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Abstract: The gold standard for polypoidal choroidal vasculopathy (PCV) diagnosis is indocyanine
green angiography (ICGA), but optical coherence tomography angiography (OCTA) has shown
promise for PCV imaging in recent years. However, earlier generations of OCTA technology lacked
the diagnostic efficacy to replace ICGA. Swept-source optical coherence tomography angiography
(SS-OCTA), the latest generation of OCTA technology, has significantly improved penetrating ability,
scanning speed, scanning range, and overall image quality compared with earlier generations of
OCTA. SS-OCTA reveals a “tangled vasculature” pattern of polypoidal lesions (PLs), providing
evidence that they are neovascular rather than aneurysmal structures. New choroidal biomarkers,
such as the choriocapillaris flow void (FV), have been identified to explain the development of
PCV lesions. Although no direct comparison between SS-OCTA and previous OCTA generations
in terms of diagnostic capability has been performed, SS-OCTA has shown several advantages in
differential diagnosis and monitoring early reactivation for PCV. These improvements make SS-
OCTA a valuable tool for PCV diagnosis and follow-up, and it may become more important for this
disease in the future. This review summarized recent advances in PCV morphology and structure,
as well as the possible pathogenesis based on SS-OCTA findings. The value of SS-OCTA for PCV
management is discussed, along with remaining issues, to provide an updated understanding of PCV
and OCTA-guided management.

Keywords: polypoidal choroidal vasculopathy; swept-source optical coherence tomography angiography;
tangled vasculature; pathogenesis; clinical management

1. Introduction

Polypoidal choroidal vasculopathy (PCV) was originally described as an entity charac-
terized by subretinal orange nodular lesions [1] and was considered a subtype of age-related
macular degeneration (AMD). PCV can cause multiple, recurrent serosanguineous detach-
ments of the retinal pigmented epithelial (RPE) and neurosensory retina and secondary
bleeding or leakage [2]. Currently, the gold standard for PCV diagnosis is indocyanine
green angiography (ICGA), which shows bright, hyperfluorescent polypoidal lesions (PLs)
that are usually accompanied by branching vascular networks (BVNs) [3]. However, this
method is invasive and carries rare but deadly complications. It also provides limited
information on blood flow and the spatial relationships between neovascular tissue and
the surrounding anatomical structures [4]. In addition, due to time-consuming issues,
performing ICGA at each clinical visit is not practical. Thus, ICGA is often reserved for
baseline diagnosis and infrequently repeated thereafter.

Optical coherence tomography angiography (OCTA) is a non-invasive technology that
acquires volumetric angiographic information without dye injection by detecting inter-OCT
image motion [5]. It is fast, safe, and can be performed frequently. Previous studies reported
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relatively lower and variable detection rates of PLs when using OCTA compared with
ICGA [4,6–8]. Thus, OCTA was generally not recommended to replace ICGA as the gold
standard for PCV diagnosis.

Swept-source optical coherence tomography angiography (SS-OCTA) is the latest
generation of OCTA technology, adapting a longer wavelength of light that can penetrate
deeper through the RPE. It has less sensitivity roll-off for imaging sub-RPE structures and is
safer so that higher laser energy can be used to obtain images with a better signal-to-noise
ratio [9,10]. Moreover, the faster scanning speed allows denser scans for a given field-
of-view and amount of time compared with older generations of OCTA. The improved
capabilities of SS-OCTA allow for better detection of structures located beneath the RPE
layer, including neovascular lesions [11–16]. This review presents a summary of the recent
findings on PCV presentations and possible pathogenesis from SS-OCTA findings. We
also discussed the value of SS-OCTA in the diagnosis and follow-up of PCV, as well as the
remaining issues and future research directions to provide an update to the understanding
of PCV and SS-OCTA-integrated management.

