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Abstract: Obstructive sleep apnea (OSA), characterized by recurrent episodes of partial or total
obstruction of the upper airway during sleep, is currently one of the respiratory pathologies with
the highest incidence worldwide. This situation has led to an increase in the demand for medical
appointments and specific diagnostic studies, resulting in long waiting lists, with all the health
consequences that this entails for the affected patients. In this context, this paper proposes the design
and development of a novel intelligent decision support system applied to the diagnosis of OSA,
aiming to identify patients suspected of suffering from the pathology. For this purpose, two sets of
heterogeneous information are considered. The first one includes objective data related to the pa-
tient’s health profile, with information usually available in electronic health records (anthropometric
information, habits, diagnosed conditions and prescribed treatments). The second type includes
subjective data related to the specific OSA symptomatology reported by the patient in a specific
interview. For the processing of this information, a machine-learning classification algorithm and a
set of fuzzy expert systems arranged in cascade are used, obtaining, as a result, two indicators related
to the risk of suffering from the disease. Subsequently, by interpreting both risk indicators, it will be
possible to determine the severity of the patients’ condition and to generate alerts. For the initial tests,
a software artifact was built using a dataset with 4400 patients from the Álvaro Cunqueiro Hospital
(Vigo, Galicia, Spain). The preliminary results obtained are promising and demonstrate the potential
usefulness of this type of tool in the diagnosis of OSA.

Keywords: obstructive sleep apnea; design; clinical decision support system; intelligent system;
expert system; machine learning; decision making; medical algorithm; design science research

1. Introduction

Obstructive sleep apnea (OSA) is a chronic disease characterized by episodes of
total or partial collapse of the upper airway during sleep, which impairs its quality and
causes daytime sleepiness and fatigue. In addition to these, if left untreated, OSA has a
direct impact on the patient’s health as it can cause hypertension and an increased risk
of cardiovascular and cerebrovascular accidents, as well as being associated with the
development of cognitive and metabolic disorders, among others.

Faced with this problem, and with approximately one thousand million people world-
wide suffering from OSA [1], efforts have been made in the most developed countries to
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diagnose OSA at an early stage and to treat patients with this pathology. In 2015, OSA-
related expenditure in United States was 12.4 thousand million dollars [2,3]. Despite this,
it has been observed that a large number of patients suffering from this condition remain
undiagnosed and therefore untreated [1,4], a fact that cannot be ignored due to the high
health impact of this disease.

In-lab polysomnography is currently the gold standard for diagnosing OSA [5–10]
and consists of a series of physiological measurements during sleep that allow the charac-
terization of the pathology. However, there are other alternatives for diagnosing OSA that
are cheaper and simpler. One of these is cardiorespiratory polygraphy; however, this does
not provide information on neurophysiological variables [11,12]. After these studies, the
apnea-hypopnea index (AHI) is the most commonly used variable to describe and assess
the pathology. It measures the number of apnea (a complete interruption of respiratory
function for at least 10 s [13,14]) and hypopnea (a decrease of at least 30% in respiratory
flow for at least 10 s and a microarousal or desaturation less than 4% [13,14]) events that a
patient experiments in an overninght sleep study divided by the total hours slept [8,15].

Although in-lab polysomnography is a widely used and recognized technique, it
cannot be used for mass screening of the general population, at least with the technology
currently available, because of its complexity and associated high cost [8,9]. It should be
also noted that the number of accredited centers with this type of equipment is limited,
which means that many patients are only referred to this type of study when they present
with severe symptoms after a long period of suffering from the pathology [9]. All this
points to the need for standardized methods to improve the screening process, thereby
reducing the number of patients who are referred to the sleep units. Thus, priority would
be given to those patients in need of it, which would result in an improvement in the
diagnostic process and a decrease in the associated costs.

In this context, and in view of the problem described, this work deals with the design
and development of a novel intelligent decision support system for the diagnosis of pa-
tients suspected of suffering from OSA. To this end, heterogeneous patient information
is considered, both quantitative (age, body mass index, neck circumference, diagnosed
conditions and prescribed treatments) and qualitative (symptoms reported by the patient
in a sleep interview). From that, the intelligent system will be able to determine, through
the concurrent [16–22] use of a machine-learning classification algorithm and a cascade of
expert systems based on the Mamdani-type fuzzy inference system [23–26], two indicators
associated with the risk of suffering from OSA. The first one is related to data of a more
objective nature, while the second one is associated with those of a more subjective nature.
Next, both risk indicators are evaluated, allowing us to determine if the patient is at risk
of suffering from the disease, which would then require further confirmatory diagnostic
studies to be performed.

This paper is structured into five sections. The remainder of Section 1 discusses the use
of artificial intelligence approaches for the diagnosis of OSA. In Section 2, the conceptual
description of the proposed system is presented, explaining the different stages involved, as
well as the information flow. Then, the implementation of the system is detailed. Section 3
presents the results obtained from the case study. Next, Section 4 discusses the proposed
system, and finally, Section 5 presents the conclusions and future lines of development.

Artificial Intelligence Approaches for the Diagnosis of Obstructive Sleep Apnea

It is becoming increasingly common in the healthcare field to have tools and ap-
proaches to support decision-making processes [27–36]. In particular, given the complexity
of the OSA diagnostic process, several specific tools have been developed and proposed in
recent years to support the diagnostic process.

In the work by Corrado Mencar et al. [37], the efficacy and applicability of machine-
learning approaches were analyzed on a dataset with 313 patients from two sleep units
in Italy. Both demographic data and questionnaires were used to determine the degree of
severity of the patient’s OSA. Classification approaches were used, with support vector
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machines and random forest achieving the best results, with a maximum accuracy of 44.7%
in the test set. Regression approaches were used to determinate the AHI level, with the
best results obtained with support vector machines and linear regression, which had a
minimum root mean square error value of 22.17.

Along this line, in the work by Lei Ming Sun et al. [38], based on data collected
from questionnaires of 110 suspected patients who performed a polysomnography in the
teaching hospital in Taiwan, an approach was proposed that seeks to screen those patients
with moderate-severe OSA (with an AHI ≥ 15). For this purpose, genetic algorithms were
implemented, obtaining a sensitivity of 81.8% and an accuracy of 88.4% for the test set. On
the other hand, logistic regression showed a sensitivity of 55.6% and an accuracy of 57.2%.
The authors report that the prevalence of apnea in their dataset was 77%, which is far from
the real situation (common prevalence is 2 to 8% in general population [38]), so the model
may have problems when extended to real populations.

In the work by Jayroop Ramesh et al. [39], the use of machine-learning approaches was
proposed to discriminate between patients suspected of suffering from OSA, establishing
an AHI threshold value of 5. To achieve this, the Wisconsin Sleep Cohort dataset with a
total of 1479 patients (which included demographic information, physical measurements
of the patient or sleep history, among other possible questions) was used. Firstly, feature
selection techniques were applied to reduce the number of predictors. After applying
optimization techniques and training different models, it was observed that the use of
support vector machines was the model that showed the greatest results, with an accuracy
of 68.06% and a sensitivity of 88.76%.

