks. However, long scan
durations have been suggested to measure connectivity between brain areas to produce more reliable
results, which are not clinically optimal. Therefore, this study aims to evaluate a shorter scan duration
and compare the scan duration of 10 and 15 min using the rs-fMRI approach. Methods: Twenty-one
healthy male and female participants (seventeen right-handed and four left-handed), with ages
ranging between 21 and 60 years, were recruited. All participants underwent both 10 and 15 min
of rs-fMRI scans. The present study evaluated the default mode network (DMN) areas for both
scan durations. The areas involved were the posterior cingulate cortex (PCC), medial prefrontal
cortex (mPFC), left inferior parietal cortex (LIPC), and right inferior parietal cortex (RIPC). Fifteen
causal models were constructed and inverted using spectral dynamic causal modelling (spDCM).
The models were compared using Bayesian Model Selection (BMS) for group studies. Result: The
BMS results indicated that the fully connected model was the winning model among 15 competing
models for both 10 and 15 min scan durations. However, there was no significant difference in
effective connectivity among the regions of interest between the 10 and 15 min scans. Conclusion:
Scan duration in the range of 10 to 15 min is sufficient to evaluate the effective connectivity within
the DMN region. In frail subjects, a shorter scan duration is more favourable.

Keywords: resting-state functional MRI; scan duration; functional connectivity

1. Introduction

The advancement of technology makes non-invasive resting-state functional magnetic
resonance imaging (rs-fMRI) one of the tools that can be performed to evaluate the brain’s
functional connectivity without requiring subjects to perform any specific task [1–4]. The
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blood oxygenation level-dependent (BOLD) technique uses spontaneous fluctuations by
detecting changes occurring in the blood flow in the brain [5–7]. The magnetic resonance
(MR) signal will increase as activity occurs in the brain [8,9]. The advantage of rs-fMRI is
that it can identify many intrinsic brain networks, such as the default mode network (DMN),
salience network, executive control network (ECN), and language function network, as
similarly achieved by task-based fMRI [10–14]. Furthermore, the ability of rs-fMRI to
identify the strength of connectivity between networks is being actively studied. One of
the most active networks in rs-fMRI is the default mode network (DMN) [15–17]. The
four central regions of DMN are posterior cingulate cortex (PCC), medial prefrontal cortex
(mPFC), left inferior parietal cortex (LIPC), and right inferior parietal cortex (RIPC) [17–20].
These areas are most likely to exhibit high metabolic activity at rest and during passive
sensory processing tasks, while being deactivated during the performance of goal-directed
cognitive tasks [21–23]. These DMN networks play an essential role in cognitive function,
as this is an area where the emotional processes, memory retrieval, and social cognition
occur [19,23–27]. It has been suggested that a longer scan duration may give more reliable
results in rs-fMRI [28]. The most commonly used scan duration for rs-fMRI should be
within 5–7 min because, at this point, the strength of functional connectivity is stable [29].
However, according to Anderson et al., (2011) [30], the best scan duration for rs-fMRI is
between 12–20 min to accurately differentiate the functional connectivity of one individual
from a group of subjects using an automated machine learning classifier. However, another
study by Braun et al., (2012) [31] showed that the scan duration of between 3 to 11 min is
enough to evaluate the reliability of rs-fMRI.

This study evaluates the effect of different scan durations of 10 and 15 min on brain
effective connectivity in default mode networks (DMN) among healthy subjects. The
results from this study will be implemented in another experiment focusing on brain
tumour patients. This pilot study focuses on healthy subjects.

The main highlight of this study is to evaluate the effective connectivity between
two different scanning times. Most of the previous studies have no standard protocols in
scanning time during rs-fMRI acquisition. This study uses spDCM, a statistical approach
that can evaluate how selected brain regions interact with each other. We aim to present a
dynamic causal model that could be useful in analysing resting-state studies, especially
in the main DMN regions, in different scanning times. For example, a previous study
by Friston et al., (2014) [32] used a visual paradigm stimulus to evaluate the effective
connectivity in the regions of the early visual cortex (V1), motion-sensitive area (V5),
lateral occipital cortex (LOC), posterior parietal cortex (PPC), frontal eye fields (FEF) and
prefrontal cortex (PFC). Another study by Han et al., (2020) [33] also used task-based fMRI
to determine whether short or long paradigms should be used for brain activation during
exposure to odour stimulus. They did not focus on effective connectivity. Therefore, this
research is different from other studies since the main objective is to identify the best
scanning time in effective connectivity in DMN networks.

