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Abstract: Assessing the risk of acute kidney injury (AKI) has been a challenging issue for clinicians in
intensive care units (ICUs). In recent years, a number of studies have been conducted to investigate
the associations between several serum electrolytes and AKI. Nevertheless, the compound effects of
serum creatinine, blood urea nitrogen (BUN), and clinically relevant serum electrolytes have yet to
be comprehensively investigated. Accordingly, we initiated this study aiming to develop machine
learning models that illustrate how these factors interact with each other. In particular, we focused
on ICU patients without a prior history of AKI or AKI-related comorbidities. With this practice, we
were able to examine the associations between the levels of serum electrolytes and renal function in
a more controlled manner. Our analyses revealed that the levels of serum creatinine, chloride, and
magnesium were the three major factors to be monitored for this group of patients. In summary, our
results can provide valuable insights for developing early intervention and effective management
strategies as well as crucial clues for future investigations of the pathophysiological mechanisms
that are involved. In future studies, subgroup analyses based on different causes of AKI should be
conducted to further enhance our understanding of AKI.

Keywords: acute kidney injury; serum electrolyte; intensive care unit; machine learning

1. Introduction

Acute kidney injury (AKI) is a condition frequently encountered in medical care [1].
The underlying pathophysiological processes of AKI ultimately lead to a decline in renal
function. As a result, the patients suffer from the accumulation of waste products, an
imbalance of electrolytes, and a widespread inflammatory response that affects organs
beyond the kidneys [2]. According to a recent study, 20% to 50% of the patients in an
intensive care unit (ICU) suffered from AKI [3]. Therefore, how to assess the risk of AKI is
a critical issue for clinicians in an ICU [4]. However, several early signs of AKI, including
edema, hypertension, and oliguria, are non-specific. Therefore, the current practice only
monitors the level of serum creatinine and the volume of urine output in order to assess
the risk of AKI [5,6].

Due to the observation above, scientists have been investigating the physiological
signs that may be associated with the development of AKI. Leaf et al. conducted a review
of the pathophysiology of dysregulated mineral metabolism, specifically focusing on
calcium, phosphate, parathyroid hormone, and vitamin D metabolites in the context of
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AKI [7]. A review conducted by Yokota et al. found that the most common comorbidities
associated with AKI in elderly patients included respiratory failure, cardiovascular disease,
hypertension, diabetes, surgical complications, and liver disease [8].

As the kidneys play a crucial role in regulating the balance of calcium, phosphate, and
magnesium, it is conceivable that an imbalance of serum electrolytes may be associated with
the development of AKI. In this respect, a previous study reported that acute phosphate
nephropathy was an early condition of AKI and might subsequently progress to chronic
renal failure [9]. Furthermore, a number of studies were conducted to investigate how
the levels of serum electrolytes, including chloride, phosphorus, magnesium, potassium,
sodium, and calcium, were associated with the development of AKI [10–12]. Suetrong
et al. observed a linear correlation between the concentration of serum chloride and the
development of AKI among sepsis/septic shock patients [13]. Marttinen et al. reported a
similar result and showed that the temporal chloride level was associated with an increased
risk of AKI [14]. The work by Moon et al. revealed that a high level of serum phosphorus
increased the risk of AKI [15]. Cheungpasitporn et al. showed that both hypomagnesemia
and hypermagnesemia led to an increased risk of in-hospital AKI [16]. Thongprayoon
et al. observed a U-shaped association between the level of serum ionized calcium and
in-hospital AKI. Furthermore, both hypocalcemia and hypercalcemia were reported to
be associated with an increased risk of hospital-acquired AKI [17,18], and Chen et al.
discovered that abnormal levels of serum sodium or potassium before an AKI diagnosis
were more likely to lead to AKI progression and a poor prognosis [19]. Nevertheless,
Yessayan et al. reported that the concentration of hyperchloremia and the onset of AKI
within 72 h of admission were not correlated [20]. Finally, Morooka et al. divided pediatric
patients into three groups based on their serum magnesium values and investigated the
association between magnesium levels and outcomes [21].

