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Abstract: Purpose: We aimed to develop a novel interpretable artificial intelligence (AI) model
algorithm focusing on automatic detection and classification of various patterns of calcification
distribution in mammographic images using a unique graph convolution approach. Materials and
methods: Images from 292 patients, which showed calcifications according to the mammographic
reports and diagnosed breast cancers, were collected. The calcification distributions were classified as
diffuse, segmental, regional, grouped, or linear. Excluded were mammograms with (1) breast cancer
with multiple lexicons such as mass, asymmetry, or architectural distortion without calcifications; (2)
hidden calcifications that were difficult to mark; or (3) incomplete medical records. Results: A graph-
convolutional-network-based model was developed. A total of 581 mammographic images from 292
cases of breast cancer were divided based on the calcification distribution pattern: diffuse (n = 67),
regional (n = 115), group (n = 337), linear (n = 8), or segmental (n = 54). The classification performances
were measured using metrics including precision, recall, F1 score, accuracy, and multi-class area
under the receiver operating characteristic curve. The proposed model achieved a precision of 0.522
± 0.028, sensitivity of 0.643 ± 0.017, specificity of 0.847 ± 0.009, F1 score of 0.559 ± 0.018, accuracy
of 64.325 ± 1.694%, and area under the curve of 0.745 ± 0.030; thus, the method was found to be
superior compared to all baseline models. The predicted linear and diffuse classifications were highly
similar to the ground truth, and the predicted grouped and regional classifications were also superior
compared to baseline models. The prediction results are interpretable using visualization methods
to highlight the important calcification nodes in graphs. Conclusions: The proposed deep neural
network framework is an AI solution that automatically detects and classifies calcification distribution
patterns on mammographic images highly suspected of showing breast cancers. Further study of the
AI model in an actual clinical setting and additional data collection will improve its performance.

Keywords: artificial intelligence; calcifications; graph convolution network; deep learning;
mammography

1. Introduction

Breast cancer is the most common cancer among women worldwide; new cases
diagnosed in 2018 were estimated at 2.3 million [1]. It is the fifth-most common cause
of cancer death in women, accounting for 0.68 million (6.7%) of all new cancer deaths.
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Early detection and treatment remain the best approaches to minimizing mortality from
breast cancers.

Regular screening mammograms beginning at 40 years of age can reduce breast cancer
mortality in average-risk women by approximately 20% [2]. Compared with biennial
screening, annual screening mammograms showed fewer interval cancers, fewer advanced-
stage cancers [3], and lower 10-year breast cancer mortality among women at average risk
of developing breast cancer [4]. A standard mammogram includes two projections for each
breast: the craniocaudal view and the mediolateral oblique view. Most mammograms are
now obtained using fully built high-resolution digital images (over 10 million pixels per
image), and they are used to reveal abnormalities, the most common of which are masses,
calcifications, architectural distortions of breast tissue, and asymmetries between the breasts.
Calcifications are one of the most common early signs of breast cancer, which can be
determined by calcifications distribution, number, and certain features. Calcifications in
both premenopausal and postmenopausal women indicate a high risk for breast cancers [5].

Calcification distributions refer to how calcifications are distributed across a patient’s
breast, which is strongly associated with malignancy [6]. Calcification distributions can be
described by descriptors including diffuse, regional, cluster, linear, and segmental, ranked
by increasing risk of malignant cancer [7]. According to the Breast Imaging Reporting and
Data System (BI-RADS), 5th edition, diffuse distribution is typically benign [8]. Regional
distribution is associated with a probability of malignancy at around 26% [9]. Linear and
segmental distributions are associated with probabilities of malignancy at around 60% and
62%, respectively [9]. Calcifications with cluster distributions need to be evaluated together
with the morphology of the calcifications. Determination of calcification distributions and
estimation of their risks are essential for diagnosis. A Korean study reported that 53% cases
with cluster distributions and 28% cases with segmental distributions were misinterpreted
or underestimated by the initial radiologists and confirmed as malignant at follow-ups [10].

