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Abstract: Fuzzy parameterized fuzzy hypersoft set (∆-set) is more flexible and reliable model as it
is capable of tackling features such as the assortment of attributes into their relevant subattributes
and the determination of vague nature of parameters and their subparametric-valued tuples by
employing the concept of fuzzy parameterization and multiargument approximations, respectively.
The existing literature on medical diagnosis paid no attention to such features. Riesz Summability (a
classical concept of mathematical analysis) is meant to cope with the sequential nature of data. This
study aims to integrate these features collectively by using the concepts of fuzzy parameterized fuzzy
hypersoft set (∆-set) and Riesz Summability. After investigating some properties and aggregations of
∆-set, two novel decision-support algorithms are proposed for medical diagnostic decision-making
by using the aggregations of ∆-set and Riesz mean technique. These algorithms are then validated
using a case study based on real attributes and subattributes of the Cleveland dataset for heart-
ailments-based diagnosis. The real values of attributes and subattributes are transformed into fuzzy
values by using appropriate transformation criteria. It is proved that both algorithms yield the same
and reliable results while considering hypersoft settings. In order to judge flexibility and reliability,
the preferential aspects of the proposed study are assessed by its structural comparison with some
related pre-developed structures. The proposed approach ensures that reliable results can be obtained
by taking a smaller number of evaluating traits and their related subvalues-based tuples for the
diagnosis of heart-related ailments.

Keywords: Riesz Summability; soft set; fuzzy soft set; fuzzy parameterized fuzzy soft set; hypersoft
set; decision-making; aggregation operator; Cleveland dataset

1. Introduction

The customary theory of reasoning is not constantly pertinent in everyday life circum-
stances, where the handy information is indistinct or rough. To cope with such variety
of circumstances, a definite category of sets called fuzzy sets ( f -sets) (put forward by
Zadeh [1]) was observed as suitable. In such sets, each entity of universal set is stated by a
belonging grade within [0, 1]. Nevertheless, to handle situations with more complication
and hesitation, it was examined that f -sets portrayed some inadequacy for the justifica-
tion with some parameterization modes. To deal with this insufficiency, Molodtsov [2]
developed soft sets (s-sets) as a new arithmetical parameterized structure. In s-sets, every
attribute is mapped to the power set of universal set while characterizing approximate
function. A novel model of fuzzy soft sets ( f s-sets) [3,4] was conceptualized by hybridizing
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f -sets and s-sets. Ali et al. [5], Li et al. [6], Maji et al. [7], Pei et al. [8], and Sezgin et al. [9]
discussed the rudiments of s-sets with numerical examples. Babitha et al. [10,11] intro-
duced the concept of relations, functions, and orders under soft set environment. The
researcher [12,13] made rich contributions to the applications of s-set hybrids in decision
making (DM).

Various real-life states of affairs demand the categorization of attributes into their
respective subattributive nonoverlapping sets. The classical literature on s-sets is not
capable for these situations; therefore, Smarandache [14] introduced hypersoft sets (hs-sets)
to deal with insufficiencies of s-sets and to handle the environments with multiargument
approximate function (maa-function). The basic axiomatic and algebraic properties of hs-
sets have been investigated in [15] and explained by numerical examples. Ihsan et al. [16]
discussed the validity of hs-sets for the entitlement of multidecisive opinions under expert
set environment. Rahman et al. [17–23] explored the blended operational aspects of hs-
sets by considering settings such as complex setting, convexity and concavity setting,
parameterization setting, rough setting, and bijection setting. They utilized algorithm-
based techniques to resolve real-world DM issues. Saeed et al. [24–29] characterized
the novel notions of neutrosophic hypersoft mappings, complex multifuzzy hs-set, and
neutrosophic hypersoft graphs with applications in decision-making and clinical diagnosis.
Saqlain et al. [30–32] discussed decision-making techniques for neutrosophic hs-set with
the help of aggregation operators and accuracy functions. Recently, Rahman et al. [33,34]
made significant additions in the literature of hs-set by using its hybridized models in
medical diagnosis and material selection, respectively.

A rapid increase has been reported in heart-related diseases due to substandard
edibles, lack of physical exercises, and dull routine of work. The problem of diagnosing
heart-related diseases has become crucial and critical. Several deaths have been reported
roughly in every part of the world due to such diseases. This has drawn the attention of
researchers and cardiologists to carve out various techniques to overcome this problem.
Due to the involvement of various factors, it is very hard to identify the exact reasons for
such diseases; therefore, most experts usually prefer to assess the susceptibility of patients
for such diseases by using various techniques due to their severity. The researchers [35–38]
made significant contributions by introducing various techniques to observe the behavior
of electroencephalogram signals that are very helpful for the above mentioned problem.

1.1. Research Gap and Motivation

The concept of fuzzy parameterization is in fact intended for allocating the fuzzy grade
to each attribute (or subattribute) in the domain of single-argument (or multiargument) ap-
proximate function. This concept has been discussed by several researchers [39–48] using
soft-set-like models. In these models, fuzzy parameters are taken as elements in the domain
of soft approximate mapping and fuzzy subsets are taken as elements in its codomain. Re-
cently, the researchers [49–54] discussed the concept of fuzzy parameterization in matrices
under soft set environment. They characterized various new properties and operations
with matrix setting and applied them in decision-making, spaces, and numerical data
classification. It can easily be observed that these models are unable to tackle the following
settings collectively:

1. The hypersoft setting, which demands the categorization of parameters into their
relevant subclasses containing their subparametric values; such kind of classification
can only be managed by employing maa-function, which takes the Cartesian product
(C-product) of subparametric-valued classes as its domain and then approximates
them for universal set.

2. Riesz Summability setting, which is capable of tackling the sequential nature of data.

The existing literature is unable to provide any model that may address these lim-
itations collectively. This scarcity of literature is the main source of inspiration for this
research. The proposed study is an integrated study of two models: fuzzy parameterized
fuzzy hypersoft set (∆-set) and Riesz Summability. This integration is capable of coping
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with the above mentioned settings collectively for the diagnosis of heart diseases by taking
real data from Cleveland dataset (CD-set).

1.2. Significant Contributions

The significant contributions of the study are outlined as follows:

1. An innovative model fuzzy parameterized fuzzy hypersoft set (∆-set) is characterized
and some of its axiomatic cum algebraic properties are investigated. This model
employs maa-function with fuzzy parametric tuples as its domain and collection of
fuzzy subsets as its codomain;

2. The classical concept of Riesz mean is reviewed and modified for hs-settings;
3. The real attributes of CD-set are analyzed for heart-based ailments analysis and only

those of them are opted that have a pertinent role for the adopted model;
4. In order to have their respective attribute values, the operational roles of all opted

attributes are discussed along with description on their measuring units;
5. The opted traits and their subvalues are changed to fuzzy values by employing a

suitable algebraic technique;
6. Two algorithms (one for aggregations of ∆-set and other for Riesz mean) are proposed

and implemented in real-world scenario of medical diagnosis for heart diseases based
on fuzzy-valued attributes of CD-set.