2. Materials and Methods
2.1. Participants in Study

The experimental study was conducted at the Pusat Perubatan Universiti Kebangsaan
Malaysia (PPUKM). This work is supported by the Research University Grant Universiti
Kebangsaan Malaysia (UKM) GGPM-2017-016. The approval from the ethics community
has been obtained (UKM PPI/111/8/JEP-2018-040). The demographic parameters, such as
the average age, gender, and handedness ratio of the participants, are tabulated in Table 1.
Among the 21 participants, 15 were males, and 17 were right-handed. The average age
of the participants was 31.90 ± 1.77 years. All participants had formal education of at
least 11 years. All participants passed MRI screening and could cooperate and follow the
instructions required for this fMRI study. The MRI examination excluded participants with
a history of psychiatric illness, prior psychoactive medication usage, pregnant, clinically
unstable, claustrophobic, or contraindicated.
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Table 1. Demographic parameters.

Parameters Data

Gender (M/F) 15/6
Average age/years 31.90 ± 1.77
Age range/years 21 to 60 years old

Handedness (R/L) 17/4

2.2. Data Acquisition

Resting-state fMRI (rs-fMRI) data were collected using the 3T MRI system model Siemens
Magnetom Verio at PPUKM. A standard 32-channel head coil was used, along with a re-
straining foam pad to minimise head motion and with earplugs to minimise scanner noise.
The participants were instructed to keep their eyes open and passively focus on a fixation
point, “x”, during the entire rs-fMRI scans. They were also instructed to be calm and stay
awake during the entire session. The state of consciousness of the participants throughout the
scan was verified after the scan was completed. The first experiment started with 10 min of
scanning time. A simple question was asked between the scan durations to the subjects, such
as whether they were in a comfortable position before starting up the 15 min scanning time.
At this point, the subjects were reminded to not fall asleep during the scan. A simple question,
such as how they felt when they were inside the MRI and whether they had a headache, was
asked verbally after completing the scan. The rs-fMRI data for scan durations of 10 and 15 min
were collected during the same experimental session. The first ten scans were dummies and
automatically discarded by the BOLD imaging protocol to eliminate the magnetic saturation
effect. The pulse sequence used was gradient-echo echo-planar imaging (GRE-EPI) with the
following parameters for acquiring functional T2* weighted images: TR/TE = 3000 ms/29 ms,
flip angle = 75◦, FOV = 240 mm × 240 mm, data matrix = 64 × 64, slice thickness = 3.5 mm,
slice gap = 1.05 mm, voxel size = 3.75 × 3.75 × 3.75 mm and number of scans = 200 and 300
for scan durations of 10 min and 15 min, respectively. A series of high-resolution T1-weighted
images were also acquired with a volumetric three-dimensional spoiled gradient recall se-
quence with the following parameters: TR/TE = 2200 ms/3.2 ms, FOV = 256 × 256 mm2,
matrix size = 256 ×256 and slice thickness = 1 mm.

2.3. Pre-Processing

The rs-fMRI data were analysed using MATLAB 7.10.0 (R2018b) (Mathworks Inc.,
Natick, MA, USA) and statistical parametric mapping (Functional Imaging Laboratory
(FIL)) version 12 (SPM12). The functional images in each measurement were randomly
checked for any artefacts that could be caused by magnetic field distortion. The images
were then entered into a slice timing module for time correction. They were then realigned
using the 6-parameter affine transformation in translational (x, y, and z) and rotational
(pitch, roll, and yaw) directions to reduce the effects on the overall signal intensity from
participant movements. If the magnitude of patient movement was more than 2 mm during
the realignment process, the subject was be discarded from the experiment. Figure 1 shows
an example of one subject with a magnitude of movement in translation x, y and z and pitch,
roll and yaw. This subject only shows a movement below than 1 mm. After realigning the
data, a mean image of the series was used to estimate some warping parameters and map
these onto a template that already conformed to standard anatomical space (EPI template
provided by the Montreal Neurological Institute (MNI)). The normalisation procedure used
a 12-parameter affine transformation. The images were then smoothed using an 8-mm
full-width at half-maximum (FWHM) Gaussian kernel.
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2.4. Selection of Regions of Interest  
The effective connectivity among the regions of interest (ROIs) was examined using 