In addition to the studies addressed above, the latest trend is to exploit various machine
learning algorithms, including artificial neural networks [22], support vector machines
(SVMs) [23], Bayesian networks [24], random forests (RFs) [25], etc., to predict incidences
of AKI, and Song et al. reviewed how the conventional logistic regression (LR) and various
machine learning methods performed in this respect [26]. A representative study was
conducted by Tomasev et al. [27]. In their study, the authors employed a recurrent neural
network to build their prediction models based on a cohort of 703,782 cases collected from
the medical facilities of the U.S. Department of Veterans Affairs.

Though the effects of several serum electrolytes on the development of AKI have been
well reported, a comprehensive investigation into how these serum electrolytes interact in
the context of the development of AKI has not been conducted [28–34]. It is conceivable
that such studies can provide crucial clues for developing new clinical guidelines to assess
the risk of AKI. Accordingly, we initiated this study aiming not only to illustrate how
these factors interact with each other but also to provide new insights for developing new
clinical practices. Our analyses focused on ICU patients who had no prior history of AKI
and were free of AKI-related comorbidities such as diabetes and hypertension as well as
common causes of AKI such as hypovolemia and heart failure. By focusing on this group
of patients, we were able to eliminate the confounding influences of these conditions and
examine the associations between the levels of serum electrolytes and renal function in a
more controlled manner.

In this study, we exploited decision tree (DT) models [28–30] and RF models [31,32].
Compared to the other commonly exploited machine learning models, such as SVMs [23]
and deep neural networks (DNNs) [22], DT and RF models are favorites in many appli-
cations due to the interpretable decision rules exhibited by these models. Figure 1 shows
a DT structure that summarizes the main results of this study. A user can figure out the
decision rules by traversing the tree structure from the root node, which is at the top of the
structure and colored yellow. They can proceed by following the branch originating from
the root node that matches the condition of the case. The path ends at one of the leaf nodes
at the bottom level of the tree. The “n+” and “n−” symbols at each node denote the number
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of positive cases and the number of negative cases, respectively, in our study cohort that
met the criteria specified along the path from the root node to this particular node. If a path
ends at a red node, the prediction is positive. On the other hand, if a path ends at a green
node, the prediction is negative. Based on these interpretable decision rules, physicians
can have a comprehensive understanding of how these key factors interact with each other
and develop new clinical guidelines accordingly. On the other hand, due to the non-linear
transformations and the large number of coefficients involved in the prediction process, it
is essentially impossible for a user to interpret the mathematics equations that an SVM or
DNN model follows to make a prediction.
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2. Materials and Methods
2.1. Study Cohort

Our study cohort was extracted from the Medical Information Mart for Intensive
Care (MIMIC)-IV database, version 1.0, published in March 2021 [33,34]. The MIMIC
database has been carefully de-identified to protect patient privacy. Its use for research
purposes has been approved by the institutional review boards of the Massachusetts
Institute of Technology (Protocol No. 0403000206) and Beth Israel Deaconess Medical
Center (Protocol No. 2001-P-001699/14). These approvals indicate that the appropriate
ethical considerations have been taken into account to ensure the responsible and lawful
use of the database for research purposes.

Figure 2 shows the flow that we followed to generate our study cohort. Initially,
the dataset contained 256,878 clinical records collected at the emergency department and
the intensive care unit between 2008 and 2019. According to the 2012 Kidney Disease:
Improving Global Outcomes (KDIGO) recommendation statements [35–38], AKI is defined
by any of the following criteria: (1) an increase in the level of serum creatinine by 0.3 mg/dL
(26.5 µmol/L) or more within 48 h or (2) an increase in the level of serum creatinine to
1.5 times the baseline level within 7 days. As the guideline requires two readings of the
serum creatinine level and our study focused on patients in ICUs, 205,482 records in the
database were excluded due to a lack of required information after admission into ICUs.
As a result, only 51,396 records, all of which corresponded to the first available data after
ICU admission, were included for subsequent analyses.
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Figure 2. The flow for generating the study cohort. Table 1 lists the ICD-9 and ICD-10 codes employed
to exclude the cases with AKI-related comorbidities/diseases. Criterion (1): (i) For a patient who had
suffered from AKI, we included only the record corresponding to his/her stay in the ICU during
which the patient suffered from AKI the first time. (ii) For a patient who had never suffered from
AKI, we included only the record corresponding to his/her first stay in the ICU. Criterion (2): (i) the
record of the case did not include all the readings listed in Table 2; (ii) one or more readings in the
record were in the highest 0.1% or the lowest 0.1% of the distributions; or (iii) one or more readings
in the record were not measured within 168 h of admission.