Manual reading of mammograms often leads to false-positive/negative results. Blinded
double-reading increases the cancer detection rate, but it also increases the recall rate and
the false-positive recall rate [11]. In 2018, AI-antari MA et al. performed a study examining
an integrated CAD system used for classifying mass in mammography, with an accuracy
over 92% [12]. Alejandro Rodriguez-Ruiz et al. collected 2654 mammograms interpreted
by 101 radiologists and created an AI 10-score scale to detect the possibility of breast cancer.
This study revealed a 17% reduction in radiologist workload when the AI score was 2 [13].
One solution is to develop artificial intelligence (AI) technologies that can assist radiologists
in effectively detecting breast cancers in mammograms. Recent reports describe newly
developed AI technologies that can detect breast cancer calcifications. Breast cancer calci-
fications are defined as tiny high-density spots in breast tissue shown on mammograms,
and are also known as microcalcifications, with a size from 0.1 mm to 1 mm, without
visible masses [14]. Wang et al. [15] used a discrimination classifier model to improve the
diagnostic accuracy of microcalcifications using a semi-automated segmentation method
to characterize all microcalcifications in a large dataset. Results show a discriminative
accuracy of 87.3% when microcalcifications were characterized alone compared to 85.8%
when a support vector machine was employed. Rehman et al. [16] proposed a system called
“Intelligent System for Detection of Micro-Calcification in Breast Cancer”, which comprises
three primary stages and has an overall classification accuracy of 95.6%. Mayo et al. [17]
conducted a retrospective study comparing AI-based detection to computer-aided detection
of calcifications in mammographic images, and the false-positive rate was 83% lower in
the former. Cai H et al. developed a CNN model for image analysis and classification
of mammographic calcifications with a precision of 89.32% and sensitivity of 86.89% [18].
Zobia Suhail et al. developed a novel method using Fisher’s linear discriminant analysis
approach combined with an SVM variant, collecting 288 regions of interest (ROIs)x, which
resulted in 139 malignant and 149 benign regions, with an accuracy of 96% [19]. However,
these technologies were unable to annotate calcifications by distribution pattern, shape, or
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size using the lexicons/descriptors of the Breast Imaging Reporting and Database System,
resulting in a high incidence of false positives.

An automatic computer-aided detection and diagnosis (CADx) system for calcification
distributions could greatly reduce radiologists’ time and efforts and help radiologists
accurately determine the descriptors. In this study, we adopted an emerging method,
graph convolutional networks (GCNs), for distribution classification in mammography
images. GCNs apply convolution operations in graphical data to learn visual features and
geometrical representations. Many researchers have developed GCN-based applications
for mammography images. Liu et al. introduced pseudo-landmarks and graph node
mappings to represent regions in mammograms with graphs, and then utilized GCNs to
model the multi-view information from these graphs to detect masses [20]. Zhang et al.
combined a GCN with convolutional neural networks (CNNs) as a data augmentation
model for the detection of lesions in mammograms. The proposed model demonstrated
improved performance using the state-of-the-art lesion detection methods, proving itself as
an effective data augmentation approach [21].

Though many GCN applications for mammography images have been proposed, and
a certain degree of success has been achieved, no existing methods have addressed the
classification of calcification distribution patterns. To fill in this gap, we developed a novel
graph-convolutional-network-based framework for the automatic detection of calcifications
and classification of mammographic images by calcification distribution patterns. This
study substantially differs from our previous study [22] in two aspects: firstly, this study
introduces an end-to-end approach, rather than focusing on the modeling of annotated
calcifications; second, this study introduces a different visualization method to interpret
GCN results to help radiologists identify distribution patterns.

2. Materials and Methods
2.1. Patients and Datasets

The Taipei Medical University Joint Institutional Review Board approved this study
(approval number N202006039). Informed consent was waived because of its retro-
spective nature. All methods were performed in compliance with relevant guidelines
and regulations.