2. Presentation of PCV on SS-OCTA

Previous studies demonstrated that spectral-domain OCTA (SD-OCTA) could provide
clearer images than ICGA. SD-OCTA, which delineated the diverse angiographic patterns
of PLs. The most frequently described PL patterns on SD-OCTA are hyper/hypo-reflective
round lesions, round lesions with either a light border and dark lumen or a dark border
and light content, as well as cluster-like structures. BVNs also have various morphological
patterns, such as sea fan, medusa, and tangle [4,17–20]. The presence of PLs and BVNs
is generally limited to the area between the RPE and Bruch’s membrane. Most PL flow
signals are situated more inward than BVNs [4,8]. These results challenged the previous
ICGA-based concept that PLs might be aneurysmal dilations. Instead, PCV may be better
considered as a structural variant of type I neovascularization [21,22]. More recently, the
existence of PCV lesions in other retinal layers has been noticed, such as the outer retina
plane, Bruch’s membrane, and choriocapillaris plane. The positions of BVNs have also been
reported to be seen either above or below Bruch’s membrane (within the choriocapillaris or
larger choroidal vascular layers) when using SS-OCT [23]. Thus, some researchers inferred
that various positions could reflect different stages of choroidal neovascular development,
further questioning whether PCV should be treated as a separate entity from other diseases
exhibiting choroidal neovascularization [7,19,24–26].

2.1. Presentation of Polypoidal Lesions on SS-OCTA

Using SS-OCTA, a study found the shape of PLs resembled those in early ICGA phases.
Other studies described PLs’ appearance on SS-OCTA as round hyper-reflective lesions
with or without hypo-reflective outlines or as ring-like hyper-reflective structures, which
was in accordance with previous studies using ICGA or SD-OCTA [27–29]. However,
SS-OCTA recently identified a new PL pattern called “tangled vasculature” or “tangled
vessel” (shown in Figure 1) [30–33]. Bo et al. [30] found that tangled vessels appeared to
derive from existing BVNs and were arranged in ring, whorl, or cluster patterns. Thus,
those round or ring-like structures on SD-OCTA might be different layouts of tangled
neovascularization. Yuzawa et al. also noted the tangled vessels were visible as a ring of
hyper-fluorescence on ICGA as the dye intensity faded from the central lumens during
washout [34]. The previous belief that PLs were aneurysmal dilations was based on
the phenomenon of dye washout and turbulent blood flow on ICGA, but these features
could also be found within a tangled vascular structure [35,36]. Rebhun et al. [10] further
developed an OCTA algorithm called variable interscan time analysis (VISTA) to display
relative blood flow speeds in the retinal and choroidal vasculatures. Using SS-OCTA
VISTA, they demonstrated non-uniform blood flow speeds within a single PL, indicating
different vascular calibers and directions exist within the tangled vasculatures [30]. Other
evidence includes: (1) Clinicopathological investigations have shown that PLs of PCV
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were vascular in nature, while the single aneurysmal structure has not been detected in
most histopathologic examinations [37–39]; (2) Aneurysms should not respond to anti-
vascular endothelial growth factor (VEGF) treatment, whereas neovascularization is likely
to respond to it. Indeed, PLs disappeared or decreased in size and complexity after
anti-VEGF therapies [30,40,41]. However, this hypothesis has difficulty explaining the
phenomenon of PL pulsation observed on ICGA, indicating the nature of PLs might
be heterogeneous. Indeed, some PLs lack tangled presentations on SS-OCTA. A recent
clinicopathological study proposed PLs to be abnormalities of the Bruch’s membrane. The
lesions are characterized by Bruch’s membrane schisis, which is filled with serosanguineous
materials. As dye accumulates in a schisis space, it may appear as a “polyp-like” structure
on ICGA [42]. Thus, further studies investigating the essence of the lesion and associated
pathology are needed to verify the structural diversity of PLs.
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Figure 1. FFA, IGCA, and SS-OCTA images of an eye with PCV: (A) FFA (left) and ICGA (right) of
the PCV lesion. Red arrowhead: nodular-shaped PL; (B) En face (left) and B-scan (right) SS-OCTA of
the same lesion. Orange arrowhead: tangled vascular structure corresponding to the PL on ICGA.
Yellow arrowhead: RPE protrusion and ring-like structure under RPE corresponding to the tangled
vascular structure on en face OCTA.

Regarding pathogenesis, Wang et al. found small dome-shaped pigment epithelial
detachments (PEDs) that were often ignored on SD-OCT showed vascularized PEDs and
corresponded with cluster-like structures at the edge of BVNs on en face SS-OCTA. They
inferred the formation of some PLs might be the twisted ends of new vessels, tangling into
a larger cluster-like structure and protruding into the retina [43]. Previous studies have
reported that PLs might develop with the accumulation of serous PEDs. PLs tend to be
located at the margin of serous PEDs and then detach from Bruch’s membrane as increasing
fluid infiltrates under the PLs [44]. Indeed, B-scan SS-OCTA could visualize PLs attached to
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Bruch’s membrane with or without serous PEDs and PLs detached from Bruch’s membrane
with serous PEDs [31]. Although far from revealing the initiation of PCV formation, these
findings might provide an overview of the later development stage.