Table 1. Excluding criteria for the cases with AKI-related comorbidities/diseases.

Comorbidities/Diseases ICD-9 ICD-10

Renal failure 1 403.11, 403.91, 404.12, 404.92, 584.5–584.9,
585.1–585.9, 586, V42.0, V45.1, V56.0, V56.8

I12.0, I13.1, N17.0–N17.2, N17.8, N17.9,
N18.1–N18.9, N19, N25.0, Z49.0–Z49.2,

Z94.0, Z99.2

Congestive heart failure 398.91, 402.11, 402.91, 404.11, 404.13, 404.91,
404.93, 428.0–428.9

I09.9, I11.0, I13.0, I13.2, I25.5, I42.0,
I42.5–I42.9, I50.0–I50.9, P29.0

Diabetes 250.0–250.7, 250.9 E10.0–E10.9, E11.0–E11.9, E12.0–E12.9,
E13.0–E13.9, E14.0–E14.9

Fluid and electrolyte disorders 276.0–276.9 E22.2, E86.0, E86.1, E86.9, E87.0–E87.8
1 Including end-stage renal disease, AKI, and chronic kidney disease.
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Since one patient could be admitted into the ICU more than one time, for a patient
who had suffered from AKI, we included only the record corresponding to his/her stay in
the ICU during which the patient suffered from AKI the first time. On the other hand, for
a patient who had never suffered from AKI, we included only the record corresponding
to his/her first stay in the ICU. As a result, only 41,878 records corresponding to 41,878
individual cases remained. In the next step, we employed the criteria provided in Table 1
to exclude those patients whose medical records showed AKI-related comorbidities [39] so
that the interferences from other factors such as renal impairment, cardiac failure, diabetes,
and electrolyte imbalances would be avoided. After this step, only 17,085 cases remained
in the dataset. Finally, we employed the following excluding criteria to further screen the
dataset: (1) the record of the case did not include all the readings listed in Table 2; (2) one or
more readings in the record were in the highest 0.1% or the lowest 0.1% of the distributions;
and (3) one or more readings for the case were not made within 168 h of admission. In the
end, our study cohort contained 550 AKI-positive cases and 12,152 AKI-negative cases. A
demographic analysis of the study cohort is presented in Table 2.

Etiologically, the causes of AKI can be classified into three broad categories: pre-
renal azotemia, intrinsic renal parenchymal damage, and post-renal obstruction. Tailoring
treatment plans according to the specific causes of renal injury are crucial for improving
patient outcomes. For instance, hypovolemia, often diagnosed by assessing a fluid status
imbalance, insufficient renal perfusion, or inferior vena cava collapse, is a common clinical
presentation associated with pre-renal azotemia. On the other hand, post-renal injury
occurs when the urinary tract is partially or completely blocked due to functional or
structural derangements anywhere from the renal pelvis to the tip of the urethra. Since the
treatment plans for post-renal AKI patients are significantly different from the plans for
non-post-renal AKI patients, we classified the AKI patients in our study cohort into two
categories: post-renal AKI and non-post-renal AKI. According to several previous studies,
the incidences of post-renal AKI accounted for less than 5% of all AKI cases [1,40,41]. In our
study cohort, 24 out of 550 AKI cases, i.e., 4.4%, were post-renal, and the percentage was in
line with the previous studies. Supplementary Table S1 shows the ICD-9 and ICD-10 codes
employed to identify post-renal AKI cases. Table 3 shows the statistics of the post-renal
AKI patents and non-post-renal AKI patients with respect to the features listed in Table 2.

Table 2. Demographic analysis of the study cohort.