dynamic causal modelling (DCM12) (www.fil.ion.ucl.ac.uk/spm/ 1 January 2020). A gen-
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images were used for each subject, and a design matrix was constructed and then esti-
mated. The results from the estimated design matrix were used to extract signals from the 
cerebrospinal fluid (CSF) centred at (0, −40, −5) and white matter (WM) centred at (0, −24, 
−33) of a 6-mm radius volume of interest (VOI), respectively. The extracted signals from 
these two regions were then used to construct a new design matrix and then estimated 
again. The new design matrix, containing signals from the WM and CSF, was then used 
to extract signals from the 8-mm radius ROIs of the DMN, i.e., mPFC centered at (3, 54, 
−2), PCC centered at (0, −52, 26), LIPC centered at (−50 −54 36) and RIPC centered at (48 
−54 36). The locations of the DMN regions are shown in Figure 2a. Low-frequency fluctu-
ations (LFF), obtained from the DMN regions for scan durations of 10 min and 15 min, are 
shown in Figure 2b,c. 

The waveform is used to evaluate how the selected brain regions, which are PCC, 
mPFC, LIPC, and RIPC, respond to the BOLD signal imaging in two different scanning 
times. This waveform shows the observed response and predicted response of the best 
model for an individual subject. It can be clearly observed that the LFFs can be captured 
by the DCM model (Di and Biswal 2014) [16] . The time series (right-hand panels) from 
four regions are the principal eigenvariates of the regions identified, using seed connec-
tivity analyses in individual subjects. These time series were used to invert the DCMs 
(both spectral and stochastic) (Razi et al., 2015) [34]. A previous study has identified a 
different coherent between an individual. For example, a study by Biswal et al., (n.d.) [35] 
was the first to demonstrate the potential of functional connectivity MRI using intrinsic 
activity correlations. They showed that the BOLD signal time course from a region in the 
motor cortex was strongly correlated with the contralateral and midline regions within 
the motor system (Van Dijk et al., 2010) [29]. The coherent fluctuations were readily ob-
served within individual participants, indicating that the method is highly sensitive and 
raises the possibility of measuring within individual participants. The correlated fluctua-
tions observed by Biswal et al., (n.d.) [35] were manifest while the participants rested pas-
sively without any detectable movement, suggesting that the fluctuations were driven by 
intrinsic activity events constrained by anatomy (Van Dijk et al., 2012) [36]. 

 

Figure 1. An example of one subject with a magnitude of movement in translation x, y and z and
pitch, roll and yaw. This subject only shows a movement below 1 mm.

2.4. Selection of Regions of Interest

The effective connectivity among the regions of interest (ROIs) was examined using
dynamic causal modelling (DCM12) (www.fil.ion.ucl.ac.uk/spm/ 1 January 2020). A gen-
eral linear model (GLM) containing the slice-timed, realigned, normalised, and smoothed
images were used for each subject, and a design matrix was constructed and then esti-
mated. The results from the estimated design matrix were used to extract signals from
the cerebrospinal fluid (CSF) centred at (0, −40, −5) and white matter (WM) centred at
(0, −24, −33) of a 6-mm radius volume of interest (VOI), respectively. The extracted sig-
nals from these two regions were then used to construct a new design matrix and then
estimated again. The new design matrix, containing signals from the WM and CSF, was
then used to extract signals from the 8-mm radius ROIs of the DMN, i.e., mPFC centered at
(3, 54, −2), PCC centered at (0, −52, 26), LIPC centered at (−50 −54 36) and RIPC centered
at (48 −54 36). The locations of the DMN regions are shown in Figure 2a. Low-frequency
fluctuations (LFF), obtained from the DMN regions for scan durations of 10 min and 15 min,
are shown in Figure 2b,c.