In this study, we focused on developing an algorithm to detect and classify calcifi-
cations in breasts using a unique deep learning tool. We retrospectively reviewed a set
of mammograms diagnosed with documented calcifications in the original radiological
reports. All mammograms showed histologically confirmed breast cancers, and all were
performed at a single institution between June 2010 and October 2018. All examinations
were performed as referrals from breast clinics or healthcare screening centers, and each
calcification distribution pattern could be classified as diffuse, segmental, regional, grouped,
or linear. Excluded were mammograms with (1) breast cancers with multiple lexicons,
such as mass, asymmetry, or architectural distortion without calcifications; (2) hidden
calcifications that were difficult to mark; and (3) incomplete medical records. In each of
the 292 cases, the two standard views were taken using a stationary unit (Mammomat
Inspiration; Siemens, Erlangen, Germany).

2.2. Annotation and Ground Truth

The two standard mammographic images of the cancer-positive side were extracted for
each patient, and each was annotated with one distribution label. One senior radiological
technologist with 15 years of experience in mammography marked calcifications with a
large circular region of interest and annotated the morphology as one of five calcification
distribution patterns (diffuse, segmental, regional, grouped, or linear) with descriptors of
suspicious features (not included in this study). Examples of the annotations are shown
in Figure 1. Two additional radiologists (with 12 and 20 years of breast imaging experience)
carefully reviewed all labeled images in both subsets and confirmed the annotations in a
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joint meeting, reaching a consensus on interpretation in all cases. The confirmed annotations
were considered the “ground truth” in the dataset.

Figure 1. Examples of calcification distribution descriptors. For each distribution descriptor, one
illustration is shown on the top and one example from the study dataset is shown at the bottom.
Illustrations are adapted according to BI-RADS 5th Edition [9]. Calcification patterns are annotated
and marked by red contours in examples.

2.3. Study Design

We established an end-to-end framework to classify the distribution of calcifications on
mammograms. We developed a method to map mammography images to graph structured
data and converted the classification task of classifying distribution of calcifications into a
graph classification task. Detailed contributions of this method are listed as below:

1. We designed a graph construction module which detects calcifications and transforms
them into nodes in graphs. We defined node features and an adjacency matrix to
represent the calcification graph. Node features were represented by deep feature
maps from a convolutional neural network which was trained on patches that were
centered at proposed calcifications. Adjacency matrix of nodes was defined according
to the spatial relationship among calcifications.

2. We developed a graph convolutional neural network to fuse the node characteristics
of the calcification graph and the spatial topological relationship to perform the graph
classification task. The graph convolutional neural network was trained to fuse the
features and topological structures from neighboring nodes and extract the most
correlated information for the classification task.

3. Our developed model is interpretable by highlighting important nodes in graphs. For each
distribution descriptor, the highlighted nodes are consistent with the clinical descriptions.

The proposed framework is illustrated in Figure 2.
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Figure 2. Overview of proposed graph neural network model framework.

2.4. Calcification Identification

The calcification module was designed to detect calcifications within the regions of
interest that were marked on the ground truth images. The first step in this process was to
segment the breast region by removing the background and reducing the dimension of the
image. In a digital mammogram, the border of the breast area is obvious and distinguishable
from the background. Otsu segmentation [23] was employed and resulted in acceptable
segmentation. Then, a calcification detection function fdetect was introduced to determine
the locations of calcifications. A morphological contrast enhancement method [24] was
employed. Two morphological operations, the top-hat and bottom-hat transforms, were
applied. The former is a residual filter that can retain those features in the image that can
be placed in the structural elements while deleting those features that cannot be included.
In other words, the top-hat transform is used to segment objects with various brightnesses
from the surrounding background in an image with uneven background intensity. It is
defined as:

IT = I − [(I 	 SE)⊕ SE],

fdetect(x, y) =
{

1, i f IT(x, y) ≥ T
0, otherwise

(1)

where I represents the mammographic image as input, IT is the transformed image, SE
is the structuring element, 	 and ⊕ represent the morphological erosion operation and
morphological dilation operations, respectively, and [(I 	 SE)⊕ SE] represents the mor-
phological opening operation. fdetect returns the thresholding mask of the transformed
image, IT , regarding the selected threshold, T.