2. Preliminaries

In this segment of the paper, the necessary definitions are recollected to make the
proposed concept clear to readers. The symbols Ü , I, and P(Ü ) stand for initial universe,
closed unit interval, and power set, respectively, throughout the paper.

Definition 1 ([1]). A f -set P is characterized by P = {(û,AP (û))|û ∈ Ü} with AP : Ü → I
and the value AP (û) is recognized as grade of membership with respect to û ∈ P .

Definition 2 ([1]). Let P1 and P2 are two f -sets. The f -set P1 is said to be subset of other f -set
P2, denoted by P1 ⊆ P2, if AP1(û) ≤ AP2(û).

Definition 3 ([1]). The union of two f -sets P1 and P2 is also a f -set P , denoted by P1 ∪P2, such
that its membership grade AP is given as AP (û) = Max{AP1(û),AP2(û)} for all (û) ∈ Ü .

Definition 4 ([1]). The intersection of two f -sets P1 and P2 is also a f -set P , denoted by P1 ∩P2,
such that its membership grade AP is given as AP (û) = Min{AP1(û),AP2(û)} for all (û) ∈ Ü .

Definition 5 ([1]). The complement of a f -set P is also a f -set, denoted by P c, such that its
membership grade AP c is given as AP c(û) = 1−AP (û) for all (û) ∈ Ü .

Definition 6 ([2]). If E is a set containing attributes, then the family of pairs (FS ,G) is called
s-set on Ü , in which FS : G→P(Ü ) and G ⊆ E.

Definition 7 ([7]). Union of two s-sets (MS1 ,Z1) and (MS2 ,Z2) is a s-set (MS3 ,Z3) with
Z3 = Z1 ∪ Z2 and for ẑ ∈ Z3,

MS3(ẑ) =


MS1(ẑ)
MS2(ẑ)

MS1(ẑ) ∪MS2(ẑ)

ẑ ∈ (Z1 \ Z2)
ẑ ∈ (Z2 \ Z1)
ẑ ∈ (Z1 ∩ Z2)

.

Definition 8 ([7]). Intersection of two s-sets (MS1 ,Z1) and (MS2 ,Z2) is a s-set (MS3 ,Z3)
with Z3 = Z1 ∩ Z2 and for ω ∈ Z3,MS3(ω) =MS1(ω) ∩MS2(ω).

Additional description on S-set and its operational properties can be reviewed in [3,7].
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Definition 9 ([14]). If E is a set containing attributes and H is a collection consisting of the
C-product of nonoverlapping subclasses having subattributive values, then the family of pairs
(W , H ) is known as hs-set on Ü with W : H →P(Ü ).

Definition 10 ([14]). A hs-set (W , H ) is stated as fuzzy hs-set when P(Ü ) in W : H →P(Ü )
is substituted with F (Ü ), where F (Ü ) is the family of f -sets.

The references [14,15] are very useful for consulting more operational properties of hs-set.

Definition 11 ([39]). A f p f s-set RS is stated as RS = {(ℵS (ä)
ä , h̄S (ä));ℵS (ä) ∈ F (Ü ),

h̄S (ä) ∈ F (Ü ) & ä ∈ A}, where A ⊆ E, ℵS : A→ I and h̄S : A→ F (Ü ).

Definition 12 ([55,56]). If (x̂p)n
1 is a sequence with Xn =

n
∑

p=1
x̂p and n, x̂p ∈ N+, then the

matrix Mx̂ =
[
mx̂

np

]
of Riesz mean is stated as

mx̂
np =

{
x̂p
Xn

, p ∈ [0, 1]
0 , p > n

. (1)

The necessary and sufficient condition for regularity of Riesz mean is Xn → ∞ when n → ∞.

Furthermore, every Riesz mean follows limitation method discussed in [57] and
∞
∑

p=1

∣∣∣mx̂
np

∣∣∣ = 1. For

sequence (ŷp)n
1 , Riesz transform is given as

ẑn =
n

∑
p=1

x̂pŷp

Xn
(2)

Example 1. If we take n = 5 in Equation (2), we have

ẑ5 =
x̂1ŷ1 + x̂2ŷ2 + x̂3ŷ3 + x̂4ŷ4 + x̂5ŷ5

x̂1 + x̂2 + x̂3 + x̂4 + x̂5

3. Fuzzy Parameterized Fuzzy Hypersoft Set (∆-Set)

The aim of this part is to present the characterization of basic notions of ∆-set intro-
duced by Rahman et al. [48] as a generalization of the concepts stated in [39,43,44] with
some modifications. Let Bi, i = 1, 2, . . . , n be parameter-valued sets for parameters ∂̈i ∈ E

(a set of parameters) with Bi ∩ Bj = ∅, ∂̈i 6= ∂̈j, i 6= j and B =
n
∏
i=1

Bi = B1 ∗ B2 ∗ . . . ∗ Bn.

The notations ⊆ f , \ f ,∪ f ,∩ f will present the concept of subset, set difference, union, and
intersection under fuzzy s-set environment.

Definition 13. A ∆-set S∆ is defined as

S∆ =
{ (

b̂
δ∆(b̂)

, ϑ∆(b̂)
)

; δ∆(b̂) ∈ F(Ü ), ϑ∆(b̂) ∈ F(Ü )& b̂ ∈ B
}

, where δ∆ : B → I with

δ∆(b̂) as fuzzy membership corresponds to each b̂ ∈ B and ϑ∆ : B → F(Ü ) is a multiargument
approximate function with ϑ∆(b̂) = { ûi

µb̂(ûi)
, ûi ∈ Ü} as fuzzy hypersoft approximate element of

S∆. The collection of all ∆-sets is denoted by Ω∆.

The ∆-set is the generalization of f -set, s-set, f s-set, hs-set, f hs-set, and f p f s-set. Some
of its particular cases are as follows:

1. It transforms to f p f s-set if hs-setting is replaced with s-setting.
2. It takes the form of f hs-set if fuzzy parameterization is omitted.
3. It converts to f s-set if fuzzy parameterization is ignored and hs-setting is replaced

with s-setting.
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4. It becomes s-set if fuzzy parameterization is ignored, hs-setting is replaced with
s-setting and fuzzy grades are omitted.

5. It converts to f -set if fuzzy parameterization is ignored, hs-setting is replaced with
s-setting, and fuzzy approximations are ignored.