In the work by Daniela Ferreira-Santos and Pedro Pereira-Rodrigues [40], the use
of Bayesian network classifiers, more specifically naïve Bayes and tree augmented naïve
Bayes, was proposed to help distinguish between patients who may suffer from OSA in
order to be able to decide which of them need to undergo polysomnography. With this
aim, using data from 194 patients, two possible situations had to be considered. In the
first one, the models were built with 38 variables, and accuracies of 67.1% and 66.9% and
sensitivities of 90.0% and 81.9% were observed for the naïve Bayes and tree augmented
naïve Bayes models, respectively. The second scenario, which considered only a selection
of six variables based on a body of knowledge review, showed accuracies of 70.2% and
67.5% and sensitivities of 94.1% and 90.2% for the naïve Bayes and tree augmented naïve
Bayes models, respectively.

In the work by C. Zoroglu and S. Turkeli [41], an expert system based on a Mamdani-
type fuzzy inference system was proposed, which used the body mass index, the minimum
blood oxygen saturation during sleep, the Mallampati score and the neck diameter to infer
a level of AHI related to the risk of suffering from OSA.

Similarly, in the work by J. M. Matthews et al. [42] and based on the responses to the
STOP-Bang questionnaire, a fuzzy rule-based system for the screening of OSA patients was
presented.

It is also important to note the authors’ previous work in the field of OSA, published
recently in 2023 [21], in which they presented the architecture of a then-novel intelligent
decision support system. To this end, based on the information related to the patient’s
health profile (the objective information mentioned above), the use of a series of machine-
learning algorithms that work concurrently was proposed, focused on different AHI levels
(10, 15, 20, 20, 25 and 30), with the aim of discriminating between different degrees of
severity of the condition. The system also included a corrective block, based on the use
of adaptive neuro-fuzzy inference system (ANFIS) and a particular heuristic algorithm,
through which it was possible to correct anomalous or undesired behaviors. The initial
tests of the system were carried out using a database from the Álvaro Cunqueiro Hospital
(Vigo, Galicia, Spain), obtaining results that were supported by values of the Matthews
correlation coefficient close to 0.6.

It may be appreciated that the analyzed works mostly use artificial intelligence ap-
proaches that implement learning models, thus requiring a dataset on which the algorithm
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can be trained. However, in the field of OSA, it is not so common to have public (or even
private) databases available containing a considerable number of patients. Therefore, it is
questionable whether these databases are meaningful and reliable because, generally, the
cases in them are limited and do not include different scenarios. This is the reason why the
isolated use of learning-based approaches may pose a difficulty when it is desired to build
robust and reliable models for clinical diagnosis.

2. Materials and Methods
2.1. Definition of the System
2.1.1. Database Usage

To conduct this research, a healthcare database from the Respiratory Sleep Disorders
Unit of the Pneumology Department of the Hospital Álvaro Cunqueiro (Vigo, Galicia, Spain)
was used. This database contains information on 4583 patients, collected between 2013
and 2022. It is important to clarify that the database includes patients who are suspected
of having OSA after having been evaluated by specialist pulmonologists, and cannot be
considered to represent the general population.

For practical reasons, the database used can be divided into two large groups according
to their nature.

On the one hand, there are data showing less subjectivity such as those usually present
in electronic health records. For reasons of coherence and to ease the organization of the
information, it has been grouped into four categories: general data and anthropometrics
(sex, age, weight, height and neck circumference), smoking habits (smokes, does not
smoke or smoked in the past, and, if applicable, the number of cigarettes per day and
for how many years they have been a smoker) and drinking habits (consumes alcohol
regularly, not a consumer or occasional consumer, and, if applicable, the amount of alcohol
in grams consumed per day), diagnosed conditions (hypertension, resistant hypertension,
acute cerebrovascular accident (ACVA), ACVA within the past year, diabetes mellitus,
ischemic heart disease, chronic obstructive pulmonary disease (COPD), home oxygen
therapy, rhinitis, depression, atrial fibrillation and heart failure) as well as prescribed
treatments (benzodiazepines, antidepressants, neuroleptics, antihistamines, morphics and
tranquilizers/hypnotics).

On the other hand, there is information that presents a greater degree of subjectivity
related to the symptoms reported by the patient and collected through a specific sleep
interview. This is summarized using the following items: hours of sleep, minutes taken
to fall asleep, prolonged intra-sleep awakenings, feeling of unrefreshing sleep, daytime
tiredness, morning dullness, snorer, high intensity snorer, snoring-related awakenings,
unjustified multiple awakenings, nocturia, breathlessness awakenings and reported apneas.

From the initial dataset, 183 patients were randomly selected to be reserved for test-
ing purposes and to illustrate the use of the system in the case study and were thus ex-
cluded from the training and validation process of the system. Considering the remaining
4400 patients, after the realization of the sleep studies (in most cases, cardiorespiratory poly-
graphies) and considering an AHI threshold value of 15, it was observed that 2693 patients
presented a value equal or higher than 15, who were then considered as OSA cases, while
1707 presented a lower value and were considered as non-OSA cases. It is important
to mention that an AHI value of 15 was chosen because it allows mild OSA cases to be
distinguished from moderate–severe ones [43]. However, any other threshold value that
the medical team considered appropriate could have been selected.

2.1.2. Conceptual Design and Description of the System

Figure 1 shows the flowchart of the proposed intelligent decision support system used
to assist in the OSA diagnostic process. A detailed description is presented below.
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Figure 1. Flow diagram of the intelligent clinical decision support system. The information flow
between the different stages that compose the system is shown. Stage 1 is for data collection, Stage 2
is subdivided into Stage 2.a for preprocessing and statistical inference and Stage 2.b for symbolic
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Stage 1: Compilation of Patient Information

The first stage of the proposed intelligent system is focused on the collection of
the patient information, which has already been introduced in Section 2.1.1. As already
mentioned, and as can be seen in Figure 1, this information can be divided into two main
groups depending on the nature of the information:

• Stage 1.a—Objective data: This is associated with a lower degree of subjectivity and
interpretability and is summarized in Table 1. This group has been divided into four
sub-groups for the sake of coherence and to facilitate the process of entering the data
into the forms. Table 1 also indicates whether each data type is numeric or categorical.

• Stage 1.b—Subjective data: This is associated with more interpretative information,
related to the symptoms reported by the patient and collected during a sleep interview.
This information is summarized in Table 2. As in Table 1, it was decided to divide this
group into four sub-groups for the sake of coherence and to simplify their subsequent
treatment. Table 2 also includes a description of the type of data, depending on
whether it is numerical or categorical.
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Table 1. Summary of the objective data.