A convolutional neural network (CNN) following fdetect was also trained as a means
of improving the accuracy of calcification detection. The calcification detection CNN was
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trained with calcification labels to enhance feature extraction capabilities. The CNN was
trained by the loss function defined as:

L(Θ, φ) =
N

∑
i=1

(
y(i)cals log( fCNN(Mi)) +

(
1− y(i)cals

)
log(1− fCNN(Mi))

)
, (2)

where Θ represents the parameters of the convolutional layers in the CNN, φ represents
the parameters of the fully connected layers, fCNN(·) represents the forward propagation
of the CNN network, Xi is a patch image centered at ith detected calcification, and yi

cals is
the ground truth label of any detected calcification:

y(i)cals =

{
1 if Mi contains true calcifications
0 otherwise

Following Equation (2), we defined the centers of detected calcifications as S =
{(x1, y1), (x2, y2), . . . , (xi, yi)} and a set of patches as S = {(x1, y1), (x2, y2), . . . , (xi, yi)}.
For any detected calcification i, (xi, yi) represents the coordinates of its center, and Mi rep-
resents an image patch of dimension D× D. The coordinate set S and patch set P were
then fed into the graph construction module.

2.5. Calcification Graph Construction
2.5.1. Learning Feature Representations and Spatial Embeddings of Calcification Patches

To begin construction of the calcification graph, the spatial embeddings and deep
feature maps were extracted from calcification patches as node features. Generating visual
representations of the calcification patches was a crucial step in this framework. We used
CNN to extract feature maps from the intermedia convolutional layers as representations
of high-level features. Feature extraction from calcification patches can be represented by:

Xi
patch = fFE(Mi; Θ), (3)

where fFE is the feature extraction process of a trained CNN with the parameters Θ and
Xi

patch indicating the deep feature maps of patch image Mi.
Spatial information is crucial for identifying calcification distribution. To preserve the

spatial information, a linear transformation was used to transform the spatial information
of the calcification into a learnable embedding:

Xemb = S·Wemb + bemb, (4)

where S = {(x1, y1), (x2, y2), . . . , (xi, yi)} indicates the set of center coordinates of the
proposed calcifications; Wemb ∈ RDemb×N represents the learnable weights; and bemb
represents biases.

2.5.2. Building a Calcification Graph

A calcification graph was built for each mammographic image to map the input image
to graph-structure data. Graph-structure data were defined by the node feature matrix
X ∈ RN×D and the adjacency matrix X ∈ RN×D, where N represents the number of nodes,
and D represents the dimension of the node features. In this framework, X was constructed
based on the fusion of features that were extracted from the CNN and spatial embeddings.
The learned features from the calcification patches and spatial embeddings were fused into
node features in the calcification graph:

Xnode =
[

Xpatch ‖ Xemb

]
, (5)

where ‖ indicates the concatenation operation.
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The adjacency matrix A was constructed from the spatial relationships between pro-
posed calcification regions. The matrix was obtained by constructing a k-nearest-neighbor
graph [25] using the Cartesian distance between nodes. In other words, given a distance
function d(·, ·), if d

(
xi, xj

)
was among the k neighbors at the smallest distance from xi to all

other nodes, then Ai,j = 1, otherwise Ai,j = 0.

2.5.3. Learning Spatial and Distribution Relationships Using a Graph Neural Network

A dynamic-edge-conditioned convolution network [26] was used to design the graph
convolution layers so that node feature embeddings in the graph structure could be learned.
The dynamic-edge-conditioned convolution is performed in a spatial domain where fil-
ter weights are conditioned on edge attributes and are dynamically generated for each
specific input. Applications in graph classifications in point clouds have demonstrated
the usefulness of encoding edge attributes. The convolution operation at layer l can be
formulated as:

Xl(i) =
1

|N(i)| ∑
j ∈N(i)

Fl
(

L(j, i); wl
)

Xl−1(j) + bl , (6)

where Fl(·) represents a feed-forward network that encodes edge labels L(j, i) into edge-
specific embeddings, N(i) represents the set of neighboring vertices of node i, and bl

represents a learnable bias. Though multiple graph convolutional layers, node feature
Xl(i) fuses the visual and topological information from multi-hop neighboring nodes and
extracts the most information that is relevant to the distribution class. Following the graph
convolutional layers, the node feature matrix was flattened to obtain a finite-dimensional
vector as a global representation of the calcification graph:

x = flatten(XGAT), (7)

where XGAT is the input node feature matrix, and x is the output feature vector.
In the last step, a fully connected layer with a sigmoid activation function was added

as a classifier to perform the graph classification task. The output of the last fully connected
layer was computed to represent the classification probability of calcification distribution:

ŷ = σ
(

xW f c + b f c

)
, (8)

where σ represents the sigmoid activation function, and W f c and b f c represent the learnable
matrix and bias, respectively, of the fully connect layer.