Example 2. Let Ü = {û1, û2, . . . , ûn} and E = {∂̈1, ∂̈2, . . . , ∂̈n}. The parameter-valued sets
for each member of E are B1 = {b̂11, b̂12}, B2 = {b̂21, b̂22}, . . . , Bn = {b̂n1, b̂n2}, and B =
B1 ∗ B2 ∗ . . . ∗ Bn with B = {b̂1, b̂1, . . . , b̂k}, where each b̂i is a n-tuple element of B with

k =
n
∏
i=1
|Bi|, |.| stands for set cardinality. The ∆-set S∆ can be constructed as

S∆ =


(

b̂1
0.1 ,
{

û1
0.1 , û2

0.2

})
,
(

b̂2
0.2 ,
{

û3
0.3 , û5

0.5

})
,
(

b̂3
0.3 ,
{

û4
0.4 , û6

0.3

})
,

. . . ,
(

b̂k−1
0.5 ,

{
û2
0.2 , ûn−2

0.5 , ûn−1
0.1

})
,
(

b̂k
0.6 ,
{

û2
0.2 , ûn−1

0.4 , ûn
0.3

})
, which states that for approx-

imate element S∆(b̂1) with fuzzy membership 0.1 (i.e., 10%) in domain of S∆, the alternatives
û1 and û2 have fuzzy memberships 0.1 (i.e., 10%) and 0.2 (i.e., 20%), respectively. All remaining
alternatives have fuzzy membership 0 corresponding to b̂1 ∈ B. Other approximate elements
S∆(b̂i), i = 2, 3, . . . , n can be interpreted in a similar way.

Definition 14. If S∆ ∈ Ω∆, then for δ∆(b̂) = 0 and ϑ∆(b̂) = ∅ for all b̂ ∈ B, S∆ is known as
an empty ∆-set and is denoted by S∅.

Definition 15. If S∆ ∈ Ω∆, then for δ∆(b̂) = 1 and ϑ∆(b̂) = Ü with fuzzy membership equal to
1 for all b̂ ∈ B, S∆ is called a universal ∆-set and is denoted by SÜ .

Definition 16. Let S∆1 ,S∆2 ∈ Ω∆; then, S∆1 is a ∆-subset of S∆2 , denoted by S∆1 ⊆ S∆2 if
δ∆1(b̂) ≤ δ∆2(b̂) and ϑ∆1(b̂) ⊆ f ϑ∆2(b̂) for all b̂ ∈ B.

Definition 17. The ∆-set Sc
∆ is called the complement of S∆ ∈ Ω∆ if δc

∆(b̂) = 1− δ∆(b̂) and
ϑc

∆(b̂) = Ü \ f ϑ∆(b̂) for all b̂ ∈ B.

Definition 18. Let S∆1 ,S∆2 ∈ Ω∆; then, their union S∆1 ∪S∆2 is a ∆-set S∆ with δ∆(b̂) =
max{δ∆1(b̂), δ∆2(b̂)} and ϑ∆(b̂) = ϑ∆1(b̂) ∪ f ϑ∆2(b̂) for all b̂ ∈ B.

Definition 19. Let S∆1 ,S∆2 ∈ Ω∆; then, their intersection S∆1 ∪ S∆2 is a ∆-set S∆ with
δ∆(b̂) = min{δ∆1(b̂), δ∆2(b̂)} and ϑ∆(b̂) = ϑ∆1(b̂) ∩ f ϑ∆2(b̂) for all b̂ ∈ B.

Example 3. Let Ü = {û1, û2, û3, û4, û5} andE = {∂̈1, ∂̈2, ∂̈3}. The subparametric-valued disjoint
sets corresponding to each member of E are B1 = {b̂11},B2 = {b̂21, b̂22}, and B3 = {b̂31, b̂32},
respectively; so, B = B1 ∗B2 ∗B3 = {b̂1, b̂2, b̂3, b̂4}. The ∆-sets S∆1 ,S∆2 are constructed as

S∆1 =
{ (

b̂1
0.1 ,
{

û1
0.1 , û2

0.2

})
,
(

b̂2
0.2 ,
{

û3
0.3 , û5

0.5

})
,
(

b̂3
0.3 ,
{

û2
0.4 , û4

0.3

})
,
(

b̂4
0.5 ,
{

û1
0.2 , û4

0.5

}) }
S∆2 =

{ (
b̂1
0.2 ,
{

û2
0.2 , û3

0.4

})
,
(

b̂2
0.3 ,
{

û2
0.5 , û5

0.4

})
,
(

b̂3
0.5 ,
{

û1
0.4 , û3

0.4

})
,
(

b̂4
0.2 ,
{

û4
0.4 , û5

0.6

}) }
then

S∆1 ∪S∆2 =


(

b̂1
0.2 ,
{

û1
0.1 , û2

0.2 , û3
0.4

})
,
(

b̂2
0.3 ,
{

û2
0.5 , û3

0.3 , û5
0.5

})
,(

b̂3
0.3 ,
{

û1
0.4 , û2

0.4 , û3
0.4 , û4

0.3

})
,
(

b̂4
0.5 ,
{

û1
0.2 , û4

0.5 , û5
0.6

})


and
S∆1 ∩S∆2 =

{ (
b̂1
0.1 ,
{

û2
0.2

})
,
(

b̂2
0.2 ,
{

û5
0.4

})
,
(

b̂3
0.3 ,
{

∅
0.0

})
,
(

b̂4
0.2 ,
{

û4
0.4

}) }
.

4. Methodology and Algorithms

In this section, an algorithm based on fuzzy decision set of ∆-set S∆ is proposed for
clinical DM by using CD-set [58]. The pictographic demonstration of the inclusive assumed
methodology of the study is provided in Figure 1.
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Figure 1. The pictographic demonstration of inclusive methodology.

4.1. Aggregations of ∆-Set

Definition 20. Let ∆-set S∆ ∈ Ω∆; then, a type-1 fuzzy decision set of S∆ (i.e., SD1
∆ ) is symbol-

ized as SD1
∆ =

{
ζD1

∆ (û)/û : û ∈ Ü
}

, where ζD1
∆ : Ü → I and

ζD1
∆ (û) =

1
|B| ∑

b̂∈B
δ∆(b̂)Γϑ∆(b̂)

(û) (3)

where |B| stands for the set cardinality of B with

Γϑ∆(b̂)
(û) =

{
ϑ∆(b̂) ; û ∈ Γϑ∆(b̂)

0 ; û /∈ Γϑ∆(b̂)
. (4)

By Equation (3), it is observed that the following steps must be followed to compute the value
of ζD1

∆ (û):

1. Only select those parametric tuples that contain û in their approximations, i.e., the value of
Γϑ∆(b̂)

(û) will be equal to their corresponding fuzzy grades ϑ∆(b̂).

2. Compute the product of fuzzy parameterized value δ∆(b̂) and the obtained value of Γϑ∆(b̂)
(û);

then, determine the sum of these products.
3. Lastly, divide the computed sum with cardinality |B| of B.