2.2. Presentation of Branching Vascular Networks on SS-OCTA

Since the manifestation of BVNs has been well defined using SD-OCTA, SS-OCTA
generally attained similar results in characterizing their morphology and locality. It has
been reported that the measured BVN areas of treatment-naive PCV were not statistically
different between ICGA and SS-OCTA. SS-OCTA could even delineate the margins of
BVNs better when their sizes were small [28]. Allowing some PLs to be recognized as
tangled vascular structures associated with BVNs, might also help understand the role
of neovascularization in the etiology of PCV and possible implications in treatment. In
addition, investigators previously used SD-OCTA to classify BVNs into different subtypes
based on their morphological features, where these classification systems showed some
consistency with those based on ICGA and fundus fluorescence angiography (FFA) in
predicting visual prognosis [45,46]. Using SS-OCTA, BVNs can be described with more
morphological patterns, such as dense, very dense (bush-shaped), loose (dead-tree-shaped),
pseudopod-like, and anastomosing forms. Patients with loose patterns had a higher ratio
of active disease compared with those with dense patterns (Shown in Figure 2) [29,47].
A recent study classified BVNs into three morphological types (“trunk”, “glomeruli”,
and “stick” type) and revealed significant differences among BVN types regarding lesion
structural characteristics, such as PED area, subretinal fluid area, and BVN area, though the
visual acuity at 12 months after anti-VEGF therapy was similar [48]. These results showed
the potential of OCTA in guiding accurate and personalized management of PCV in the
future. More investigations are required before they become clinically meaningful, and
SS-OCTA can help accelerate this course of investigation.
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Figure 2. SS-OCTA images of two different BVN patterns that might indicate active (A) or quiescent
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2.3. Choroidal Changes of PCV on SS-OCTA

PCV is now considered to belong among pachychoroid diseases because of its ab-
normally increased choroidal thickness, which was noticed using SS-OCT [23,49]. Lee
et al. further found that PCV lesion sites commonly featured pachyvessels and a decreased
ratio of choriocapillaris/Sattler layer to total choroidal thickness. They inferred that the
expansion of the outer choroidal vessels might cause mechanical damage to the Bruch’s
membrane-RPE complex, and the attenuation of choriocapillaris could provide a relatively
ischemic environment, leading to the expression of angiogenic factors [50]. The choroidal
vascular index, defined as the ratio of the luminal area over the total choroidal area, was
found to be lower in PCV compared to normal eyes [15,51,52]. A possible explanation is
that the increased choroidal hyperpermeability in PCV eyes may increase choroidal stroma
volume and thus decrease the choroidal vascular index [53]. Similarly, SS-OCTA revealed
that after anti-VEGF treatment, decreases in PED volumes correlated with decreases in
mean choroidal thickness as well as increases in choroidal vascular index measurements.
Hence, the PCV lesion was proposed to serve as a high-volume arteriovenous shunt from
the impaired choroidal circulation, consequently causing transudation into the choroidal
stroma, which leads to changes in choroidal thickness and choroidal vascular index, as
well as the corresponding response after anti-VEGF treatment [54]. These studies further
highlighted the role of pachychoroid features in the pathogenesis of PCV.