Feature 550 Cases with AKI
(Mean ± SD)

12,152 Cases without AKI
(Mean ± SD) p-Value

Age (years) 65.68 ± 14.69 60.34 ± 17.67 p < 0.001 *
Gender p < 0.001 *

Male (%) 349 (63.45%) 6757 (55.60%)
Female (%) 201 (36.55%) 5395 (44.40%)

Serum
BUN (mg/dL) 26.74 ± 15.39 18.06 ± 8.90 p < 0.001 *

Creatinine (mg/dL) 1.36 ± 0.64 0.86 ± 0.26 p < 0.001 *
Chloride (mEq/L) 110.37 ± 6.60 107.39 ± 5.28 p < 0.001 *

Potassium (mEq/L) 4.79 ± 0.75 4.47 ± 0.63 p < 0.001 *
Sodium (mEq/L) 142.81 ± 5.77 141.23 ± 4.59 p < 0.001 *

Magnesium (mg/dL) 2.53 ± 0.52 2.28 ± 0.44 p < 0.001 *
Phosphorus (mg/dL) 4.40 ± 1.34 3.80 ± 0.93 p < 0.001 *
Non-ionized calcium

(mg/dL) 8.76 ± 0.73 8.73 ± 0.71 0.346

The symbol * indicates statistical significance. For categorical variables, the p-values were calculated based on the
χ2 test [42,43]. For continuous variables, the p-values were calculated based on the t-test [42,43]. SD represents
standard deviation.
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Table 3. Statistical analysis of the characteristics of the post-renal AKI patients and the non-post-renal
AKI patients in our study cohort.

Feature
24 Cases with

Post-Renal AKI
(Mean ± SD)

526 Cases with
Non-Post-Renal AKI

(Mean ± SD)
p-Value

Age (years) 74.16 ± 12.54 65.30 ± 14.66 0.0037 *
Gender 0.0007 *

Male (%) 23 (95.66%) 326 (61.98%)
Female (%) 1 (4.34%) 200 (38.02%)

Serum
BUN (mg/dL) 27.54 ± 10.72 26.70 ± 15.55 0.7944

Creatinine (mg/dL) 1.40 ± 0.57 1.36 ± 0.64 0.7459
Chloride (mEq/L) 110.08 ± 7.30 110.38 ± 6.57 0.5228

Potassium (mEq/L) 4.58 ± 0.56 4.80 ± 0.76 0.2258
Sodium (mEq/L) 142.81 ± 5.28 142.84 ± 5.79 0.9599

Magnesium (mg/dL) 2.54 ± 0.38 2.53 ± 0.53 0.1666
Phosphorus (mg/dL) 4.07 ± 0.93 4.41 ± 1.36 0.5254
Non-ionized calcium

(mg/dL) 8.66 ± 0.54 8.76 ± 0.74 0.8278

The symbol * denotes statistical significance. The p-values were calculated based on the two-sample t-test. SD
stands for standard deviation.

2.2. Machine Learning Models

As mentioned earlier, we used DT and RF models in order to investigate the compound
impacts of two or more factors and provide a clear picture of how these factors interact
with each other. In particular, we focused on the compound effects of serum creatinine,
BUN, and the 6 serum electrolytes listed in Table 2. The serum creatinine and BUN were
included because in medical practice the levels of serum creatinine and BUN as well
as the BUN-to-creatinine ratio are measured to clarify different types of renal function
impairment, including pre-renal azotemia, intrinsic renal parenchymal disease, and post-
renal obstruction. The 6 serum electrolytes listed in Table 2 were included because previous
studies had reported their associations with the development of AKI.