Definition 21. Let ∆-set S∆ ∈ Ω∆; then, a type-2 fuzzy decision set of S∆ (i.e., SD2
∆ ) is symbol-

ized as SD2
∆ =

{
ζD2

∆ (û)/û : û ∈ Ü
}

, where ζD2
∆ : Ü → I and

ζD2
∆ (û) =

1
Xn

∑
b̂∈B

δ∆(b̂)Γϑ∆(b̂)
(û) (5)

where Xn stands for the value that is necessary to compute Riesz mean with

Γϑ∆(b̂)
(û) =

{
ϑ∆(b̂) ; û ∈ Γϑ∆(b̂)

0 ; û /∈ Γϑ∆(b̂)
. (6)

Similarly, by Equation (5), the first two steps are the same as in Definition 20 to compute the value
of ζD2

∆ (û); however, the third step is given as follows:

• Divide the computed sum with the value Xn that is explained in Definition 12 and Example 1.
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4.2. Cleveland Dataset

The CD-set [58] was developed for the analytical study of heart ailments. From the
CD-set, a total three hundred and three patients were examined for the identification of
heart-based ailments by taking into account seventy-six traits (nevertheless, only fourteen
can be utilized for experimentation and investigation) with five outcomes. The depiction of
these fourteen traits is tabulated in Table 1. In order to justify and implement hs-setting, six
patients were selected to be examined for heart-based ailments by assuming nine of the
most fitting traits. The portrayal view of these traits in conjunction with their CD-set-based
values is presented in Table 2.

Table 1. Brief description of parameters in CD-set.

Ordering Ordering Parameters Parameters
by Scrutiny by CD-Set (Short Names) (Full Names)

1 3 age Age in years
2 4 sex Sex (male/female)
3 9 cp Chest pain type)
4 10 trestpbs Resting blood pressure (mm Hg)
5 12 chol Serum cholesterol (mg/dL)
6 16 fbs Fasting blood sugar (120 mg/dL)
7 19 restecg Resting electrocardiographic results
8 32 Thalach Maximum heart rate achieved
9 38 Exang Exercise-induced angina

10 40 Oldpeak ST depression induced by exercise relative to
rest

11 41 slope The slope of the peak exercise ST segment

12 44 ca Number of major vessels (0–3) colored by
fluoroscopy

13 51 thal 3 = normal; 6 = fixed defect; 7 = reversible
defect

14 58 num Diagnosis of heart disease (angiographic
disease status)

Table 2. Description of subparametric values for opted parameters.

Ordering Ordering Parameters Parameters Values related
by Scrutiny by CD-Set (Short Names) (Full Names) to Parameters in CD-Set

1 3 age Age in years 0–20, 21–40, 41–60, Above 60

3 9 cp Chest pain type 1. Typical angina, 2. atypical angina,
3. non-anginal pain, 4. asymptomatic

4 10 trestpbs Resting blood pressure (mm Hg) 90–200 mm Hg
5 12 chol Serum cholesterol (mg/dL) 126–564 mg/dL
6 16 fbs Fasting blood sugar (120 mg/dL) 120 mg/dL
8 32 Thalach Maximum heart rate achieved 71–195

10 40 Oldpeak ST depression induced by exercise
relative to rest 0.0–5.6

11 41 slope The slope of the peak exercise
ST segment 1. upsloping, 2. flat, 3. downsloping

13 51 thal 3 = normal; 6 = fixed defect;
7 = reversible defect

1. normal, 2. fixed defect, 3. reversible
defect

4.3. Salient Features of Opted Attributes

In order to have justification regarding the selection of attributes, this segment de-
scribes some of their salient features for heart-based ailments analysis. The features are
conferred underneath:

1. Age. Aging is a self-determining menace aspect for heart ailments. Although this
factor is reported higher in aged persons (more than 60 years), with the involvement
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of various supplementary reasons, adults can also be in danger. The cardiologists
have classified the aging factor into four groups: (i) 20 years or less, (ii) 40 years or
less, (iii) 60 years or less, (iv) more than 60 years.

2. Chest Pain Type. Chest pain is a significant factor that leads to the suffering of cardiac
disorder. It may vary due to quality, span, area, and force. Its intensity may be sharp,
distressing feeling, and deadly upset. The chest pain attached with heart diseases can
be sorted as Typical Angina (TA), Atypical Angina (ATA), Non-Anginal pain, and
Asymptomatic (AM) (see [58]). The first two types are considered significant factors
towards the suffering of heart diseases; the others are of less significance but cannot
be ignored.

3. Resting Blood Pressure. This pressure is produced due to blood flow in blood vessels
on its walls. The narrowness of the blood vessels is reported due to this pressure. The
medical experts have sorted it as systolic and diastolic. These are produced during
active blood flow and relaxing state, respectively. Its measuring unit is mm Hg, in
accordance with dataset. The standard values for systolic and diastolic are 120 and
80 mm Hg, respectively. More than 120 mm Hg and less than 80 mm Hg (see [59]) are
considered abnormal values for systolic and diastolic, respectively.

4. Serum Cholesterol. Cholesterol is a variety of fat, recognized as lipid, which is encap-
sulated in proteins bundles (lipoproteins) and flows in blood vessels and capillaries.
The common types of cholesterol are LDL, HDL, and triglycerides. These cholesterols
cause the narrowness of the blood vessels, which may lead to severe heart issue. The
LDL and HDL are also regarded as bad cholesterol and good cholesterol, respectively.
A particular lab test ”Lipid Profile Test (LPT)“ is used to assess the values of these
cholesterols. Its measuring unit is mg/dL, which is used in the adopted dataset. The
serum cholesterol depends upon these cholesterol collectively and its level is deter-
mined by summing up the values of HDL and LDL along with 20% of triglycerides.
Its values lie in the interval [126, 564] (see [60]). The types of cholesterol and their
ranges are provided in Figure 2.

5. Fasting Blood Sugar. This is regarded as another authentic factor for the analysis of
heart diseases. It is usually observed that heart patients have high glucose due to the
”tension reaction“. In other words, nondiabetic patients may also have its high ratio.
The ranges for its usual observed values are presented in Figure 3. Its measuring unit
is mg/dL, which is used in the adopted dataset. A value of 120 mg/dL (see [58]) is
regarded as a typical value for healthy individual.

6. Maximum Heart Rate Achieved. Heart rate is the number of hearts beats per minute
(bpm) and is regarded as a reliable source to determine the oxygen utilization in heart
patients. Its values lies in the interval of 71 bpm, 195 bpm (see [61]).

7. Oldpeak and Slope. Oldpeak is usually meant for Shock-Toxicity depression (also
known as ST-depression), which is provoked by rest-base work out. It is regarded as
a trustworthy ECG (electrocardiogram) result for the analysis of disruptive coronary
issues. Its measuring unit is mm, which can take values from the interval [0.0, 0.5].
Figure 4 presents its pictographic view. Its slope can be sorted into three types
(see [58]): (i) Upsloping, (ii) Flat (Horizontal), (iii) Downsloping. The pictorial display
of these categories is presented in Figure 5.