Subgroup Data Data Type Commentary

General and
anthropometric data

Sex Categorical Male/Female
Age Numerical -

Weight Numerical Not provided to the algorithm but used
to determine the body mass index (BMI)

Height Numerical Not provided to the algorithm but used
to determine the body mass index (BMI)

Body mass index (BMI) Numerical Data derived from height and weight
Neck circumference Numerical -

Subgroup Data Data Type Commentary

Habits

Smoker Categorical Yes/No/No longer

Cigarettes per day Numerical Not provided to the algorithm but used
to determine the pack year index

Years as a smoker Numerical Not provided to the algorithm but used
to determine the pack year index

Pack-year index Numerical Data derived from cigarettes per day and
years smoking

Drinking habits Categorical No/Daily/Occasionally
Grams of alcohol Numerical -

Subgroup Commentary

Diagnosed
conditions

All the comorbidities listed in Section 2.1.1 are included. Each of these fields is considered as
categorical or binary, that is, either the pathology is suffered or not

Subgroup Commentary

Prescribed
treatments

All the drugs listed in Section 2.1.1 are included. Each of these fields is considered as categorical or
binary, that is, prescribed treatments are or are not provided

Table 2. Summary of the subjective data.

Subgroup Data Data Type Commentary

Sleep time

Hours of sleep Numerical -
Minutes until falling asleep Numerical -

Prolonged intra-sleep
awakenings Categorical No/Occasionally/Often

Subgroup Data Data Type Commentary

Unrefreshing sleep

Feeling of unrefreshing
sleep Categorical No/Occasionally/Often

Daytime tiredness Categorical No/Occasionally/Often
Morning dullness Categorical No/Occasionally/Often

Subgroup Data Data Type Commentary

Complicating sleep factors

Unjustified multiple
awakenings Categorical Yes/No

Nocturia Categorical No/Occasionally/Often
Breathless awakenings Categorical No/Occasionally/Often

Reported apneas Categorical No/Occasionally/Often

Snores
Snorer Categorical No/In supine position only/Yes

High intensity snorer Categorical Yes/No
Snoring-related awakenings Categorical No/Occasionally/Often

Stage 2: Data Processing

Once the patient information has been collected and structured, it is processed. For
this purpose, a machine-learning algorithm and a series of cascaded expert systems are
deployed, arranged into two substages that work concurrently [16–22]. Through those, it
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is possible to determine two risk indicators, each of them associated with the groups of
information previously mentioned, the Statistical Risk and the Symbolic Risk.

• Stage 2.a—Determination of Statistical Risk: Once the objective data has been collected,
as presented in Stage 1.a, it is processed using a machine-learning classification al-
gorithm [44]. For the definition and configuration of the algorithm a dataset is used,
which has already been introduced in Section 2.1.1. This data is preprocessed through
normalization and data augmentation approaches, establishing an AHI threshold of
15 to label the different patients according to OSA case and non-OSA case classes. It
is important to note that the medical team could modify this threshold if considered
convenient. After this, once the model is adjusted and when new patient data is
available, a risk metric will be obtained as the output of the classifier, the Statistical
Risk, whose value will range from 0 to 100. This indicator can be understood as a
percentage risk value of the patient actually suffering from OSA.

• Stage 2.b—Determination of the Symbolic Risk: Concurrently to Stage 2.a [16–19], in
Stage 2.b the subjective set of information collected in Stage 1.b is processed. As
mentioned above, this information has been divided into four groups. For their
processing, a series of expert systems are used, all of them based on the Mamdani-
type fuzzy inference system [23–26] and arranged in a three-level cascade, as shown
in Figure 2. This is because it is intended to perform a risk assessment based on
different criteria, all of which are involved in the diagnosis of OSA, which allows the
reduction of uncertainty and the creation of a more accurate and suitable knowledge
base. Nevertheless, since this is a multicriteria approach and the aim is to obtain a
global risk indicator that groups and represents them, the risks obtained as an output
of the expert systems in the first level of the cascade are simultaneously fuzzified as
input to expert systems #1 and #2 in the second level of the cascade. The outputs of
these expert systems are also fuzzified as inputs of the expert system #3, which consists
of the last level of the cascade, determining as its output a general risk indicator that
contemplates the risks of the previous levels. This indicator is called Symbolic Risk, and
its value will range from 0 to 100, representing the risk associated with the symptoms
a patient experiencies as a potential OSA case. It is important to point out that the
management of uncertainty in the cascade is not related to probabilities but rather
to the concept of fuzzy membership, which is widely known and used in the field of
fuzzy logic.
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Stage 3: Generation of Alerts and Decision Making

Both the Statistical Risk and Symbolic Risk values obtained in Stage 2 will be initially
interpreted individually on the basis of a series of threshold values that allow the establish-
ment of an associated risk level:
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• Level 1: This refers to situations in which the level of risk is low, and it seems not to
indicate an OSA case. This status will be proposed when the percentage risk to be
analyzed is lower than a Limit 1 value.

• Level 2: This refers to situations in which there is an intermediate level of risk, which
does not clearly allow us to distinguish whether or not it is an OSA case. This status
will be proposed if the percentage risk value lies in the range [Limit 1, Limit 2).

• Level 3: This refers to situations in which there is a high risk level that appears to
indicate the presence of an OSA case. This status will be proposed when the percentage
risk to be analyzed is higher, or equal to, the Limit 2 value.

Once this has been done, there will be two risk levels, one of them associated with the
Statistical Risk and the other with the Symbolic Risk, and a joint evaluation of these levels
will be performed in order to establish a recommendation.

For this purpose, a score will be assigned to each of the levels (a utility function is
proposed that transforms the risks into numerical values: for example, if the level is 1,
zero points are given; if the level is 2, one point is given; if the level is 3, two points are
given). Based on these, a decision variable T will be determined. The expression of this
decision variable is shown in Equation (1). In addition, and with the aim of improving the
aggregation, a weighting factor has been added to each score, defined through the variable
WST for the statistical score and the variable WSY for the symbolic score. In this regard,
WST = 2−WSY , and WST and WSY ∈ [0, 2].

T = WST ·Statisticalscore + WSY·Symbolicscore (1)

Finally, the decision variable T is evaluated by considering the following thresholds:

• Non-OSA case: Do not perform diagnostic studies: This status will be proposed when
the decision variable has a value lower than two.

• Doubtful case: This status will be proposed when the decision variable equals two. The
medical team should assess whether it is necessary to perform further examinations or
suggest a new medical appointment after a period of time to reconsider the patient’s
condition.

• Possible OSA case: Perform diagnostic studies.This status will be proposed when the
decision variable is larger than, or equal to, three.

2.2. Implementation of the System

The intelligent decision support system described in Section 2.1.2 involves a series
of stages from the collection of patient information and data processing through to the
generation of alerts and decision making.

This section describes in detail the implementation of the intelligent system through a
software artifact that verifies the recommendations of Hevner et al. [45,46] and, if consid-
ered, guarantees its future integration into a hospital information system.

Such implementation has been carried out using the MATLAB© programming envi-
ronment (R2021b, MathWorks©, Natick, MA, USA), making use of the App Designer mod-
ule [47] for the development of the graphical user interface, the Classification Learner [48]
for training the machine-learning algorithms and the Fuzzy Logic toolbox [49] for the
implementation of fuzzy logic inference systems. Furthermore, it was necessary to make
an auxiliar use of Python’s (version 3.9.12) imbalanced-learn library [50] for synthetic
data generation employing SMOTE-NC (Synthetic Minority Over-sampling Technique for
Nominal and Continuous).