In order to address the needs in different clinical scenarios, we generated prediction
models with varying levels of sensitivity and examined the prediction rules embedded in
these models. In this respect, we set the parameters of the machine learning packages to
various combinations and then employed a 5-fold cross-validation [22] to evaluate the levels
of sensitivity delivered by the prediction models generated with these alternative parameter
settings. In the 5-fold cross-validation process, the study cohort was randomly and evenly
partitioned into 5 subsets. For each combination of parameter settings, every subset was
employed to evaluate the prediction models generated with the other 4 subsets. Then,
the evaluation results of these 5 subsets were collected to calculate the performance data,
i.e., the sensitivity, specificity, positive predictive value (PPV), etc., corresponding to this
particular parameter combination. Supplementary Table S2 shows the software packages
employed to generate the DT and RF models as well as the alternative parameter settings
employed to generate the prediction models in the 5-fold cross-validation process. In this
respect, we tried a large number of possible parameter combinations in order to generate
prediction models that delivered sensitivity at the levels of 0.95 and 0.80. Furthermore, as
we had only 550 positive cases in our study cohort, we employed the 5-fold cross-validation
process instead of the 10-fold cross-validation process, which may be more commonly
used in machine learning research, so that each partition would contain a good number of
positive cases.

3. Results

As mentioned above, in order to address the needs in different clinical scenarios,
we generated prediction models with varying levels of sensitivity. In the subsequent
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discussions, we will focus on the prediction models with sensitivity at the levels of 0.95 and
0.80. Table 4 summarizes the performances of the DT, RF, and LR models observed during
the 5-fold cross-validation procedure. The performances of the LR models were included
to provide a reference because LR models are widely employed in biomedical research
communities. Detailed performance data are presented in Supplementary Table S3.

Table 4. Summary of the performances observed during the 5-fold cross-validation process.

Level of
Sensitivity Model Sensitivity Specificity PPV AUC Relative

Risk

0.95
DT 0.949 0.479 0.076 0.767 16.893
LR 0.949 0.414 0.068 0.855 13.872
RF 0.949 0.382 0.065 0.666 13.012

0.80
DT 0.798 0.721 0.116 0.823 9.84
LR 0.799 0.773 0.137 0.857 11.982
RF 0.799 0.732 0.119 0.766 10.141

PPV stands for positive predictive value, also known as precision. AUC stands for the area under the receiver
operating characteristic curve.

The performance data in Table 4 reveal that with respect to the specificity, the positive
predictive value (PPV), the relative risk, and the area under the receiver operating charac-
teristic curve (AUC), the DT model that delivered sensitivity at the level of 0.95 performed
significantly superior to the RF model that delivered the same level of sensitivity. It was
also observed that the RF model that delivered sensitivity at the level of 0.80 performed
marginally superior to the rival DT model in terms of specificity, PPV, and relative risk but
performed inferior to the rival DT model in terms of AUC. Based on these observations, we
concluded that the overall performance of the DT models was superior to that of the RF
models. Therefore, in the subsequent discussions, we will focus on the DT models and the
decision rules embedded in the models.

Figure 3a,b show the DT models generated by feeding the entire study cohort into
the decision tree package with the combinations of parameters cp and prior set to (0.005
and 0.5835) and (0.01 and 0.744), respectively. According to the 5-fold cross-validation
addressed above, with cp and prior set to these two combinations, the generated DT
models should deliver sensitivity at the levels of 0.80 and 0.95, respectively. One interesting
observation regarding the DT model shown in Figure 3a is that the model predicts a patient
with a serum creatinine level higher than 1.25 mg/dL to be at high risk. This prediction rule
comes very close to the serum creatinine level of 1.3 mg/dL commonly used by physicians
to determine whether a patient is at high risk of progression to AKI. It is also observed
that the DT model shown in Figure 3b predicts a patient with a serum creatinine level
higher than 0.95 mg/dL to be at high risk. This observation implies that 0.95 mg/dL can be
employed as an alternative threshold if the physician wants to increase the sensitivity of
his/her medical judgment.

The DT model shown in Figure 3a further reveals that for a patient with a serum
creatinine level between 0.95 and 1.25 mg/dL, his/her level of serum magnesium can be
used as a warning sign. If the reading is higher than 2.45 mg/dL, the patient is at high risk.
If not, we should further examine his/her level of serum chloride. If the patient’s level of
serum chloride is over 106.5 mEq/L, the patient is at high risk.