8. Thal. This is a familiar turmoil of blood recognized as thalassemia, which can be
sorted into four categories: (i) Null (i.e., no flow of blood at all) (ii) Fixed Defect
(i.e., partial flow of blood in some sections of the heart), (iii) Normal Blood Flow,
and (iv) Reversible Defect (i.e., observation of blood flow without normality). The
corresponding values assigned by medical experts to these categories are 0, 3, 6,
and 7, respectively (see [58]). In case of heart disease diagnosis, the category (i) is
usually disregarded.
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Figure 2. Types of Cholesterol and their healthy ranges.

Figure 3. Ranges of Blood Sugar.

Figure 4. ST-segment in ECG (source: Wikipedia).

Figure 5. Pictographic view of ST-segment (source: https://litfl.com/st-segment-ecg-library (ac-
cessed on 3 October 2021)).

https://litfl.com/st-segment-ecg-library
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4.4. Determination of Fuzzy-Values-Based Ranges for Opted Parameters

This part aims to describe a criterion to convert the original values (the allocated
valued by CD-set) of parameters to fuzzy-values-based ranges. This task is accomplished
with the employment of an algebraic criterion whereby its fuzzy-values-based range with
respect to each parameter is determined by dividing its allocated values with maximum
allocated value. For example, in Table 3, the maximum value is 80 years against the first
parameter; therefore, by dividing all other allocated values of age by 80, the required ranges
are obtained. In this way, the fuzzy-values-based ranges for remaining parameters are
determined. Table 3 presents all such ranges.

Table 3. Fuzzy-values-based ranges of opted parameters.

Selected Parameters Relevant Values in CD-Set Transformed Fuzzy
Membership Grades

Age 0–20, 21–40, 41–60, 61–80 0–0.25, 0.2625–0.50, 0.5125–0.75,
0.7625–1.00

Chest pain type) 1, 2, 3, 4 0.25, 0.50, 0.75, 1.00
Resting blood pressure 90–200 0.45–1.00

Serum cholesterol 126–564 0.2234–1.0000
Fasting blood sugar 0, 120 0,1

Maximum heart rate achieved 71–195 0.3641–1.0000
Oldpeak 0.0–5.6 0–1

Slope 1, 2, 3 0.33, 0.66, 1.00
Thal 3, 6, 7 0.43, 0.86, 1.00

4.5. Declaration of Problem

Mathematical approaches for medical identification of definite ailments have earned
immense concentration from scholars. These approaches may entail factual or imaginary
information/records. With the introduction of f -set, investigators have been tempted to
f -set-based approaches for medicinal analysis with vague settings. Several developments
have been established in this field. The f hs-set has gained much significance in this regard
as it has the potential to generalize the classical models and to manage the shortcomings
depicted by these structures. It is scrutinized that few researches have been reported so far
relating to medicinal study of definite ailments based on mathematical context with f hs-
setting and fuzzy parameterization setting by assuming factual data. It is a commendable
aspect of this study that factual variables of CD-set have been utilized to the context of
medicinal analysis of heart-related ailments under a reliable-cum-flexible model. The
factual input variables are assigned a specific degree of uncertainty to assist the medical
expert in judging the vague nature of these variables.

4.6. Proposed Algorithm Based on ∆-Set and Its Implementation

Now, an algorithm (Algorithm 1) is put forward by taking into consideration the
aggregations of ∆-set with the aim of medicinal identification of heart-related diseases.
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Algorithm 1: Steps for the analysis of heart-related diseases based on ∆-set.
. Start
. Input:
1. Assume Ü = { p̂1, p̂2, p̂3, . . . , p̂k} as an initial universe containing the list of
patients being examined.
2. Assume Ê = {∂̈1, ∂̈2, ∂̈3, . . . , ∂̈n} as a collection of attributes.
3. Categorize the elements of Ê into nonoverlapping subclasses containing their
subparametric values:
Ê 1 = {∂̈11, ∂̈12, . . . , ∂̈1n}, Ê 2 = {∂̈21, ∂̈22, . . . , ∂̈2n}, Ê 3 = {∂̈31, ∂̈32, . . . , ∂̈3n}, . . . ,
Ê n = {∂̈n1, ∂̈n2, . . . , ∂̈nn}.
. Construction:
4. Determine C-product G = Ê 1 ∗ Ê 2 ∗ Ê 3 ∗ . . . ∗ Ê n = {℘̈1, ℘̈2, ℘̈3, . . . , ℘̈r} with
r = ∏n

i=1 |Ê i|, where |Ê i| stands for the cardinality of sets Ê i.
5. Take H = {℘̈1, ℘̈2, ℘̈3, . . . , ℘̈s} ⊆ G such that s ≤ r on the basis of
decision-makers consultation.
6. Construct ∆-set S∆ by using Definition 13 and represent it in tabular notation.
. Computation:
7. Compute ζD∆ corresponding to each element p̂i, i = 1, 2, . . . , k of Ü by using
Definition 20.
8. Compute SD

∆ by using Definition 20.
. Output:
9. Choose the Max{ζD∆ ( p̂i)} as final selection.
. End

The procedural flow of this algorithm is displayed in Figure 6.

Figure 6. Algorithm Based on Decision Set of Type-1.

Now, the above algorithm is elaborated with the application below.

Example 4. Input Stage: (Step 1–Step 3) In order to make the computations easy, 6 patients are
considered who are likely to be examined for heart-related disease. The initial universe
Ü = { p̂1, p̂2, p̂24, p̂25, p̂75, p̂303} is constructed. Suppose that Ê = {∂̈1, ∂̈2, ∂̈3, ∂̈4, ∂̈5, ∂̈6, ∂̈7, ∂̈8, ∂̈9}
is the collection of parameters with descriptions such as ∂̈1 = age, ∂̈2 = chest pain type,
∂̈3 = resting blood pressure, ∂̈4 = serum cholesterol, ∂̈5 = fasting blood sugar, ∂̈6 = maxi-
mum heart rate achieved, ∂̈7 = old peak, ∂̈8 = slope, and ∂̈9 = thal. Their parametric-valued
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subclasses are as follows:

Ê 1 =

{
∂̈11 = category1, ∂̈12 = category2,
∂̈13 = category3, ∂̈14 = category4

}
,

Ê 2 =

{
∂̈21 = typicalangina, ∂̈22 = atypicalangina,
∂̈23 = non− anginalpain, ∂̈24 = asymptomatic

}
,

Ê 3 =

{
∂̈31 = 110 mmHg, ∂̈32 = 150 mmHg,
∂̈33 = 180 mmHg

}
,

Ê 4 =

{
∂̈41 = 210 mg/dL, ∂̈42 = 320 mg/dL,
∂̈43 = 430 mg/dL

}
,

Ê 5 =
{

∂̈51 = 120 mg/dL
}

,
Ê 6 =

{
∂̈61 = 81, ∂̈62 = 140

}
,

Ê 7 =
{

∂̈71 = 1.2, ∂̈72 = 3.7
}

,

Ê 8 =

{
∂̈81 = upsloping, ∂̈82 = f lat,
∂̈83 = downsloping

}
,

Ê 9 =

{
∂̈91 = normal, ∂̈92 = f ixedde f ect,
∂̈93 = reversiblede f ect

}
.