The waveform is used to evaluate how the selected brain regions, which are PCC,
mPFC, LIPC, and RIPC, respond to the BOLD signal imaging in two different scanning
times. This waveform shows the observed response and predicted response of the best
model for an individual subject. It can be clearly observed that the LFFs can be captured
by the DCM model (Di and Biswal 2014) [16]. The time series (right-hand panels) from
four regions are the principal eigenvariates of the regions identified, using seed connec-
tivity analyses in individual subjects. These time series were used to invert the DCMs
(both spectral and stochastic) (Razi et al., 2015) [34]. A previous study has identified a
different coherent between an individual. For example, a study by Biswal et al., (n.d.) [35]
was the first to demonstrate the potential of functional connectivity MRI using intrinsic
activity correlations. They showed that the BOLD signal time course from a region in the
motor cortex was strongly correlated with the contralateral and midline regions within the
motor system (Van Dijk et al., 2010) [29]. The coherent fluctuations were readily observed
within individual participants, indicating that the method is highly sensitive and raises
the possibility of measuring within individual participants. The correlated fluctuations
observed by Biswal et al., (n.d.) [35] were manifest while the participants rested passively
without any detectable movement, suggesting that the fluctuations were driven by intrinsic
activity events constrained by anatomy (Van Dijk et al., 2012) [36].

www.fil.ion.ucl.ac.uk/spm/
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Figure 2. (a) The locations of the DMN regions (PCC, mPFC, LIPC and RIPC) on a 3-D brain image 
and (b,c) the low-frequency fluctuations (LFF) obtained from the DMN regions for scan durations 
of 10 min and 15 min. The time series (right-hand panels) from four regions are the principal eigen-
variates of regions identified using seed connectivity analyses for a single subject. These time series 
we used to invert the spectral DCM with the (fully-connected) architecture.  
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cies below 0.1 Hz when the brain is at rest (Di and Biswal, 2014) [16]. The GLM, as used 
by Di and Biswal (2014), was implemented in this study. The GLM contained eight regres-
sors that simulated LFF in 0.01 Hz to 0.08 Hz (Figure 3). Columns 1 to 8, denoted as pa-
rameters, represented the Fourier basis set with a 90° phase delay, oscillating at 0.01 Hz 
(columns 1 and 2), 0.02 Hz (columns 3 and 4), 0.04 Hz (columns 5 and 6), and 0.08 Hz 
(columns 7 and 8) (Di and Biswal, 2014) [16]. Column 9 represented the effects caused by 
other factors, such as background noise. The GLM was then estimated. A diagonal F-con-
trast was applied on all the eight regressors to obtain the regions whose variance could be 
significantly accounted for by the inclusion of the binarised Fourier series regressors (Di 
and Biswal, 2014) [16]. This was carried out for all the single subjects. A one-sample t-test 
was used to identify group brain functional connectivity due to the LFF, using the F-con-
trast images of all the subjects. The activation areas were then identified using the WFU 
PickAtlas toolbox (Wake Forest University, Winston-Salem, NC, USA). 

 

Figure 2. (a) The locations of the DMN regions (PCC, mPFC, LIPC and RIPC) on a 3-D brain image
and (b,c) the low-frequency fluctuations (LFF) obtained from the DMN regions for scan durations
of 10 min and 15 min. The time series (right-hand panels) from four regions are the principal
eigenvariates of regions identified using seed connectivity analyses for a single subject. These time
series we used to invert the spectral DCM with the (fully-connected) architecture.

2.5. Modeling of Low-Frequency Fluctuations

Resting-state fMRI is able to capture low-frequency fluctuations (LFF) with frequencies
below 0.1 Hz when the brain is at rest (Di and Biswal, 2014) [16]. The GLM, as used by Di
and Biswal (2014), was implemented in this study. The GLM contained eight regressors
that simulated LFF in 0.01 Hz to 0.08 Hz (Figure 3). Columns 1 to 8, denoted as parameters,
represented the Fourier basis set with a 90◦ phase delay, oscillating at 0.01 Hz (columns 1
and 2), 0.02 Hz (columns 3 and 4), 0.04 Hz (columns 5 and 6), and 0.08 Hz (columns 7 and 8)
(Di and Biswal, 2014) [16]. Column 9 represented the effects caused by other factors, such
as background noise. The GLM was then estimated. A diagonal F-contrast was applied
on all the eight regressors to obtain the regions whose variance could be significantly
accounted for by the inclusion of the binarised Fourier series regressors (Di and Biswal,
2014) [16]. This was carried out for all the single subjects. A one-sample t-test was used to
identify group brain functional connectivity due to the LFF, using the F-contrast images of
all the subjects. The activation areas were then identified using the WFU PickAtlas toolbox
(Wake Forest University, Winston-Salem, NC, USA).
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2.6. Spectral Dynamic Causal Modeling