Figure 3 shows a screenshot of the graphical interface of the developed software
artifact. Block (1.a) is related to the compilation and preprocessing of objective patient
information, while block (1.b) is related to the subjective information. Blocks (2.a) and
(2.b) refer to the data processing, making it possible to observe the Statistical Risk and the
Symbolic Risk, respectively. Block (3) allows the generation of alerts and visualization of the
system recommendations.
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2.2.1. Data Acquisition

The data associated with each patient must be introduced into the application through
the form shown in Figure 3. There are two areas in this, one for the introduction of objective
data (1.a) and the other for the introduction of more subjective data (1.b). It is worth
emphasizing the importance associated with the task of filling the forms, since errors or
omissions in them could compromise the accuracy of the data, thus increasing the system’s
uncertainty.

2.2.2. Data Processing

After the patient’s data have been introduced into the application, the processing
is performed by the intelligent system. As previously mentioned, two blocks that act
concurrently [16–22] are used for this purpose. The first one is based on a machine-learning
classification algorithm, while the second one is based on a series of cascaded expert
systems.

The process used for the construction and definition of these blocks, as well as the
determination of the associated risk metrics, are described below.

Classification Algorithm Based on Machine Learning

For the definition of the machine-learning classification algorithm, the dataset pre-
sented in Section 2.1.1 was used as a starting point; more specifically, the most objective data
which is summarized in Table 1. As can be observed in the table, part of the data belongs to
the nominal or ordinal categorical data types [51,52]. Because of this, an encoding has been
made using dummy encoding [42], which means that for each variable, a number of auxiliary
variables are created to replace it, equal to the total number of categories presented in the
starting variable minus one. Moreover, it is also necessary to mention the numerical data,
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which were scaled from zero to one using Min–Max normalization (as shown in Equation
(2)). This is done because, with the help of the medical team, it has been possible to delimit
for each of the cases the maximum and minimum values between which the study variables
will be encompassed.

x′ =
xi −min(x)

max(x)−min(x)
(2)

After that, the distribution of the class to be predicted on the dataset is analyzed. As
discussed in Section 2.1.1, considering an AHI threshold value of 15, it is observed that
2693 patients present a value equal to or higher than the threshold which are labeled as OSA
cases. Meanwhile, 1707 patients present a lower value than the threshold and are labeled
as non-OSA cases. Through the analysis of the dataset, a certain degree of imbalance is
observed, which could affect the performance of the classifier. For this reason, a controlled
data augmentation process is implemented as a usual approach in diagnostic environments,
which tends to improve the results of binary classifiers [19,53]. A variation of the Synthetic
Minority Over-Sampling Technique (SMOTE) was used for this purpose [53,54], oriented
towards the processing of datasets in which numerical and categorical variables coexist,
in this case the SMOTE-NC technique (Synthetic Minority Over-sampling Technique for
Nominal and Continuous). Data of both classes have been generated with a strategy where
the number of neighbors k = 5 was chosen until there were 4000 elements of each class. This
provides a coherent training data set that can be used for the training of machine-learning-
based classification algorithms, which makes it possible to classify new patients. To this
end, and in order to evaluate the different available possibilities, a series of tests have been
carried out using the MATLAB© Classification Learner app. This allows the training and
analysis of multiple algorithms in a massive way, establishing a k-fold cross-validation
strategy [55] with k = 5.

Different types of models were tested, including decision trees, logistic regression,
naïve Bayes, support vector machines, ensembles (in this case, Bagged Trees) or artificial
neural networks, among others. Figure 4 shows a summary graph of the ROC curves from
the best models for the OSA cases.

Diagnostics 2023, 13, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure 4. Cross-validation ROC curve for OSA cases. 

Once the analysis of the results was performed, by interpreting the validation ROC 
curves, the Bagged Trees algorithm stands out. It should be noted that using one algorithm 
or another does not constrain the system in any way and that, in the future, if it is found 
that other algorithms give better results, they could be replaced without causing an essen-
tial change in the system. In any case, the stability of the chosen model was verified by 
simulating the calculation of the ROC curve and the AUC value in each fold, with minimal 
differences between them, as can be seen in Figure 5. 

 
Figure 5. ROC curves and AUC values for each of the folds of Bagged Trees for OSA cases. 

Figure 6a shows the ROC validation curve of the Bagged Trees algorithm for both 
classes, which show an AUC value close to 0.90. Figure 6b shows the model’s confusion 
matrix. 

Figure 4. Cross-validation ROC curve for OSA cases.

Once the analysis of the results was performed, by interpreting the validation ROC
curves, the Bagged Trees algorithm stands out. It should be noted that using one algorithm
or another does not constrain the system in any way and that, in the future, if it is found that
other algorithms give better results, they could be replaced without causing an essential
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change in the system. In any case, the stability of the chosen model was verified by
simulating the calculation of the ROC curve and the AUC value in each fold, with minimal
differences between them, as can be seen in Figure 5.
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Figure 6a shows the ROC validation curve of the Bagged Trees algorithm for both classes,
which show an AUC value close to 0.90. Figure 6b shows the model’s confusion matrix.
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At this point, the next step consists in feeding data from a new patient into the
classifier and obtaining a risk indicator, the Statistical Risk. This output is associated with
the percentage risk of suffering from OSA for an AHI value greater than, or equal to, the
determined threshold level, 15 in this case. This risk is scaled from 0 to 100, with 0 being
the minimum percentage of having an AHI greater than or equal to the threshold, and
100 being the highest one.

Cascade of Expert Systems

Concurrent with the machine-learning module [16–22], in which the Statistical Risk
was determined, in this module, the Symbolic Risk is calculated. For this purpose, a cascade
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of expert systems (introduced in Section 2.1.2) is deployed using Mamdani-type fuzzy
inference system [23–26]. As shown in Figure 2, the cascade has three levels, which are
detailed below:

• First level: At the upper level of the cascade, the processing of the four groups of
information previously introduced in Stage 2.b of Section 2.1.2 is carried out (‘sleep
time’ group, ‘unrefreshing sleep’ group, ‘complicating sleep factors’ group and ‘snores’
group). For this purpose, four expert systems are used to obtain a risk indicator (R1.a,
R1.b, R2.a and R2.b, respectively) as an output after the defuzzification process. These
indicators determine the risk level associated with suffering from OSA related to each
group of data.

• Second level: At the second level of the cascade, the data from the first level is
processed using two expert systems with the aim of aggregating their outputs. This is
so because of the decision to group the risks obtained in the first level of the cascade
into couples (R1.a and R1.b, R2.a and R2.b) according to the degree of affinity between
the starting data. As a result, two risk indicators related to the groups of data linked to
each indicator (R1 and R2, respectively) which show the risk associated with suffering
from OSA are determined at the output of the expert systems after the defuzzification
process.