Investigating the fellow eyes of unilateral PCV patients may aid in understanding
the early changes of this disease since PCV-unaffected fellow eyes sometimes also exhibit
thick choroidal features [23,55,56]. Previous studies based on SD-OCTA have found no
difference in choriocapillaris flow density between the fellow eyes of PCV and normal
eyes [57]. Another biomarker used for evaluating the choriocapillaris is the choriocapillaris
flow void (FV), which refers to the part of the choriocapillaris slab without blood flow
signals. Kamei et al. concluded that the fellow eyes of PCV and typical AMD did not exhibit
significant differences in FV area, individual FV size, number of FVs, or vascular diameter
index [58]. However, Wu et al. recently reported that when FVs were grouped by size
(ranging from 400 to 1125 µm2) and assessed using SS-OCTA, the number of small-sized
FVs (under 750 µm2) substantially decreased in PCV fellow eyes compared to the normal
group. They suggested that this difference was due to the relatively larger number and
smaller size of these FVs, so their decrease may not significantly impact the total number
and average size of all FVs [55,59]. Another study based on SS-OCTA also reported the
mean choriocapillaris FV was highest in eyes with PCV, followed by fellow unaffected
eyes, and lowest in normal eyes in 1 mm and 1.5 mm area [60]. These findings support the
notion that choriocapillaris impairment may be an early change of pachychoroid spectrum
diseases [61]. However, it remains unclear whether the attenuation of choriocapillaris is
a primary process or secondary to the dilation of the outer choroid. Further studies are
needed to explore the relationship between choriocapillaris damage and pachyvessels, as
well as the underlying mechanism.

3. Clinical Management of PCV with SS-OCTA

Currently, the gold standard for diagnosing PCV is based on early-phase nodular
hyper-fluorescence from choroidal vasculature on ICGA [62,63]. While this method is
effective, it is invasive, time-consuming, and limited to certain regions. Researchers are
working to find less invasive and more efficient alternatives to ICGA. The Asia Pacific
Ocular Imaging Society PCV workgroup recently developed non-ICGA diagnostic criteria
mainly based on OCT, but these do not include any OCTA features. A meta-analysis
conducted by Wang et al. found that the detection rate of PLs using OCTA (including
SD-OCTA and SS-OCTA) was only 0.67 (95% CI: 0.55–0.79), whereas that of BVNs was
0.86 (95% CI: 0.81–0.91) [64]. Consequently, while OCTA is useful for detecting BVNs, it is
generally not considered a replacement for ICGA as the standard diagnostic tool for PCV.
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3.1. Diagnosis of PCV with SS-OCTA

The diagnostic accuracy of SS-OCTA for PCV lesions seems to be unstable and varies
between studies. (Shown in Table 1). The sample sizes of available studies are limited, and
more reliable evaluations from larger research studies or high-quality meta-analyses are needed.
The instability of SS-OCTA in diagnosing PCV can be attributed to several factors. Firstly,
different SS-OCTA machines and algorithms can yield significantly different results, as reported
by some researchers [31,32,65,66]. Another factor is the implementation of manual or automatic
segmentation of OCTA images. Manual segmentation has been shown to improve the detection
rate of PLs from 62% to 86% by counting in those that are falsely divided into other layers of
the retina [45]. Additionally, the exclusion of patients with previous treatment histories in some
studies but not in others can impact the detection rate, as anti-VEGF treatment or photodynamic
therapy can induce the regression of PLs and reduce their detection rate using OCTA [8,67,68].
These factors can lead to significant variations in the diagnostic accuracy of SS-OCTA, and
future research studies should carefully consider them in their study designs.

Table 1. A summary of recent studies applying SS-OCTA to characterize PLs and BVNs of PCV. The
detection rate of PLs varied from 69.57% to 100%, while BVNs varied from 72.2% to 100%. “-” refers
to the lack of associated descriptions in corresponding studies.

Author Year Included Eyes PL Morphology and Locality BVN Morphology and
Locality

PL
Detection

Rate

BVN
Detection

Rate

Kishida et al.
[69] 2014 17

(-)

Similar to the early phase of
ICGA images.

(Between the Bruch’s membrane
and RPE)

-
(-) 100% -

Cheung et al.
[27] 2017 54

(68.5% treated)

Variable in size and may appear
as bright round lesions or round
lesions with a bright outline but

dark lumen.
(-)

Variable in size but
correlated closely with the
location and shape of BVN

on ICGA.
(-)

77.80% 87%

Rebhun et al.
[10] 2017 7

(100% treated)

Non-uniform blood flow inside
a single polyp, with some,

appearing slower at the center
of the polyp and faster close to

the lesion walls.
(-)

Blood flow is slower than
that of retinal vessels. BVN
with larger trunks had faster

blood flow inside.
(-)

85.70% 85.70%

Bo et al. [30] 2019 23
(65.2% treated)

Tangled vessels.
(Associated with type I or type

II NV)

-
(Associated with type I or

type II NV)

100%
(With manual
segmentation)

100%
(With manual
segmentation)

Fujita et al.
[31] 2020 54

(All untreated)

Mostly tangled structures,
including coil-like structures.
(All inside PED and mostly

Located at the margin of
the BVNs)

Tangled vascular networks.
(-) B-scan: 94.7% En face: 72.2%

B-scan: 87.0%

Kim et al.
[32] 2020 31

(All untreated)

Mostly tangled vessels with a
variety of configurations.