The blue polygons in Figure 3a,b encircle the structure shared by these two DT models.
According to the shared structure, for a patient with a serum creatinine level between
0.75 and 0.95 mg/dL, we should further examine his/her levels of serum magnesium and
chloride. A patient is at high risk if (1) his/her level of serum chloride is higher than
113.5 mEq/L or (2) his/her level of serum chloride is between 105.5 and 113.5 mEq/L
and his/her level of serum magnesium is higher than 2.35 mg/dL. Finally, since only a
very limited number of positive cases in our study cohort met the criteria defined by the
lower right parts of the tree structures in Figure 3a,b, we should be able to ignore the
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corresponding decision rules. In summary, the structures of the two DT models shown
in Figure 3 illustrate that the levels of serum creatinine, chloride, and magnesium are the
three major factors associated with the development of AKI. Though the level of serum
phosphorus is present in these DT models, the nodes corresponding to the level of serum
phosphorus are located in the lower parts of the structures, which implies that these nodes
play less significant roles in the decision rules.
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4. Discussion

As of today, the clinical practice to assess the risk of AKI is based on the 2012 KDIGO
Clinical Practice Guideline for Acute Kidney Injury, which monitors only the level of serum
creatinine and the volume of urine output. Since AKI could lead to many complications
and even fatality, identifying the risk factors of AKI and exploiting machine learning
technologies to predict AKI incidences have attracted a lot of attention in biomedical
research communities. In this respect, several serum electrolytes have been reported to
be associated with the development of AKI. Nevertheless, the compound effects of serum
creatinine, BUN, and clinically relevant serum electrolytes have yet to be thoroughly
investigated. With this observation, we initiated this study aiming not only to illustrate
how these factors interact with each other but also to provide new insights for developing
new clinical practices for assessing AKI risk. In particular, we focused on ICU patients who
had no prior history of AKI and were free of AKI-related comorbidities. By focusing on
this specific group of patients, we were able to eliminate the confounding influences of
these conditions and examine the associations between the levels of serum electrolytes and
renal function in a more controlled manner. Furthermore, our results can provide valuable
insights for developing early intervention and effective management strategies as well as
for investigating the pathophysiology of AKI.

The performance data in Table 4 show that for those patients without a prior history of
AKI or AKI-related comorbidities, the relative risks with these alternative prediction models
were fairly high, ranging from 9.84 to 16.89. This implies that the group of patients predicted
to be positive suffered significantly higher risk than the groups of patients predicted to
be negative. However, the low PPVs suggest that there would be a large number of false
positives if these prediction models were put into practical use. Nevertheless, according to
the numbers shown in Figure 3a, this particular DT model, if put into practical use, should
predict around 57% of the patients to be negative and deliver a sensitivity around 80%.
Meanwhile, according to the numbers shown in Figure 3b, this particular DT model, if put
into practical use, should predict around 51% of the patients to be negative and deliver a
sensitivity around 95%. Therefore, a physician who employs the DT models developed
in this study to assess the risks of AKI for his/her patients only needs to focus on about
50% of the patients, while the physician can expect this group of patients to suffer about
10 times the risk of the group of patients predicted to be at low risk.

Among the 10 variables listed in Table 2, only serum creatinine, chloride, magnesium,
and phosphorus are present in the DT models shown in Figure 3a,b. It must be noted that
this observation does not imply that serum potassium, sodium, and non-ionized calcium are
not associated with the development of AKI. In fact, as mentioned earlier, previous studies
have reported that serum potassium, sodium, and non-ionized calcium are all associated
with the development of AKI. What happened must be that when building the prediction
model, the DT algorithm figured out that the levels of serum chloride, magnesium, and
phosphorus provided more information than the levels of serum potassium, sodium, and
non-ionized calcium. The DT algorithm further figured out that the additional information
provided by the levels of serum potassium, sodium, and non-ionized calcium after the levels
of serum chloride, magnesium, and phosphorus had been incorporated was insignificant.

The DT models shown in Figure 3a,b identify the levels of serum creatinine, chloride,
and magnesium as the three major factors associated with the development of AKI. Though
the level of serum phosphorus is present in these two figures, all three nodes corresponding
to the level of serum phosphorus are located in the lower levels of the structures. Further-
more, only a very limited number of positive cases in our study cohort met the criteria
defined by these low-level structures. Therefore, in practice, we can ignore the role of
serum phosphorus.