Classification of the calcification distribution patterns suffers from class imbalance,
but this can be addressed utilizing focal loss [27] to train the proposed model:

L(pt) = −(1− pt)
γ log(pt), (9)

where γ represents the focusing parameter. When γ = 0, L(pt) is equivalent to cross entropy
loss. pt represents the model-estimated probability. p = pt if the one-hot class label y = 1,
otherwise pt = 1− p. If the example is misclassified, (1− pt)

γ tends to 1; if the example is
correctly classified, (1− pt)

γ tends to 0. Therefore, the loss contribution of easy examples
from majority classes are down-weighted while the loss contribution of difficult examples
from minority classes remain the same as cross entropy loss. During training, focal loss
thus reduces the bias towards classifying the cases into majority distribution classes.

2.6. Data Analysis

For comparison, several existing methods were used to classify the images into cal-
cification distribution patterns: ResNet [28], DenseNet [29], MobileNet [30], and Effi-
cientNet [31]. These methods demonstrated the state-of-the-art performances on image
classifications and have been widely adopted in various applications tasks:
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• ResNet was proposed by He et al. and won the ILSVRS competition in 2015. The
authors proposed residual blocks with skip connections to train deep CNNs with up to
152 layers. ResNet is one of the most popular and successful methods in the computer
vision community with various applications in medical imaging [32–34]. ResNet-50
was used in this study.

• DenseNet was proposed with dense connections between layers to reuse features and
preserve the global state. DenseNet demonstrated outperforming results on small
benchmarking datasets such as Cifar-10 and Cifar-100 [29]. DenseNet-121 was adopted
in this study.

• MobileNet was proposed primarily with depthwise separable convolutions as an
efficient model with high accuracy and low latency for mobile and embedded applica-
tions. The effectiveness of MobileNets has been demonstrated for various applications,
such as object detection, traffic density estimation, and computer-aided diagnosis
systems [30,35–38]. MobileNetV2 was used in this study.

• EfficientNets is a family of models proposed by Google in 2019. EfficientNets outper-
formed state-of-the-art accuracy with up to 10 times better efficiency. A compound scal-
ing method was proposed in EfficientNets to expand the depth, width, and resolution
of the network. EfficientNets obtained state-of-the-art capacity in various benchmark
datasets while requiring less computing resource than other models. EfficientNet-B7
was used in experiments of this study.

All baseline models were trained using balanced sampling from each class over
100 epochs. Model training and testing were implemented using PyTorch and OpenCV on
an Ubuntu server with four Tesla V100 graphics processing units. The mean (±standard
deviation) performance of each method was evaluated using Scikit Learn with Python 3.6.
Classification performances were evaluated based on precision, sensitivity (recall), speci-
ficity, F1 score, accuracy, and the multi-class area under receiver operating characteristic.

3. Results
3.1. Implementation Details

MobileNet [30] was adopted for these experiments as the calcification detection
CNN; it was trained over 100 epochs. The size of the calcification patches was set to
14× 14 pixels. A six-layer CNN was constructed as the feature extractor following ResNet
architecture [39]. The extracted features were fused with position embeddings as the node
features of the resultant calcification graphs. Hyperparameters were selected by grid search.
The dimension of node features is 80. The number of graph convolutional layers was set to
three, and the number of fully connected layers was set to two. The number of neighbors
in KNN was selected to be eight. γ was set to two, the same as the original focal loss paper.
The network was trained using the Adam [40] optimizer over 100 epochs, and the learning
rate was initially set to 3× 10−4 and decayed during the training process.