Construction Stage: Step 4
In this step, compute the C-product G = Ê 1 ∗ Ê 2 ∗ Ê 3 ∗ . . . ∗ Ê 9 = {℘̈1, ℘̈2, ℘̈3, . . . , ℘̈r},

where r is the product of cardinalities of Ê i.
Step 5:

With the mutual understanding and consensus of medical experts, ∂̈12 and ∂̈13 are given
preference in Ê 1, ∂̈21 and ∂̈22 in Ê 2, ∂̈32 in Ê 3, ∂̈42 in Ê 4, ∂̈51 in Ê 5, ∂̈61 and ∂̈62 in Ê 6, ∂̈72 in Ê 7,
∂̈83 in Ê 8, and ∂̈92 in Ê 9. Thus, the set H = {}̈1, }̈2, }̈3, }̈4, }̈5, }̈6, }̈7, }̈8} is constructed.
Step 6:

Now, we calculate fuzzy membership values µ(∂̈ij) and µ(}̈i) in accordance with Figure 3
for each ∂̈ij and }̈i, respectively, preferred by medical specialist. The fuzzy membership µ(}̈1) of
}̈1 is equal to the arithmetic mean of the fuzzy membership values of ∂̈ij belonging to tuple }̈1.
Similarly, the fuzzy membership values of the remaining }̈i, i = 2, 3, . . . , 8 can be calculated in the
same manner. These calculated values are given in Tables 4 and 5, respectively.

Now, we construct ∆-set S∆ by using Definition 13

S∆ =



(
}̈1

0.667 , { p̂1
0.2 , p̂2

0.3 , p̂24
0.0 , p̂25

0.4 , p̂75
0.6 , p̂303

0.7 }
)

,
(

}̈2
0.701 , { p̂1

0.0 , p̂2
0.4 , p̂24

0.5 , p̂25
0.6 , p̂75

0.7 , p̂303
0.8 }

)
,(

}̈3
0.695 , { p̂1

0.3 , p̂2
0.5 , p̂24

0.3 , p̂25
0.0 , p̂75

0.4 , p̂303
0.5 }

)
,
(

}̈4
0.729 , { p̂1

0.5 , p̂2
0.4 , p̂24

0.3 , p̂25
0.2 , p̂75

0.0 , p̂303
0.1 }

)
,(

}̈5
0.690 , { p̂1

0.0 , p̂2
0.2 , p̂24

0.3 , p̂25
0.4 , p̂75

0.5 , p̂303
0.6 }

)
,
(

}̈6
0.723 , { p̂1

0.4 , p̂2
0.4 , p̂24

0.5 , p̂25
0.6 , p̂75

0.8 , p̂303
0.0 }

)
,(

}̈7
0.717 , { p̂1

0.3 , p̂2
0.6 , p̂24

0.4 , p̂25
0.4 , p̂75

0.5 , p̂303
0.2 }

)
,
(

}̈8
0.751 , { p̂1

0.7 , p̂2
0.5 , p̂24

0.3 , p̂25
0.5 , p̂75

0.4 , p̂303
0.3 }

)


.

Its tabular representation is given in Table 6 (see Figure 7 for graphical interpretation).

Table 4. Fuzzy membership corresponding to each ∂̈ij.

∂̈ij µ(∂̈ij) ∂̈ij µ(∂̈ij)

∂̈12 0.5 ∂̈13 0.7

∂̈21 0.25 ∂̈22 0.50

∂̈32 0.75 ∂̈42 0.57

∂̈51 1.00 ∂̈61 0.42

∂̈62 0.72 ∂̈72 0.66

∂̈83 1.00 ∂̈92 0.86
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Table 5. Fuzzy membership corresponding to each }̈i.

}̈i }̈1 }̈2 }̈3 }̈4 }̈5 }̈6 }̈7 }̈8

µ(∂̈12) 0.5 0.5 0.5 0.5

µ(∂̈13) 0.7 0.7 0.7 0.7

µ(∂̈21) 0.25 0.25 0.25 0.25

µ(∂̈22) 0.5 0.5 0.5 0.5

µ(∂̈32) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

µ(∂̈42) 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

µ(∂̈51) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

µ(∂̈61) 0.42 0.42 0.42 0.42

µ(∂̈62) 0.72 0.72 0.72 0.72

µ(∂̈72) 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66

µ(∂̈83) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

µ(∂̈92) 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

µ(}̈i) 0.667 0.701 0.695 0.729 0.690 0.723 0.717 0.751

Table 6. Tabular Representation of ∆-set S∆.

}̈i
µ(}̈i)

\ p̂i p̂1 p̂2 p̂24 p̂25 p̂75 p̂303

}̈1
0.667

0.2 0.3 0.0 0.4 0.6 0.7

}̈2
0.701

0.0 0.4 0.5 0.6 0.7 0.8

}̈3
0.695

0.3 0.5 0.3 0.0 0.4 0.5

}̈4
0.729

0.5 0.4 0.3 0.2 0.0 0.1

}̈5
0.690

0.0 0.2 0.3 0.4 0.5 0.6

}̈6
0.723

0.4 0.4 0.5 0.6 0.8 0.0

}̈7
0.717

0.3 0.6 0.4 0.4 0.5 0.2

}̈8
0.751

0.7 0.5 0.3 0.5 0.4 0.3

Figure 7. Fuzzy Membership Values corresponding to }̈i.

Computation Stage: Step 7
Now, we calculate fuzzy membership ζD1

∆ of fuzzy decision set SD1
∆ for ∆-set S∆ corresponding

to each p̂i. For this purpose, we need to find the containment status of each p̂i in approximate values
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of }̈i. Such information is given in Table 7 and, with the help of this information, fuzzy membership
ζD1

∆ is computed for each p̂i and given in Table 8.
Step 8:

Now, we construct fuzzy decision set SD1
∆ for ∆-set S∆ corresponding to all p̂i by using their

fuzzy membership values ζD1
∆ ( p̂i), which are given in Table 8.