The time-series signals for each region were then used in specifying and constructing
the causal models. Fifteen dynamic causal models containing PCC, mPFC, LIPC, and RIPC
as DMN regions were constructed for this study. The models are shown in Figure 4. Models
1 and 4 have two DMN regions with a bidirectional connection. Models 2, 3, 5, and 6 have
two DMN regions with a unidirectional connection. Model 7 has four DMN regions that
are fully connected. A fully connected model is a model with a bidirectional connection
between four selected regions in this study. Model 8 has a unidirectional connection from
PCC to mPFC, LIPC, and RIPC. Model 9 has a unidirectional connection from mPFC, LIPC,
and RIPC to PCC. Model 10 has bidirectional connections among regions except for LIPC
to RIPC and RIPC to LIPC. Model 11 has unidirectional connections from LIPC and RIPC
to mPFC, and from LIPC and RIPC to PCC. Model 12 has unidirectional connections from
mPFC to LIPC and RIPC, and from PCC to LIPC and RIPC. Model 13 has unidirectional
connections from PCC to LIPC and RIPC, and from LIPC and RIPC to mPFC. Model 14 has
unidirectional connections from mPFC to LIPC and RIPC, and from LIPC and RIPC to PCC.
Model 15 has bidirectional connections among regions except between LIPC and RIPC and
between mPFC and PCC.

The causal models were then estimated using spectral DCM (spDCM) to obtain
the coupling parameters (effective connectivity) between the regions. Their endogenous
fluctuation of activity was recorded and analysed to generate complex cross spectra. The
time-invariant covariance of the random fluctuations between regions was then estimated
to obtain the cross spectra density, which was then used in estimating the EC between the
DMN regions. The EC among the coupled neuronal responses was then estimated using a
neuronal plausible power-law model.

2.7. Bayesian Model Selection

The models were then compared by means of Bayesian Model Selection (BMS) for
group studies under the fixed effects analyses (FFX) framework (Sharaev et al., 2016;
Othman et al., 2019) [23,27] to determine the optimum model that has the best balance
between fit (accuracy) and difficulty. The DCM computes posterior probabilities and
protects exceedance probabilities at the group level (Rigoux et al., 2014; Stephan et al., 2009;
Davey et.al., 2016) [37–39]. The protected exceedance probability, which represents the
probability of a given model more frequently than the others (above and beyond chance),
was our primary measure for model selection (Rigoux et al., 2014) [37]. The strength
of effective connectivity and modulatory effects were summarised using random-effects
Bayesian Model Averaging (BMA).

2.8. Statistical Analysis on Effective Connectivity

A paired t-test was performed to evaluate the difference between the 10 and 15 min
scan durations in terms of effective connectivity for 21 subjects who underwent both
scanning times. The EC in a winning model among four main DMN areas, measured
in every single subject, were analysed using the paired t-test in IBM SPSS version 20. A
Pearson correlation (r) test was performed to evaluate the significant difference between
the 10 min and 15 min scanning times in this study.

2.9. Statistical Analysis on Brain Functional Connectivity

A paired t-test in MATLAB 7.10.0 (R2018b) (Mathworks Inc., Natick, MA, USA) and
statistical parametric mapping (Functional Imaging Laboratory (FIL)) version 12 (SPM12)
were performed to evaluate the difference in brain functional connectivity between the 10
and 15 min scan durations. The location of brain functional connectivity was defined using
the WFU PickAtlas toolbox (Wake Forest University, Winston-Salem, NC, USA).
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3. Results
3.1. Brain Functional Connectivity

Figure 5 shows the group result of functional brain connectivity for the scan durations
of 10 and 15 min scanning time, thresholded at a corrected significant level (pFWE) of
0.05 and extent cutoff (kE) of 20. The result of the FFX analysis for both groups showed
the brain functional connectivity in the DMN area of mPFC, LIPC, RIPC, and PCC for
21 participants for both scan durations when the brain was at rest. The locations of the
brain functional connectivity were defined from the SPM and WFU Pickatlas (Automatic
Anatomical Labelling (AAL)). The functional brain connectivity in 10 min is higher when
compared to 15 min. However, all voxels containing a cluster were significantly activated
at the peak level.
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indicate the point of maximum intensity with of the brain activation in each group. Color scales
reflect T values of one-sample t test.