(-)

No significant difference in
lesion area measurements

between ICGA and
SS-OCTA.

(-)

100%
(With manual
segmentation)

100%
(With manual
segmentation)

Singh et al.
[28] 2020 46

(All untreated)

Hyper-reflective or
hypo-reflective with a
hyper-reflective border.

(-)

OCTA could better delineate
the margins of small BVNs.

(-)

69.57%
(With manual
segmentation)

100%
(With manual
segmentation)

Azar et al.
[29] 2021 14

(-)

Some polyps present with a halo
or a hyper-reflective round
structure surrounded by a

hypo-intense halo.
(Above Bruch’s membrane)

Loose or dense pattern.
(Between the RPE and

Bruch’s membrane)
- 100%

Shen et al.
[33] 2021 5

(-)
Tangled vascular structure.

(Beneath the PED)
-

(-) - -

Wang et al.
[43] 2021 30

(-)

Cluster-like structure at the edge
of a BVN.

(-)

-
(-)

96.7%
(With manual
segmentation)

-

Arias et al.
[41] 2021 22

(72.7% treated)

Active disease: poorly defined
shape surrounded by a

hypo-reflective halo.
Inactive cases: well-defined

circular shape.
(-)

-
(-) B-scan: 100% -
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There have been no direct comparisons made between SD-OCTA and SS-OCTA, but
studies have found that these two OCTA modalities perform similarly in showing the
extent of choroidal neovascularization (CNV) [70,71]. It is unclear if the same holds true for
the detection of PCV lesions. Theoretically, with its better penetrating abilities, SS-OCTA
may perform better in detecting PCV lesions when large serosanguineous PEDs exist. The
increased scanning width could also help improve detection rates [13]. However, SS-OCTA
has a lower axial resolution and shorter interscan time than SD-OCTA, which may cause it
to miss smaller PLs with slower blood speeds [65,72]. Further research is needed to assess
the impact of these factors on the detection ability of SS-OCTA.

However, SS-OCTA does offer several advantages. As mentioned earlier, SS-OCTA can
accurately detect small dome-shaped PLs that are missed when using SD-OCT [43], which
could be important for early diagnosis. In addition, a study showed that SS-OCTA was able
to distinguish PCV lesions from RPE atrophy and serous PEDs that masqueraded as PLs
and BVNs on ICGA, even in the presence of subretinal hemorrhage [32]. Several studies
have also reported that SS-OCTA was not inferior to ICGA in detecting BVNs [27,28,30].
These findings highlighted the clinical value of SS-OCTA for early and accurate diagnosis,
but it is not yet sufficient to support its use as a substitute for ICGA. Instead, it is more useful
as an auxiliary tool to help diagnose PCV based on ICGA or other non-ICGA diagnostic
criteria mentioned earlier.

3.2. Follow up of PCV with SS-OCTA

Anti-VEGF drugs, either alone or in combination with photodynamic therapy, are
the current first-line treatment options for PCV. However, due to the need for multiple
injections and consecutive follow-ups to assess disease activity and treatment response,
OCTA has become an indispensable tool in the follow-up of PCV patients. Its non-invasive,
fast, and safe detecting process makes it more suitable for high examination frequency than
ICGA [73].

Previous studies have demonstrated that OCTA and ICGA have similar results in
imaging the regression of PLs after anti-VEGF treatment or PDT. There is also a strong
correlation between disease activity and OCTA presentation of PLs [67,74]. More recently,
Bo et al. assessed the association between PCV lesion progression and exudative recurrence
after anti-VEGF therapy or PDT, and they concluded that the progression of PLs on SS-
OCTA might serve as a stand-alone indicator for the near-term onset of exudation [75]. Shen
et al. revealed that tangled vessel-shaped PLs can evolve into a more typical neovascular
pattern after anti-VEGF therapy, and these patients had stable and even improved visual
acuity. This supports the notion that at least some PLs might be tangled vessels in nature
and could be a positive prognostic sign [33]. Additionally, persistent BVNs were found
to be associated with disease recurrence [76]. Therefore, assessing BVNs might also be
necessary for the follow-up of PCV. In a study by Azar et al., BVNs were classified into
several groups based on their shape, and the authors found that BVNs presenting in the
form of “pseudopod-like extrusions” tended to have more neovascular activity during
follow-up [29].