Table 7. Containment of p̂i in approximate values of }̈i.

p̂1 (0.2, }̈1
0.667 ), (0.3, }̈3

0.695 ), (0.5, }̈4
0.729 ), (0.4, }̈6

0.723 ), (0.3, }̈7
0.717 ), (0.7, }̈8

0.751 )

p̂2 (0.3, }̈1
0.667 ), (0.4, }̈2

0.701 ), (0.5, }̈3
0.695 ), (0.4, }̈4

0.729 ), (0.2, }̈5
0.690 ), (0.4, }̈6

0.723 ), (0.6, }̈7
0.717 ), (0.5, }̈8

0.751 )

p̂24 (0.5, }̈2
0.701 ), (0.3, }̈3

0.695 ), (0.3, }̈4
0.729 ), (0.3, }̈5

0.690 ), (0.5, }̈6
0.723 ), (0.4, }̈7

0.717 ), (0.3, }̈8
0.751 )

p̂25 (0.4, }̈1
0.667 ), (0.6, }̈2

0.701 ), (0.2, }̈4
0.729 ), (0.4, }̈5

0.690 ), (0.6, }̈6
0.723 ), (0.4, }̈7

0.717 ), (0.5, }̈8
0.751 )

p̂75 (0.6, }̈1
0.667 ), (0.7, }̈2

0.701 ), (0.4, }̈3
0.695 ), (0.5, }̈5

0.690 ), (0.8, }̈6
0.723 ), (0.5, }̈7

0.717 ), (0.4, }̈8
0.751 )

p̂303 (0.7, }̈1
0.667 ), (0.8, }̈2

0.701 ), (0.5, }̈3
0.695 ), (0.1, }̈4

0.729 ), (0.6, }̈5
0.690 ), (0.2, }̈7

0.717 ), (0.3, }̈8
0.751 )

Table 8. Fuzzy membership ζD1
∆ for each p̂i.

p̂i ζD1
∆ (p̂i)

p̂1 0.217050

p̂2 0.294063

p̂24 0.232288

p̂25 0.275663

p̂75 0.343900

p̂303 0.278850

The values of Table 8 are interpreted graphically in Figure 8.

S
D1
∆ =

{
0.217050/ p̂1, 0.294063/ p̂2, 0.232288/ p̂24,
0.275663/ p̂25, 0.343900/ p̂75, 0.278850/ p̂303

}
.

Decision Stage: Step 9
The maximum value of ζD1

∆ ( p̂i) is 0.343900 for p̂75. Hence, it is observed that the patient p̂75
is expected to be diagnosed for heart disease.

Figure 8. Fuzzy membership ζD1
∆ for each p̂i.
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4.7. Proposed Algorithm based on Riesz Summability

In this part of the paper, another algorithm (Algorithm 2) is put forward by taking
into consideration the concept of Riesz Summability to diagnose heart-related diseases
in patients.

Algorithm 2: Analysis of Heart-related Diseases through the concept of Riesz
Summability.

. Start

. Input: (1.–3.)Same as in Algorithm 1.

. Construction: (4.–6.) Same as in Algorithm 1.

. Computation:

7. Compute Xn =
n
∑

i=1
x̂i for the determination of Riesz mean according to

Definition 12.
8. Compute ζD2

∆ for all p̂i in accordance with Definition 21.
9. Compute SD2

∆ by using Definition 21.
. Output:
10. Choose the Max{ζD2

∆ ( p̂i)} as final selection.
. End

The procedural flow of this algorithm is displayed in Figure 9.

Figure 9. Algorithm Based on Decision Set of Type-2.

The above algorithm is validated with the help of the following example.

Example 5. Consider the data from Example 4, which covers all the steps of first two stages, i.e.,
input stage and construction stage of Algorithm 2. Therefore, we start with computation stage as
given below.
Computation: Step 7

Let µ(}̈1) = x̂1, µ(}̈2) = x̂2, µ(}̈3) = x̂3, µ(}̈4) = x̂4, µ(}̈5) = x̂5, µ(}̈6) = x̂6, µ(}̈7) =

x̂7 and µ(}̈8) = x̂8. Then X8 =
8
∑

i=1
x̂i = 0.667 + 0.701 + 0.695 + 0.729 + 0.690 + 0.723 +

0.717 + 0.751 = 5.673.
Step 8:

Now, we calculate fuzzy membership ζD2
∆ for each p̂i by using Definition 21, Tables 6 and 7.

The calculated fuzzy membership values are given in Table 9.
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Table 9. Fuzzy membership ζD2
∆ for each p̂i.

p̂i ζD2
∆ (p̂i)

p̂1 0.306081

p̂2 0.414684

p̂24 0.327569

p̂25 0.388736

p̂75 0.484964

p̂303 0.393231

The graphical interpretation of Table 9 is presented in Figure 10.

Figure 10. Fuzzy membership ζD2
∆ for each p̂i.

Step 9:
Now, we construct fuzzy decision set SD2

∆ for ∆-set S∆ corresponding to all p̂i by using their
fuzzy membership values ζD2

∆ ( p̂i), which are given in Table 9.

SD2
∆ =

{
0.306081/ p̂1, 0.414684/ p̂2, 0.327569/ p̂24,
0.388736/ p̂25, 0.484964/ p̂75, 0.393231/ p̂303

}
.

Decision Stage: Step 10
As the maximum value of ζD2

∆ ( p̂i) is 0.484964 for p̂75, it is observed that the patient p̂75 is
expected to be diagnosed for heart disease.

The comparison of the results obtained from both algorithms is presented in Figure 11.

Figure 11. Comparison of Decision Sets of Type-1 and Type-2.
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5. Discussion and Comparison Analysis

Yılmaz et al. [40] applied and compared the concepts of f p f s-set and Riesz Summa-
bility given by Çağman et al. [39] and Altay et al. [55], respectively, for solving decision-
making problem with hypothetical data under uncertain environment. Kirişci [41,42]
employed CD-set for the diagnosis of heart diseases through decision-making techniques
based f s-set. Rahman et al. [48] conceptualized ∆-set as a generalization of f s-set [3] and
f p f s-set [39,43,44]. This study employed fuzzy decision set techniques (modification of
aggregations discussed in [39]) of ∆-set for solving medical decision-making problem with
real values of attributes from CD-set. Kirişci used single-argument approximate function
of f s-set to deal with 11 attributes out of 14 prescribed attributes from CD-set. He assigned
hypothetical fuzzy membership values to these fuzzy parameters without any appropriate
criterion. As the single-argument approximate function maps attributes to subsets of uni-
versal set, subparametric values of adopted attributes are not focused and ignored, which
raises questions as to the reliability of decision-making. In short, the above mentioned
existing models are not capable to manage the following settings collectively:

1. The setting when parameters and their subparametric-values-based tuples are ambigu-
ous, i.e., decision makers are not sure about their preference-based selection. In other
words, the parameters and their subparametric-values-based tuples are uncertain for
decision-makers.

2. The setting where it is necessary to categorize the parameters into their related disjoint
subclasses having their subparametric values. This setting demands the entitlement
of multiargument approximate function, which has the capability to cope with such
subparametric-valued disjoint classes. Its domain is the C-product of these classes
and range is the subsets of initial universe.