3.2. Optimum Model

Figure 6 shows the BMS results for the models shown in Figure 4. A BMS analysis
was conducted on both scan durations and the results represented the average values for
21 participants. It can be observed that Model 7 was the most optimum model for both
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10 and 15 min. The optimum model refers to a model that has the best balance between
accuracy and complexity, when compared among 15 models. Model 7 has the highest
evidence with a model posterior probability equal to 1. The effective connectivity (in Hz)
between the regions obtained from Model 7 is shown in Table 2.
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Table 2. Effective connectivity (in Hz) among DMN nodes for 10 and 15 min scanning times obtained
from Model 7.

10 min 15 min 10 min 15 min 10 min 15 min 10 min 15 min
BMA From PCC From PCC From mPFC From mPFC From LIPC From LIPC From RIPC From RIPC

to PCC −0.6887 −0.8715 0.1023 −0.1741 0.0530 0.0404 −0.0575 0.0980
to mPFC −0.1626 0.0064 −0.7410 −0.5223 −0.0561 0.0573 0.0301 −0.0099
to LIPC −0.0554 −0.0384 −0.0427 −0.0248 −0.8941 −1.0364 −0.1556 −0.1129
to RIPC 0.0397 0.0628 −0.1739 −0.0975 −0.0258 −0.0194 −0.8883 −0.4539

3.3. Effective Connectivity

Figure 7 shows the effective connectivity between the DMN regions for both scan
durations. The figure only showed trivial connections with strengths exceeding 0.05 Hz
(Razi et al., 2015) [34]. The self-connections were not shown, but the values were all nega-
tives and tabulated in Table 2. There were some inhibit and exhibit connections between
the ROI in Model 7. A connection from mPFC → PCC (0.10 Hz) in 10 min showed an
inhibit connection, while 15 min showed an exhibit connection of −0.17 Hz. A connec-
tion from PCC→mPFC in 10 min showed an exhibit connection of −0.16 Hz. On the
other hand, a connection from LIPC → mPFC in 10 min showed an exhibit connection
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of −0.06 Hz, while an inhibit connection of 0.06 Hz was obtained for 15 min. A connec-
tion from mPFC→ RIPC for both scan durations showed exhibit connections, whereby
15 min indicated higher strength (−0.10 Hz) compared to 10 min (−0.17 Hz). Similarly,
for RIPC→ LIPC, which showed an exhibit connection, the10 min scan duration obtained
−0.16 Hz and 15 min obtained −0.11 Hz. Significant connections from PCC → LIPC
(−0.06 Hz) and LIPC→ PCC (0.05 Hz) were identified for 10 min but lower in the 15 min
scan duration, where the value of EC was below 0.05 Hz. The connection from PCC→ LIPC
was exhibit, while LIPC→ PCC was inhibit. An exhibit connection was indicated from
RIPC→ PCC (−0.06 Hz) for the 10 min scan, whereas the 15 min scan duration was inhibit
(0.10 Hz). A connection from PCC → RIPC for 15 min was inhibit (0.06 Hz). All the
self-connections for the four ROIs in the fully connected models showed exhibit values
for both scan durations. For 10 min, the self-connections were PCC (−0.69 Hz), mPFC
(−0.74 Hz), LIPC (−0.89 Hz) and RIPC (−0.89 Hz). For 15 min, the self-connections were
PCC (−0.87 Hz), mPFC (−0.52 Hz), LIPC (−1.04 Hz), and RIPC (−0.45 Hz).