Since the level of serum creatinine is one of the major factors monitored in the current
clinical practice, our study suggests that for those patients without a prior history of AKI
or AKI-related comorbidities, the levels of serum chloride and magnesium should be taken
into consideration in order to enhance the clinical guidelines. In this respect, the current
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clinical guideline, which monitors only the level of serum creatinine and the volume of
urine output, may lead to misdiagnoses and/or delayed treatments in some cases because
the level of serum creatinine generally reflects the degree of renal damage and should
be considered as a delayed indicator of AKI. Furthermore, decreased urine output is a
non-specific symptom and may only be evident once the AKI has progressed. Therefore,
by incorporating the assessments of the serum chloride and magnesium levels into the
enhanced clinical guideline, healthcare professionals can obtain a more comprehensive
understanding of a patient’s renal function and the risk of AKI. Furthermore, the numbers
shown in Table 2 reveal that the distributions of the levels of serum creatinine for patients
with AKI and patients without AKI must overlap to a large degree because the standard
deviation of the level of serum creatinine for patients with AKI, which is 0.64, is larger
than the difference between the means of these two groups of patients, which is 0.5. This
implies that additional assessments must be incorporated if we would like to evaluate
the risk of AKI of a patient more accurately. Finally, with respect to the decrease in urine
output among AKI patients, it is a non-specific symptom and may only be evident once the
AKI has progressed. Together, these observations imply that for an ICU patient without
a prior history of AKI or AKI-related comorbidities, healthcare professionals can obtain
a more comprehensive understanding of the patient’s renal function and risk of AKI by
incorporating assessments of serum chloride and magnesium levels into the enhanced
clinical guideline. Accordingly, healthcare professionals will be able to evaluate and manage
treatments more precisely and ultimately prevent disease progression and deterioration.

It must be noted that our results can only be immediately applied to ICU patients
without a prior history of AKI or AKI-related comorbidities. For ICU patients with AKI-
related comorbidities, further studies are needed. In this respect, we can partition the
patients into several groups depending on the types of comorbidities that they suffer
from so that patients in the same group have similar pathophysiological mechanisms.
Then, we can apply the procedure presented in this article to each group of patients
in order to develop a specific prediction model for each group and identify the critical
factors accordingly.

One of the major limitations of our study is due to the different causes of AKI. As the
causes of AKI are essential for physicians to develop effective treatment plans, in-depth
subgroup analyses based on different categories of renal injury should be conducted to gain
valuable insights into the different pathophysiological mechanisms involved and guide
appropriate treatment strategies tailored to each subgroup. In this study, based on the
information available in the MIMIC-IV dataset, we classified the AKI patients into two
categories: post-renal and non-post-renal. The statistics in Table 3 reveal that there were no
statistical differences between the levels of the eight serum ingredients for the post-renal
and non-post-renal AKI patients. Therefore, our prediction models should be generally
applicable to both post-renal and non-post-renal AKI patients. Nevertheless, in-depth
subgroup analyses should be conducted in the future.

In addition to the limitation addressed above, this is a retrospective study based on
data extracted from the MIMIC-IV database. Therefore, the results derived from this study
should not be extensively applied in the decision process without taking into consideration
the ethnic composition of the patients and the medical interventions that these patients may
have received. Furthermore, our study was based on clinical records collected in ICUs. This
implies that the patients involved had serious health conditions. The data in Table 2 also
show that these patients were relatively old. Therefore, the results observed in our analyses
should not be generalized to patients with different health conditions and in different age
groups. Finally, our results only illustrate the associations between the investigated risk
factors and the incidences of AKI. In other words, causal inferences have yet to be studied.

5. Conclusions

This study has led to an in-depth understanding of the compound effects of serum
creatinine, chloride, and magnesium with respect to the development of AKI in ICUs. As
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we focused on patients who had no prior history of AKI and were free of AKI-related
comorbidities, our study provides valuable insights for developing early intervention and
effective management strategies. Furthermore, this understanding provides crucial clues
not only for future enhancement of clinical practices but also for future investigation of the
pathophysiological mechanisms that are involved.
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