• Third level: At the third level of the cascade, the data from the second level of the
cascade (R1 and R2) are processed using a single expert system. At its output, after the
defuzzification process, a risk indicator is obtained, the Symbolic Risk, which indicates
the risk level associated with the patient suffering from OSA according to the subjective
input data.

The use of the cascade of expert systems makes it possible to aggregate the information
of the different levels in a progressive way. The information related to the different criteria
contemplated, understood as the different groups of data involved in the evaluation of
the risk of suffering from OSA, can be incorporated. In addition, the use of a cascade-
type structure facilitates the determination of the rules of each inference system. As the
number of antecedents in the expert systems is smaller, greater precision is obtained in the
elaboration of the rules.

As already mentioned, all the expert systems from the cascade are based on the
Mamdani-type fuzzy inference system [23–26]. Figure 7 shows the operation’s flow diagram
for this type of inference system, which is described in detail below.
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First of all, the membership functions are determined for each of the variables. This
make it possible to establish the degree of membership associated with a new value of



Diagnostics 2023, 13, 1854 13 of 32

a variable, with a value between zero (indicating non membership) and one (indicating
absolute membership). As already mentioned, in the expert systems of the first level, the
input variables are those described in Table 2, while in the second and third levels of the
cascade, the inputs are the risks obtained after the defuzzification process of the expert
systems of the immediately preceding level. With regards to the expert systems’ outputs,
in this case, different risk indicators associated with the initial data will be obtained. The
choice of one type of membership function or another will depend on the characteristics of
the variable to be represented. Following Ross’s recommendation [26], normal, convex and
symmetrical membership functions will be used, choosing, in this case, between triangular
and trapezoidal functions [19]. After defining the membership functions, the next step
is the fuzzification of the new input values to determine a series of membership degrees
associated with each of them. Once this is done, in the third stage, the knowledge base of
the system is established, wich is composed of a collection of declarative rules determined
by the medical team. These rules are of the type ‘IF . . . AND . . . THEN . . . ’, through
which it is possible to represent the knowledge of the experts by combining the different
input variables and relating them to the consequents. The fourth stage then evaluates
the antecedents of the rules of the Mamdani system. As in the case of this study, when
different membership functions are connected through the ‘AND’ operator, the lowest of
the membership degrees associated with each of them will be obtained. After evaluating the
antecedents, in the fifth stage, the next step involves obtaining the consequents by applying
an implication method, in this case, the ‘minumum’, which truncates the membership
function of the consequents of each rule. These truncated consequents are subsequently
aggregated in the sixth stage by applying a disjunctive approach [26] based on the use of
the ‘maximum’ operator, so as to achieve a graphical output equivalent to the superposition
of the previously obtained consequents. This is subsequently defuzzified in the last stage
by applying the centroid method [26] to determine a numerical value associated with the
risk indicator at each of the risk levels. Nonetheless, the system contemplates that the
variables and membership functions can be redefined based on the experience acquired
during the use of the application.

Tables 3–6 below summarize the initial configuration of the expert systems of the first
level of the cascade, which are used for the calculation of risks R1.a, R1.b, R2.a and R2.b,
respectively.

Table 3. Initial configuration of the inference system responsible for processing the ‘sleep time’ data
group.

Inference System Associated with the ‘Sleep Time’ Data Group.

Input Data Range Output Risk Range

Hours of sleep 0–14 h R1.a 0–10
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Table 3. Cont.

Inference System Associated with the ‘Sleep Time’ Data Group.

Input Data Range Output Risk Range

Minutes until falling
asleep 0–240 min Initial configuration
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Number of fuzzy rules: 46

Prolonged intra-sleep
awakenings 0–10 Subset as an example of the 46 fuzzy rules
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Table 6. Initial configuration of the inference system responsible for processing the ‘snores’ data
group.

Inference System Associated with the ‘Snores’ Data Group

Input Data Range Output Risk Range

Snorer 0–2 R2.b 0–10
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Table 7. Initial configuration of the inference system responsible for processing risks R1.a and R1.b.

Inference System for the Processing of Risks R1.a and R1.b

Input Data Range Output Risk Range

R1.a 0–10 R1 0–10
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Table 8. Initial configuration of the inference system responsible for processing risks R2.a and R2.b.
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Table 8. Cont.

Inference System for the Processing of Risks R2.a and R2.b

Input Data Range Ouput Risk Range

R2.b 0–10 Initial configuration
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Table 9. Initial configuration of the inference system responsible for processing risks R1 and R2.

Inference System for the Processing of Risks R1 and R2

Input Data Range Output Risk Range

R1 0–10 Symbolic Risk 0–10
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Table 9. Cont.

Inference System for the Processing of Risks R1 and R2

Input Data Range Output Risk Range

R2 0–10 Initial configuration
Subset as an example of the 57 fuzzy rules

1. IF (R1 is Very_low) AND (R2 is Very_low) THEN (Symbolic_risk is Very_low).
2. IF (R1 is Very_low) AND (R2 is Low) THEN (Symbolic_risk is Very_low).
3. IF (R1 is Very_low) AND (R2 is Low) THEN (Symbolic_risk is Low).

Surface
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indicates a higher risk level of suffering from OSA.

2.2.3. Generation of Alerts and Decision Making

In the case of a new patient, and after determining both the Statistical Risk and Symbolic
Risk indicators, the patient’s condition is determined, and a recommendation is proposed.
As mentioned, the risk indicators will be first interpreted individually based on a series
of threshold values that allow a risk level associated with each of the indicators to be
established. The second column of Table 10 shows a summary of the different possible
cases and their correspondence to each different level.

Table 10. Risk assessment thresholds and scores.

Level Case Score

Level 1 If Risk < Limit 1 (L1) 0

Level 2 Limit 1 (L1) ≤ Risk < Limit 2 (L2) 1

Level 3 If Risk ≥ Limit 2 (L2) 2

Regarding both the Statistical Risk and the Symbolic Risk, the value of Limit 1 is pro-
posed to be 45, while the value of Limit 2 has been set at 65 for Symbolic Risk, and 60 for
Statistical Risk. Nevertheless, these values may be reviewed and modified depending on
the results observed during the clinical validation of the system.

Subsequently, the risk levels associated with each of the risk indicators will be available,
and their joint evaluation will be carried out in order to establish a recommendation. Before
that, a score will be assigned to each of the levels as can be seen in the third column of
Table 10. Once this has been done, and by adding the score associated with the risk levels,
a decision variable T will be determined as shown in Equation (3). By default, both scores
are given equal weight (WST = WSY = 1), but it might be possible to increase the effect of
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the terms used to calculate it by using weighting coefficients (WST and WSY ∈ [0, 2]; and
WST = 2−WSY).

T = WST ·Statisticalscore + WSY·Symbolicscore (3)

This decision variable T could be considered as part of the usefulness analysis, repre-
senting a normative tool as opposed to the descriptive measure offered by the calculated
risk values. Its objective is therefore not to predict but to assist in decision making by estab-
lishing a relationship between the calculation of risks and the preferential recommendation
associated with the value of T and linked by Equation (1), which, in this setting and to this
end, could be considered as an utility function [56,57].