On the contrary, this study has used the multiargument approximate function, which
not only focuses on attributes but also emphasizes on their corresponding attributive
values. The real attributes are taken from CD-set and then these values are converted to
their related fuzzy values by employing an appropriate criterion rather than assigning
hypothetical values. The selected attributes are further partitioned into disjoint sets having
their respective subattributive values. The C-product of these sets is obtained to furnish the
requirement for the domain of multiargument approximate function. Each element of this
domain is further transformed to fuzzy grades to cope with the scenario of ∆-set. Two types
of fuzzy decision sets are introduced for ∆-set on the basis of set cardinality and Riesz mean
that have further been used to propose algorithms for solving medical decision-making
problem for the diagnosis of heart diseases. The results have been compared and found
successful. It has been observed that both algorithms yield different fuzzy membership
values for patients under consideration but provided the same rankings (see Figure 12). The
problem of heart-disease-based medical diagnosis has not been addressed by any author
in literature under fuzzy parameterized-like models. Therefore, numerical-results-based
comparison of the proposed study is not possible with any existing fuzzy-set-like models;
however, its structural comparison is discussed with most relevant models to assess the
flexibility and advantageous aspects. Tables 10 and 11 present the structural comparison of
the proposed study by taking into consideration few pertinent factors.
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Table 10. Structural analysis of presented structure with pre-developed approaches.

Authors Structures Focus on Attributes
Focus on

Subattributive
Values

Data Set
Proper Criteria for

Fuzzification of
Fuzzy Parameters

Riesz Summability

Çağman et al. [39] f p f s-set Yes Ignored Hypothetical N/A N/A

Yılmaz et al. [40] f p f s-set Yes Ignored Hypothetical N/A Yes

Kirişci [41,42] f p f s-set Yes Ignored CD-set N/A N/A

Riaz et al. [43] f p f s-set Yes Ignored Hypothetical N/A N/A

Zhu et al. [44] f p f s-set Yes Ignored Hypothetical N/A N/A

Rahman et al. [48] f p f hs-set Yes Yes Hypothetical N/A N/A

Proposed Study f p f hs-set Yes Yes CD-set Adopted Yes

Table 11. Structural analysis of presented structure with predeveloped approaches.

Authors Structures NOA NOP Ranking Based on Riesz
Summability Method

Ranking Based on Other Adopted
Method Remarks

Kirişci [41] f p f s-set 11 06 N/A p̂1 � p̂2 � p̂24 � p̂75 � p̂25 � p̂303 subattributive values are ignored.

Kirişci [42] f p f s-set 11 06 N/A p̂75 � p̂24 � p̂25 � p̂1 � p̂2 � p̂303 subattributive values are ignored.

Proposed Study f p f hs-set 09 06 p̂75 � p̂2 � p̂303 � p̂25 �
p̂24 � p̂1

p̂75 � p̂2 � p̂303 � p̂25 � p̂24 � p̂1

Although values of both methods
are different but they both proved

analogous with similar ranking
of patients.

Figure 12. Ranking Comparison of Both Proposed Algorithms.

Merits of Proposed Study

Now, some merits of this study are underlined as follows:

1. The presented approach took the importance of inspiration of fuzzy-parameterization
associated by ∆-set to manage modern-day DM issues. The assignment of parameter-
ized fuzzy grade imitates the possibility of recognition level; in this way, it has incred-
ible prospective in the real description within the scope of computational scenarios.

2. Real attributes of CD-set are converted to fuzzy membership by using algebraic technique.
3. The sequential nature of approximate values of ∆-set is managed by employing

classical concept of Riesz Summability and analogous results have been achieved.
4. Since the presented model put emphasis on comprehensive study of parameters

(i.e., additional classification of parameters) more willingly than focusing on pa-
rameters merely, consequently, it enables decision-makers to have better and more
reliable decisions.

5. The two proposed algorithms have ranked the patients with analogous and consistent
results by considering a smaller number of attributes.
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6. Conclusions

In this article, a multiattribute, decision-based medical diagnosis for heart diseases is
discussed by using two set-theoretic models, i.e., ∆-set and Riesz Summability. The former
one ∆-set is the generalization of fuzzy parameterized fuzzy soft set, fuzzy parameterized
soft set, fuzzy soft set, and soft set. It is capable of managing the shortcomings of such
structures regarding deliberation of approximate mapping with multiarguments. This
kind of mapping considers the C-product of subparametric tuples as its domain and then
maps them to the power set of universal set. It lays emphasis on the classification of each
parameter into its respective parametric-valued sets, which is not considered by existing
soft-set-like models. The later one is a classical approach of mathematical analysis, which
is projected to tackle the sequential nature of uncertain data. As it is commonly observed
that data used in medical diagnosis are of sequential and uncertain nature, both issues are
resolved by using ∆-set and Riesz Summability. The input variables are taken from CD-set,
and the operational role of each variable is investigated. Factual input values are converted
to relevant fuzzy membership values. Two algorithms based on two types of decision set for
∆-set are proposed and validated with examples for diagnosis of patients for heart diseases.
Both algorithms are proved consistent and analogous results are achieved. As this study
has considered only fuzzy membership for dealing with uncertainties in parameters as
well as fuzzy hypersoft numbers, it depicts inadequacy to tackle scenarios with entitlement
of nonmembership and indeterminacy grades. Therefore, it can be extended to manage
such scenarios. Moreover, this can further be studied by discussing other cases under
vague settings with fuzzy parameterized settings by using more than nine attributes and
more than six patients. Its scope covers a wide range of computational intelligence and
neuroscience under fuzzy-set-like environments.

Author Contributions: Conceptualization, A.U.R., M.S., M.A.M.; methodology, A.U.R., M.S., M.M.J.;
software, A.U.R., M.A.M., M.M.J., B.G.-Z.; validation, M.M.J., B.G.-Z.; formal analysis, A.U.R., M.S.,
B.G.-Z.; investigation, A.U.R., M.S., M.M.J.; data curation, M.A.M., B.G.-Z.; writing of the original
draft, A.U.R., M.S., M.A.M.; writing of the review and editing, A.U.R., M.A.M., B.G.-Z.; visualization,
A.U.R., M.S., M.M.J.; supervision, M.S., M.A.M., M.M.J.; project administration, M.S., B.G.-Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by eVIDA Laboratory, University of Deusto Bilbao, Spain,
with the grant IT1536-22.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this research, the data relating to attributes and their subattributes
are taken from the Cleveland Data set (heart disease dataset), which is freely available online at
(http://archive.ics.uci.edu/ml/datasets/Heart+Disease) (accessed on 3 October 2021).

Acknowledgments: Authors would like to express their special thanks of gratitude to UCI Machine
Learning Repository http://archive.ics.uci.edu/ml (accessed on 3 October 2021) Irvine, CA: Univer-
sity of California, School of Information and Computer Science and its principal investigators for the
online provision of dataset. And the authors would like to thank eVIDA group from the University
of Deusto for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31. [CrossRef]
3. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602.
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