3.4. Correlation Analyses

Data tabulated in Table 3 showed a result of the Pearson correlation (r) test between
the 10 min and 15 min scanning times. Data showed a positive correlations between the
DMN regions of interest, except for the connection between mPFC→ PCC (r = −0.373) and
mPFC→ RIPC (r =−0.101). It indicates that there is a correlation of effective connectivity in
these two different scanning times during the acquisition of rs-fMRI. This research showed
a p-value of >0.05, except for the connections LIPC→ RIPC (0.022), RIPC→ PCC (0.026)
and RIPC→ LIPC (0.015).

Table 3. Value of Pearson correlation (r), R2, and p-value between 10 min vs. 15 min scanning times.

Effective Connectivity 10 min vs. 15 min Scanning Time Pearson Correlation (r) R2 p-Value

PCC→mPFC 0.418 0.175 0.059
PCC→ LIPC 0.204 0.042 0.374
PCC→ RIPC 0.350 0.122 0.120
mPFC→ PCC −0.373 0.139 0.096
mPFC→LIPC 0.303 0.092 0.182
mPFC→ RIPC −0.101 0.010 0.064
LIPC→ PCC 0.420 0.177 0.058

LIPC→mPFC 0.348 0.121 0.123
LIPC→ RIPC 0.495 0.245 0.022
RIPC→ PCC 0.486 0.236 0.026

RIPC→mPFC 0.063 0.004 0.788
RIPC→ LIPC 0.524 0.275 0.015
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4. Discussion

The main objective of this study is to compare the differences in effective connectivity
(EC) of different scan durations of 10 and 15 min. Based on the experiment performed,
no significant differences between both scan durations were found in terms of effective
connectivity. The values of effective connectivity are presented in both scan durations
of in this fully connected model that has a bidirectional connection between the regions.
Although some of the connections were reported to have a value of below 0.05 Hz, which is
known as a non-trivial effect, the winner model had the highest model posterior probability
with a value of 1. However, in terms of functional connectivity, it was higher in the
short scanning time. Based on the result from the Pearson correlation (r) test, it showed
a significant correlation between the DMN regions of interest, except for the connection
between mPFC→ PCC and mPFC→ RIPC, which showed negative correlation values. It
indicates that effective connectivity is associated with scanning time during the acquisition
of rs-fMRI.

Most of the previous studies reported that their results are not consistent with other
studies. For example, a study by Li et al., (2012) [40] using stochastic DCM showed an
influence from PCC to mPFC. However, a study by Di and Biswal (2014) and Jiao et al.,
(2011) [16,41] showed a causal influence from mPFC to PCC but not vice versa using
Granger causality analysis (GCA). A study by Razi et al., (2015) [34] stated that they
failed to detect an influence between RIPC to mPFC. The most consistent finding from the
previous study is that mPFC is driven by LIPC (Razi et al., 2015; Di and Biswal 2014) [16,34].
Most of the previous studies used a different scanning time for the acquisition of rs-fMRI.
For example, a study by Othman et al., (2019) [27] used 7 min, meanwhile Yusoff et al.,
(2018) used 9 min and 33 s for data acquisition. However, Braun et al., (2012) [31] suggested
that a scan duration of 3 to 11 min is adequate to evaluate the reliability of the rs-fMRI. As
the time range mentioned above are suggested by the previous research showed that the
signal fluctuations of fMRI is already stable to evaluate the intrinsic connection networks
(ICN) of the brain (Van Dijk et al., 2010; Fox et al., 2005) [29,42]. Resting-state fMRI depends
on the low-frequency signal fluctuations due to functional connectivity within the brain
network, which changes slowly (Esposito et al., 2012) [43]. The acquisition of resting-state
data for 6 min may provide a brief overview of these slow changes, subsequently changing
for another 6 min in the same session.

Both scan durations in this study have chosen the same model, which is the fully
connected model as a winner model through the BMS analysis. However, the value of
effective connectivity with a trivial connection of more than 0.05 Hz is more frequently
observed in 10 min of scanning time rather than 15 min. The previous study has shown
that nontrivial connectivity parameters in total, initial and final models differ only in
their magnitude (Sharaev et al., 2016) [23]. These differences neither lead to changes
in connectivity patterns in terms of the existing/absence of a particular connection, nor
changes in the roles of a specific connection from excitatory to inhibitory (Sharaev et al.,
2016) [23]. This means that the winning model is stable at different time frames in terms of
its parameters and reflects a relatively stable effective connectivity pattern within the DMN
(Sharaev et al., 2016) [23]. This pattern may slightly change in time, but the main driving
areas and connections among them remain the same (Sharaev et al., 2016) [23]. Therefore,
we can suggest that the subjects were in approximately the same mental state during the
first and second phase of the experiment (Sharaev et al., 2016) [23].