Finally, the value of the decision variable T is evaluated. Table 11 presents a summary
of the different recommendations proposed according to the value of the decision variable
T. Emphasis should be placed on the fact that the threshold values for the variable T can be
reviewed and modified according to the results obtained.

Table 11. Summary of recommendations.

Case Recommendation

T < 2 Non-OSA case—do not perform diagnostic studies

T = 2 Doubtful case—medical team should assess whether further tests or a new medical
evaluation after a period of time is necessary to reconsider the patient’s condition.

T ≥ 3 Possible OSA case—perform diagnostic studies

To summarize, Table 12 shows the whole process of generating alerts and decision
making from the individual evaluation of each of the indicators determining the risk levels
to their joint evaluation in determining the T variable and establishing the conclusions and
recommendations. In this table, color codes have been used for the generation of alerts
once the T variable has been evaluated. The green color is related to a non-OSA case and
orange to a doubtful case, while red refers to a potential OSA case.

Table 12. Graphical representation of the assessment process. The colours refer to the recommen-
dations suggested by the system. The green colour indicates a non-OSA case; the orange colour
indicates a doubtful case; the red colour indicates a possible OSA case.

Statistical Risk Risk < L1 L1 ≤ Risk < L2 Risk ≥ L2
Symbolic Risk Risk < L1 L1 ≤ Risk < L2 Risk ≥ L2
Level & Score Level 1 (0) Level 2 (1) Level 3 (2)
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3. Results

This section presents a clinical case study of the application of the intelligent decision
support system proposed in this paper. The aim is to give an example of its performance
and potential use in the clinical field. It is important to clarify that the intention is neither
to validate the system nor to compare it with other alternatives existing in the current body
of knowledge.

Furthermore, prior to the presentation of the case study, it should be pointed out
that the patient data analyzed in this section was not present in the dataset used for the
definition and configuration of the system.
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3.1. Compilation of the Patient’s Information

Table 13 shows the objective data of the patient to be analyzed, which is related to
Stage 1.a of the proposed system. Table 14 presents the subjective data related to Stage
1.b of the proposed system. It is necessary to point out that this patient underwent sleep
studies and presented an AHI value of 11.90. This value will be later used to evaluate the
conclusions and recommendations generated by the intelligent system.

Table 13. Objective data of the case patient.

General and Anthropometric Data

Sex Male
Age 34
Weight (kg) 85
Height (cm) 186
Neck circumference (cm) 46

Habits

Smoking habits No
Cigarettes per day -
Years smoking -
Drinking habits Occasionally
Grams of alcohol -

Diagnosed Conditions -

Prescribed Treatments -

Table 14. Subjective data of the case patient.

Sleep Time Group

Hours of sleep 7 h
Minutes until falling asleep 20 min
Prolonged intra-sleep awakenings Often

Unrefreshing Sleep Group

Feeling of unrefreshing sleep No
Daytime tiredness No
Morning dullness Occasionally

Complicating Sleep Factors Group

Unjustified multiple awakenings No
Nocturia Often
Breathless awakenings No
Reported apneas Often

Snores Group

Snorer Yes
High intensity snorer Yes
Snoring-related awakenings Occasionally

Once the data were submitted, they were introduced into the application to be pro-
cessed by the intelligent clinical decision support system.

3.2. Data Processing

Subsequently, the two risk indicators previously defined in Section 2, Statistical Risk
and Symbolic Risk, were determined. Figure 8 shows a screenshot of the application in
which it is possible to observe the resulting risk values. In the case of Statistical Risk a
percentage value of 40 was obtained, while in the case of the Symbolic Risk the respective
value was 61.79, both of them expressed on a scale from 0 to 100.
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The Symbolic Risk should be analyzed in more detail since, as mentioned in Section 2,
it is the final value obtained from the cascade of expert systems. Analyzing the systems of
the first level of the cascade, risk values of 7, 2, 9 and 8 were respectively obtained for risk
indicators R1.a, R1.b, R2.a and R2.b, as shown in Figure 8.

Next, in the second level of the cascade, risk values of 4 and 8 were obtained for risk
indicators R1 and R2, respectively. These risks, R1 and R2, were used for the calculation of
the Symbolic Risk at the last level of the cascade, resulting in a preliminary value of 6.179,
which, after being scaled from 0 to 100, presented a value of 61.79.

3.3. Generation of Alerts and Decision Making

After entering the patient’s data into the application and calculating the risk indicators
associated with them, i.e., the Statistical Risk and the Symbolic Risk, that last stage was
followed by their analysis and evaluation.

Both risks were first evaluated against three levels, each of them defined by two limit
values. In this case, the limits are shown in Table 15. The value of Limit 1 was set at 45 in
both cases, while the value of Limit 2 was set at 65 for Symbolic Risk, and 60 for Statistical
Risk. A summary of the thresholds associated with the different levels, as well as their
respective interpretations, is shown in Table 15.

Table 15. Thresholds for the first risk assessment of the case study.

Symbolic Risk

Level Case Level Interpretation

Level 1 IF Risk < 45 THEN Level 1 Non-OSA case

Level 2 IF 45 ≤ Risk < 65 THEN Level 2 Doubtful case

Level 3 IF Risk ≥ 65 THEN Level 3 Possible OSA case

Statistical Risk

Level Case Level Interpretation

Level 1 IF Risk < 45 THEN Level 1 Non-OSA case

Level 2 IF 45 ≤ Risk < 60 THEN Level 2 Doubtful case

Level 3 IF Risk ≥ 60 THEN Level 3 Possible OSA case

The Statistical Risk showed a value of 40, which is lower than Limit 1, so this indicator
is at the first level corresponding to a patient who does not suffer from OSA. On the other
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hand, the Symbolic Risk presented a value of 61.79, higher than Limit 1 and lower than
Limit 2, so it is at the second level and associated with a doubtful case.

Once the individual interpretation of the risk indicators has been carried out, which is
done automatically in the application based on the established thresholds, the next step
is their joint interpretation. To understand the procedure, it may be helpful to retrieve
Table 12, adapting it to this case as shown in Table 16, which allows to determine the
recommendation of the system through the color code in that table (green for non-OSA,
orange for a doubtful case, and red for a potential OSA case).

Table 16. Risk assessment of the case study. The colours refer to the recommendations suggested by
the system. The green colour indicates a non-OSA case; the orange colour indicates a doubtful case;
the red colour indicates a possible OSA case.