SS-OCTA might also be valuable in detecting early disease progression or reactivation.
Wang et al. found some PLs on SS-OCTA that were not confirmed using ICGA at baseline
but later developed to become detectable on ICGA at follow-up visits [43]. Similarly,
in some PCV eyes, SS-OCTA demonstrated marked deterioration of the lesion, whereas
SD-OCT showed no increase in intra-retinal or sub-retinal fluid [27]. However, conflicts
between SS-OCTA and other examinations have also been reported. For example, SS-OCTA
could suggest a false negative neovascular activity compared to ICGA, which could affect
therapy decisions [27,29]. Therefore, the best approach to integrating SS-OCTA into the
clinical management of PCV should be further determined. Overall, OCTA has already
been a great tool for assessing treatment response and disease activity. With the potential
advantages of SS-OCTA, it could help follow-up situations to be more timely, precise,
and personalized.
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4. Current Problems and Conclusions

Despite the major achievements of SS-OCTA, it still has some notable limitations.
One of these limitations is that it does not completely overcome some of the defects of
conventional OCTA technologies, such as artifacts, automatic segmentation errors, and
the inability to penetrate through massive subretinal exudation, hemorrhage, and fibro-
sis [27,28,31,32]. OCTA has intrinsic defects in the form of producing artifacts, such as
motion and projection artifacts [77]. These artifacts may affect the detection of small PLs
and make it difficult to determine in which layer the lesion is located [24]. In addition,
although manual segmentation can improve detection rates, it can also make it less conve-
nient to adapt SS-OCTA clinically. Despite a few studies that have focused on developing
new automated segmentation algorithms, there is still much room for improvement in this
area [78]. Additionally, in PCV patients, the occurrence rate of serous macular detachment
and sub-macular hemorrhage was 52% and 30% at their first visit, respectively [79], which
can limit the use of SS-OCTA even with its superior penetrating ability. These inherent limi-
tations of OCTA technology may not be completely resolved in the near future. Therefore,
placing this imaging method in proper situations is necessary to maximize its clinical value.

Secondly, there appears to be a discrepancy between the latest treatment goal for PCV
and the evaluation criteria used in many studies to assess the performance of SS-OCTA.
As previously mentioned, successful visual outcomes may not necessarily depend on the
regression of PLs. Therefore, the primary goal of PCV management has shifted from
complete PL regression to achieving the best possible visual outcome while minimizing
the treatment burden [73]. In cases where a clinical diagnosis can be established based
on the observation of typical PLs and associated BVNs, along with other features seen
on structural OCT images, the next step should be assessing disease activity to guide
management options [63]. Thus, when OCTA detects fewer PLs than ICGA, it may not be
reasonable to consider OCTA to have a lower diagnostic performance. Only when OCTA
fails to detect any PCV lesions while ICGA succeeds can we conclude that ICGA is superior.
For instance, Ting et al. described both SS-OCTA and ICGA as effective when at least
one PL was detected [13]. Additionally, to our knowledge, there have been no studies
establishing a correlation between the number of PLs and treatment response or visual
outcome. As such, the diagnostic value of OCTA may have been underestimated clinically,
necessitating a re-evaluation of the study design in the future. It may even be reasonable to
perform OCTA initially and leave ICGA as a second option in cases of severe complications
or suboptimal results [80].

Overall, SS-OCTA has proven to be a valuable tool for imaging PCV. Its high-quality
images allow for detailed lesion delineation and associated pathogenic investigations. It
has shown great potential as an auxiliary diagnostic tool and could be vital in achieving
timely, accurate, and personalized follow-ups for patients. There is a need for more studies
to assess its diagnostic capabilities, especially in comparison to other imaging modalities.
With advances in algorithm and technology development and more properly designed
studies, SS-OCTA might gain even more value in the clinical management of PCV in
the future.
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