A previous study by Han et al., (2020) [33] demonstrated that the short scanning time
showed a higher level of brain activation in the insula and orbitofrontal cortex during the
short-run paradigm, as compared to the long-run paradigm when experimenting on the
effect of odour. A previous study by Han et al., (2020) [33] stated that prolonged odour
stimulation (e.g., more than 20 min) might decrease the BOLD signal level. This indicates
that the measurements should be short to achieve maximum activation. From this, it could
explain why the functional connectivity in the 10 min scanning time is higher than 15 min
scanning time.
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Other factors contribute to the signal intensity in fMRI data acquisition other than
increasing the duration of the scan to evaluate the brain functional connectivity. Regional
homogeneity (ReHO) should be evaluated. ReHO is used to characterise the functional
homogeneity of resting-state fMRI (rs-fMRI) signals within a small region (Y. Zang et al.,
2004; Zuo et al., 2013) [44,45]. In order to have uniform fMRI signal intensity, the pre-
processing steps, such as smoothing and normalisation, need to be taken into consideration
when processing the data acquisition. Head motion, white matter, and cerebrospinal fluid
correction of rs-fMRI time series can significantly improve the reliability of ReHo, spatial
smoothing of rs-fMRI time series artificially enhances ReHo intensity and influences its
reliability, and a scan duration of 5 min can achieve reliable estimates of ReHo (Zuo et al.,
2013) [45]. It has been proven that ReHO measurement in healthy subjects is different
from a clinical patient, particularly patients with epilepsy, Parkinson’s disease, Alzheimer’s
disease and others (Zuo et al., 2013) [45].

It is important to decide on the best scan time in conducting rs-fMRI to receive full
cooperation from the sick and healthy patients as the controls. Most of the patients that
have undergone a fMRI scan stated that they are more likely to be comforted when they
are in the MRI room during the acquisition time (Szameitat, Shen, and Sterr 2009; Hadidi
et al., 2014) [46,47]. However, the most uncomfortable feeling that they face is claustrophobia
(Hadidi et al., 2014) [47]. A study was carried out previously to evaluate a patient with stroke
perception and the healthy controls towards the fMRI scan, indicating that 12.1% of healthy
subjects considered a scan duration of between 30 and 60 min as too long, while no patients
considered their 30 min scan interval as too long (Szameitat et al., 2009) [46]. According to
Szameitat, Shen, and Sterr 2009, most of the participants commented on the fMRI procedure
as “noisy”, “tiring”, “slightly claustrophobic”, “nerve-racking”, “head and neck were sore”,
“inability to scratch itches”, “back hurt” (two subjects), and “headphones uncomfortable”.

This study focuses on the effect of scan duration on effective connectivity of 10 and
15 min scan durations. This study does not perform any test-retest reliability between
the intersession and intrasession data of individual subjects and grouping analyses. In
future studies, it should be directed to analyse the data that focuses on measuring the
intraclass correlation coefficient (ICC), regional homogeneity (ReHO) as well as the effect
of pre-processing, such as smoothing and normalisation, on a number of voxel activation
between different scan times.

5. Future Directions

At the moment, we are analysing the data of rs-fMRI between early 5 min and late
5 min in 10 min scanning times. The study’s objective is to compare the effect of effective
connectivity between these two phases on the same scanning time in the motor area.

6. Conclusions

In conclusion, the results showed the ability of rs-fMRI to statistically analyse the
effective connectivity in DMN regions with different scan durations. It is important to
determine the best scan duration, as fMRI experiments may involve brain tumour patients
with motor and cognitive function degradation. This experiment suggested that there was
no significant difference between the 10 and 15 min scan durations regarding effective
connectivity and brain functional connectivity in the DMN regions. Both durations were
able to evaluate the functional brain connectivity in the DMN regions.
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