Statistical Risk Risk < 45 45 ≤ Risk < 60 Risk ≥ 60
Symbolic Risk Risk < 45 45 ≤ Risk < 65 Risk ≥ 65
Level & Score Level 1 (0) Level 2 (1) Level 3 (2)
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Statistical Risk Risk < 45 45 ≤ Risk < 60 Risk ≥ 60 
Symbolic Risk Risk < 45 45 ≤ Risk < 65 Risk ≥ 65 

 Level & Score Level 1 (0) Level 2 (1) Level 3 (2) 

 
 
 
 

 Symbolic Risk 

Statistical 
Risk 

Level & Score Level 1 (0)  Level 2 (1) Level 3 (2) 
Level 1 (0) - X = 1 - 
Level 2 (1) - - - 
Level 3 (2) - - - 

Symbolic Risk

Statistical
Risk

Level & Score Level 1 (0) Level 2 (1) Level 3 (2)
Level 1 (0) - X = 1 -
Level 2 (1) - - -
Level 3 (2) - - -

As the interpretation in Table 16 shows, an OSA case is not considered, so it is sug-
gested not to perform further diagnostic studies. This final interpretation is also performed
automatically by the system, as can be seen in Figure 8.

In any case, it is interesting to make a brief analysis of the results obtained. After the
interpretation of the Statistical Risk, it is apparent that this is not a case that fits the usual
pattern of an OSA patient, given that the risk value is relatively low.

Nevertheless, the patient presents some significant risk values in the cascade, such as
R2.a and R2.b, associated with the ‘sleep complicating factors’ and ‘snores’ data groups,
respectively. This may be due either to the patient not telling the truth or exaggerating their
symptoms. Thus, after the joint assessment of the different levels of the cascade, the value
of the Symbolic Risk obtained is average, which indicates that this case would be a doubtful
one.

Following the joint assessment of the indicators, it was determined that the patient did
not suffer from OSA, which is feasible given that the patient had an AHI value close to 10,
commonly found in mild cases. Furthermore, it should be noted that the machine-learning
classification algorithm was trained using a dataset with an AHI threshold value of 15. This
was set so as to discriminate mild cases from moderate–severe ones.

3.4. Expansion of the Results

To extend the case study, fifteen new cases are presented below in Figure 9, following
a similar process to that one previously described in Section 3. All cases analyzed were
referred from primary care or other specialist areas as suspected OSA cases. The figure
shows the system input data, as well as the results obtained and the AHI level. The results
are color-coded for both the risk analysis (green = L1; orange = L2; red = L3) and the inter-
pretation of the system’s recommendation (green = non-OSA case; orange = doubtful case;
red = OSA case).
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Figure 9. Expansion of the case study. In the case of the subjective data, the values were indicated
using the scales (generally, 0 means ‘No’; 5 means occasionally; and 10 means ‘often’). The background
colors in the ‘System result’ section relate to the three levels of risk (green = L1; orange = L2; red = L3)
and the interpretation of the system recommendation (green = non-OSA case; orange = doubtful case;
red = OSA case).

4. Discussion

Currently, OSA has a high incidence worldwide and involves a significant detriment
to the health of those who suffer from it, notably increasing the demand for related medical
consultations and diagnostic studies. These studies present a high instrumental complexity,
it being necessary to use large numbers of sensors as well as to be supervised by specialized
professionals, in addition to the requirement for a subsequent manual analysis of the
results. As a consequence of the increasing demand for these types of studies, as well as
the particularities inherent to these types of tests, considerable delays are frequent in their
use. This entails a severe hazard to the health of the patients, together with the economic
impact associated with the performance, in many cases, of tests that are not necessary. In
this regard, and considering the important advances in the field of artificial intelligence,
numerous and diverse approaches have been proposed in recent years for OSA diagnosis,
generally based on the use of single (statistical in most cases) inference engines.

The diagnosis of OSA is a multivariate problem in which the aim is to assess whether
a patient suffers from this clinical condition on the basis of a series of variables. Another
purpose may be to determine potential cause–effect relationships that exist between the
different variables involved, for which it is common to use dependence, interdependence or
structural approaches [58]. Nevertheless, it is also feasible to deal with this type of problem
by jointly employing inferential models of a heterogeneous nature [59–63], both statistical
and symbolic, with the common objective of representing the same reality. In this case, the
diagnostic process that allows for the discernment between a patient who suffers from OSA
and one who does not. For this purpose, in the case of the statistical inferential approaches
represented in this work through the use of the Bagged Trees algorithm, which is applied
to determine the Statistical Risk, it is essential to have a representative dataset available to
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build the model. Meanwhile, in the case of the symbolic inferential approach particularized
in this work through the use of a set of expert systems based on fuzzy logic inferential
engines, through which it is possible to determine the Symbolic Risk, it is necessary to define
the knowledge base through a series of rules. In both cases, the definition of each of the
systems used contemplates a large number of variables that are not free of uncertainty.
This is where the proposed intelligent system becomes essential. Beyond its undeniable
applicability and potential usefulness in clinical settings, the capabilities of the different
elements used for the determination of each of the system’s risks are evaluated, taking into
account their ability to represent knowledge and manage uncertainty:

• Determination of Statistical Risk: As previously mentioned, a machine-learning classifi-
cation algorithm, more specifically, a Bagged Trees algorithm, is used to determine the
Statistical Risk, built on the basis of an initial dataset that has been encoded, normalized
and balanced using SMOTE-NC. All this process prior to the construction of the model
has been carried out with the aim of ensuring that the initial dataset used for the
construction of the model is coherent and adequate. An attempt has been made to
achieve sufficient representativeness regarding the possible casuistry as well as to aim
for normality in the data distributions in order to guarantee the subsequent obtaining
of robust and reliable classifiers. As mentioned before, in this work, a Bagged Trees
algorithm was chosen; however, the use of one algorithm or another is not relevant
because any other machine-learning approach could provide plausible results. In any
case, it should be noted that for this to be true, the datasets used in the model training
and validation processes must have been obtained under similar circumstances, with
common diagnostic criteria. The same circumstances should apply when it is desired
to analyze data from new patients. In relation to the treatment of uncertainty, in this
case, it is achieved using a purely probabilistic approach.

• Determination of the Symbolic Risk: Concurrent with the calculation of the Statistical
Risk, the Symbolic Risk is determined using a series of expert systems, which are
perhaps the most representative models for symbolic reasoning in the field of artificial
intelligence and which allow for the diversifying and formalizing of the experts’
knowledge. In this case, the formalization of knowledge has been achieved through the
definition of an architecture of expert systems arranged in cascade. The diversification
of information is possible through the definition of a series of declarative rules in each
of the expert systems that model the knowledge of events that have occurred in similar
circumstances. Thus, there is a clear and undeniable dependence between the way
in which the expert system performs its reasoning and who defines its knowledge
base; this implies assuming a certain degree of doubt and error in the process, and
therefore, the presence of uncertainty in the generation of the rules. The formalization
of knowledge is an inherent characteristic of expert systems, and it is possible to do
so in this case through the definition of a cascade-based architecture. This allows
the gradual integration of the consequents of the previous levels, all of which are
considered technical variables representing the risk of suffering from OSA. These
consequents are treated, in turn, as qualitative variables when acting as antecedents
of the expert systems in the next level. As discussed in the work by Casal-Guisande
et al. [19], the distinction that the same variable may be treated as antecedent or
consequent of a rule makes a clear difference in the very fuzziness of the variable,
which is related to the uncertainty associated with its numerical representation. In
addition, the cascaded expert system architecture allows for simpler logical constructs,
through which it is possible to represent knowledge. That also results in better control
and in the progressive reduction in uncertainty throughout the different stages of the
cascade. It is because of all those reasons that the intelligent system, in its symbolic
aspect, has capabilities to manage uncertainty.