3.2. Results

We trained and tested the proposed GNN and baseline models in a 5-fold cross
validation manner. In each split, 80% of the 292 breast cancer cases were used for training,
and 20% cases were used to evaluate the results. Calcifications following the cluster or
regional distribution patterns were the most common, accounting for 50.1% and 27.7% of
the samples, respectively. The segmental pattern was found in 14.2%, the diffuse pattern
in 6.0%, and the linear pattern in 2.0%. In this study, the total number of patients was
n = 199, and the mean age was 54 ± 11.90. The reasons for mammography examinations
were diagnosis (n = 147, 73.5%) and screening, (n = 53, 26.5%). The majority revealed
palpable mass (n = 99, 49.5%), followed by asymptomatic findings or subsequent screening
(n = 51, 25.5%); lumps (n = 25, 12.5%); positive mammographic findings referred from
outside hospitals (n = 16, 8%); and miscellaneous (n = 9, 4.5%). According to the standard
of the BI-RADS breast density and final assessment, breast densities were classified into
composition A (n = 5, 2.5%); B (n = 34, 17%); C (n = 144, 72%), and D (n = 17, 8.5%). The
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final category assessment showed 4A, eight cases (4%); 4B, thirty-five cases (17.5%); 4C,
thirty-nine cases (19.5%); and 5, one hundred and eighteen cases (59%). After surgical
resection and histopathology tissue evaluation, there were one hundred and nineteen cases
(59.5%) of invasive ductal carcinoma (IDC); sixty-three cases (31.5%) of ductal carcinoma in
situ (DCIS); seven cases (3.5%) of IDC plus DCIS; and eleven cases (5.5%) resulting from
another pathology.

Model performance after training was evaluated using the testing subset in each
split. The proposed method outperformed the other methods in distribution pattern
classification across most performance metrics, including: sensitivity, specificity, F1 score,
accuracy, and multi-class area under the curve (AUC). Table 1 shows these metrics for
all tested methods, including the proposed method. The confusion matrix of one fold in
five-fold cross validation is shown in Figure 3, and receiver characteristic curves (ROCs) of
the distribution pattern classification are shown in Figure 4.

Table 1. Performance of various methods on overall distribution classification.

Precision Sensitivity Specificity F1 Score Accuracy Multi-Class
AUC

ResNet 0.388 (±0.067) 0.594 (±0.019) 0.810 (±0.013) 0.459 (±0.044) 0.594 (±0.019) 0.672 (±0.035)

DenseNet 0.388 (±0.060) 0.590 (±0.013) 0.808 (±0.012) 0.451 (±0.034) 0.590 (±0.013) 0.657 (±0.025)

MobileNet 0.507 (±0.037) 0.607 (±0.009) 0.816 (±0.008) 0.481 (±0.018) 0.607 (±0.009) 0.695 (±0.882)

EfficientNet 0.356 (±0.043) 0.581 (±0.009) 0.802 (±0.003) 0.430 (±0.015) 0.581 (±0.009) 0.695 (±0.030)

Proposed
Method 0.522 (±0.028) 0.643 (±0.017) 0.847 (±0.009) 0.559 (±0.018) 0.643 (±0.017) 0.745 (±0.030)

Abbreviation: AUC, area under the curve. Bold here is used to highlight the performance of the proposed model.

Figure 3. Confusion matrix for distribution classification in one fold of five-fold cross validation.
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Figure 4. Multi-class receiver operating characteristic curves for distribution classification.

We interpreted the prediction results using graphical saliency maps generated by the
Grad-Cam [41]. In these saliency maps, node importance is encoded with the color of
the node. Figure 5 shows selected visualization examples. For each distribution category,
an example mammogram is shown on the left, a graphical saliency map is shown in the
middle, and a saliency map generated from the ResNet baseline model is shown on the
right for comparison.

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Visualizations of calcification diffusion patterns. One example from each distribution
category is selected to be shown in (a–e). In each left panel, the radiologist’s annotation is outlined in
red. Each middle panel shows the graphical saliency map for the corresponding image. Nodes are
color-coded according to importance, where blue indicates low importance to the proposed network,
yellow indicates medium importance, and red indicates high importance. Each right panel shows the
saliency map using the ResNet baseline.