Beyond those issues related to the architecture of the proposed intelligent system, as
well as its ability to manage uncertainty, it is necessary to point out those aspects that are
most beneficial from a diagnostic and practitioner’s viewpoint. Once the risks have been
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obtained, their analysis and interpretation provide the medical team with a metric for the
hazard level derived from the patient’s risk of suffering from OSA. Such an assessment is
based both on objective data related to the patient’s history and on subjective data related
to the symptoms reported by the patient. This information is remarkably valuable due
to the fact that it facilitates the assessment of patients suspected of suffering from OSA.
Furthermore, it could be very useful for those first medical consultations by which the
patient comes to primary care, where a general practitioner could suspect a potential OSA
case. This could help them to choose which cases should be referred to further specialized
studies, thus reducing the overall number of referred patients, as well as focusing on those
who are actually in need. This is possible thanks to the system’s ability to formalize and
diversify knowledge, guiding the physician, standardizing the diagnostic process and
facilitating the interpretation of data. Likewise, the system also has a great potential for its
use in specialized units, being of particular interest in those cases in which specialists are
faced with doubtful cases. The system enables them to discriminate between those patients
who may require further diagnostic studies to confirm a potential OSA case, and those
who apparently do not have that disease. In this way, the demand for sleep studies may be
reduced, thus speeding up the performance of these studies while reducing waiting lists at
the same time.

On a general note, and in line with what has already been mentioned, it should be
pointed out that the tool presented in this article constitutes a great novelty in the field
of study. Existing approaches in the current body of knowledge generally make use of
single inference models, statistical in most cases, being clearly dependent on the availability
of coherent and representative population healthcare databases. This could be a severe
handicap for some diseases, as might be the case for OSA. Furthermore, the relevant impact
of using these types of systems in the management of hospital resources, as well as on their
associated cost savings, should be highlighted once again.

Relevance of the Proposal in the Field of Study

After the detailed discussion and analysis of the relevance and technical soundness
of the essential components of the proposed intelligent system, a comparison with other
existing state-of-the-art approaches is presented in Table 17, taking into account a set of
common criteria used in the field of intelligent systems [19–21,64]:

• Efficiency: this refers to the reliability of the results obtained, understood as the
capabilities of the intelligent system to deal with uncertainty.

• Scalability: this refers to the versatility and capabilities of the system to replace or
remove the current inferential engines.

• Reasoning: this is related to the system’s ability to perform symbolic reasoning.
• Learning: this refers to the system’s capability to incorporate learning approaches,

which is common in the field of machine learning.

Table 17. Benchmarking.

Proposals Efficiency Scalability Inference Learning

Corrado Mencar
et al. [37];

Lei Ming Sun et al.
[38]; and

Jayroop Ramesh
et al. [39].

These proposals are based on the
use of machine-learning

techniques or optimization
approaches, which manage

uncertainty using a probabilistic
approach.

These proposals
lack scalability.

The systems rely on
statistical inference

methods rather than
symbolic reasoning for

their operation.

These systems
incor-porate

knowledge in a way
that is subsidiary to

its classification
process.

= - - =
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Table 17. Cont.

Proposals Efficiency Scalability Inference Learning

Ferreira-Santos
et al. [40]

The authors use Bayesian
network approaches. An implicit

management of uncertainty is
used, based in the calculation of

probabilities.

The system is not
scalable, as it is

associated with the
network model.

Statistical inference is
used instead of

symbolic reasoning.

The system
incorporates

knowledge in a way
that is subsidiary to

the Bayesian
network.

= - - =

C. Zoroglu and
S. Turkeli [41]; and
J. M. Matthews et al.

[42]

The authors use fuzzy inference
systems, which manage

uncertainty from a
non-probablistic point of view.

The systems are not
scalable.

The systems use a
deductive symbolic
reasoning method.

The systems possess
a knowledge base

associated with the
inference engine. It
has the capability to

incorporate new
knowledge.

= - = =

Casal-Guisande
et al. [21]

The authors use several
machine-learning algoritms, as
well as ANFIS and a heuristic

algorithm. The proposed system
effectively handles uncertainty
from both a probabilistic and
non-probabilistic perspective.

The system is
scalable, as it is

possible to modify
the calculation

blocks.

The system uses both
statistical and symbolic
inference approaches,

but does not fully
formalize a knowledge

base.

New knowledge can
be easily integrated

into the system while
it is in use.

= = - =

Our proposal

The proposed system, based on
the use of heteregenous

inferential approaches, both
statistical and symbolic,

manages uncertainty from both a
probabilistic and

non-probabilistic perspective.

The proposed
system is scalable,
as it is possible to

modify the
calculation and

inference modules.

The proposed system
used both symbolic and

statistical inference
approaches, with a

complete formalization
of knowledge.

The system has the
capability to model

and incorporate new
knowledge.

In general, when analyzing the main reviews about screening approaches in the
field of OSA [9,65–67], and considering the works analyzed in Table 17, there is a clear
trend towards the use and development of decision support systems being applied to the
diagnosis of OSA that are based on the use of machine-learning techniques. Nevertheless,
there are some works that use symbolic inference approaches, such as the one proposed by
C. Zoroglu and S. Turkeli [41], or the other one proposed by J. M. Matthews et al. [42], or
others that, although mainly using learning-based approaches, aim to integrate the benefits
associated with symbolic inference [21], allowing a formalization of knowledge and a better
management and handling of the uncertainty present in the diagnostic process. For all
these reasons, the proposed system represents a clear novelty in the OSA diagnostic field,
extending the capabilities of the systems usually present in this area.

5. Conclusions

In this article a novel intelligent decision support system applied to the diagnosis
of OSA has been presented, which allows for the optimizing of the diagnostic process of
potential OSA cases. To this end, statistical and symbolic inferential approaches were used
together, making it possible to determine two risk indicators, the Statistical Risk and the
Symbolic Risk, both of them associated with suffering from OSA.

The proposed intelligent system was exemplified in a case study as a proof of concept,
which provided an introduction to the tool, demonstrating the use of the system, and
highlighting both its simplicity of use and its great applicability in the field of study. Despite
the aforementioned claims and the encouraging results obtained, it is worth mentioning
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that the proposed system is still in its early stages of development, and it is still in need of
further clinical validation.

In time to come, it will be necessary to carry out tests in clinical settings to validate
the results obtained and to adjust the system for its intensive use in hospital environments,
and comparing its outcomes with the clinical guidelines in the field of study. Thus, it will
be possible to determine its full diagnostic capabilities and the economic impact associated
with its use. In addition, and from the point of view of the system’s architecture, it will
still be necessary to explore new options to improve the final process of joining the risks
obtained, as well as to optimize the formalization of the knowledge of the symbolic models.
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