4. Discussion

To the best of our knowledge, this is the first study on the use of AI technology
to automatically classify mammographic images according to calcification distribution
patterns. Therefore, we adopted several methods of image classification (ResNet, DenseNet,
MobileNet, and EfficientNet) as baseline methods for comparative purposes. This study
showed that our proposed method outperformed the others in classifying calcification
distribution patterns across all evaluation metrics. For instance, the proposed model
yielded a better AUC than the baseline models by a range from 9.9% to 29.1%.

Classifying calcification distribution patterns remains challenging because it is difficult
to learn the discriminative semantic representations. By employing a graph convolutional
neural network to fuse the node characteristics of the calcification graph and the spatial
topological relationships, the graph classification task can be accurately performed. This
calcification module can detect calcifications in mammograms, assign them as nodes in
a calcification graph, and then represent that graph using the defined node features and
adjacency matrix. Node features were represented by deep feature maps from a CNN that
was trained on patches centered at proposed calcification locations. The adjacency matrix
was defined according to the spatial relationships between calcifications. The proposed
model works similar to a real-world radiology practice in which the topological relationship
between detection and classification of the calcification distribution pattern is considered
in mammographic images.

Conventional CNNs are widely adopted in image analysis because they can exploit
shift invariance, local connectivity, and image data compositionality as regular grids in the
Euclidean space [42,43]. However, calcifications in mammograms are often not grid-like,
and non-local information is needed. This leads to the failure of traditional CNNs, such as
those used as baseline models (see Table 1). For example, in a diffuse distribution pattern,
calcifications are scattered randomly throughout the breast, but in a regional distribution,
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they are scattered across a large volume of breast tissue. Distinguishing between the two
requires both long-range and non-local information from the mammographic image. By
incorporating spatial information, the proposed method can outperform every baseline
model in distinguishing between these two distribution patterns. Similar benefits of graph
convolutional networks have also been found in semantic segmentation and point cloud
classification problems [44–46].

Our developed model is interpretable, and the interpretation of predictions is consis-
tent with the clinical knowledge. In Figure 5a, all nodes are of high importance, and they
are in a small cluster, leading to identification of the cluster distribution pattern. The impor-
tant calcifications in Figure 5b were found to form a linear distribution pattern. Figure 5c
shows a segmental distribution pattern, where important nodes comprise a large part of the
calcifications, and the region is larger than what is seen in the regional distribution pattern
(Figure 5d). These coincide with clinical classification criteria. Finally, Figure 5e shows that
in the diffuse distribution pattern, important nodes comprise the largest part of the graph,
an attribute that agrees with the radiologist’s annotation. In all examples in Figure 5, graph
saliency maps from the proposed model are more consistent with the radiologist’s annota-
tions than the saliency maps generated from the baseline ResNet model. In Figure 5a,b,d,
the saliency maps generated from ResNet are different from the radiologist’s annotations
on the left, which means ResNet does not capture the important visual features for the
distribution classification task. In Figure 5c,e, the baseline ResNet model fails to classify the
images into the correct distribution classes, such that the activations are low with respect to
the correct classes, and the saliency maps of these cases show non-activations in blue. The
visualized heat maps show that the proposed model can identify important calcifications
and use those to distinguish between various distribution patterns.

This study has several limitation(s). The number of cases was relatively small, given
the minor representation of the linear calcification distribution pattern. To resolve this class
imbalance, we introduced focal loss during training. Further studies employing larger
representations of the linear calcification distribution pattern are needed. Because this is
a preliminary study focusing on the novelty of our proposed method and comparing its
performance with other options, this preliminary dataset did not include mammograms
with benign calcifications or normal mammograms without calcifications. This design
feature should be eliminated in further studies. Our ongoing study employs a model
designed to classify additional features and distributions of calcifications that can be found
on mammograms.

5. Conclusions

In summary, we established an end-to-end framework for classifying calcification
distribution patterns seen on mammographic images. We developed a method to map
mammographic images, graph structured data, and convert the classification task to a graph
classification task. Our proposed deep neural network framework is an AI solution that
can automatically detect and classify calcification distribution patterns on mammograms
that are highly suspected of showing breast cancer. Further studies of the AI model are
needed, utilizing more variety in the input data, to improve its performance.
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