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Abstract: (1) Background: After motion sickness occurs in the ride process, this can easily cause
passengers to have a poor mental state, cold sweats, nausea, and even vomiting symptoms. This study
proposes to establish an association model between motion sickness level (MSL) and cerebral blood
oxygen signals during a ride. (2) Methods: A riding simulation platform and the functional near-
infrared spectroscopy (fNIRS) technology are utilized to monitor the cerebral blood oxygen signals of
subjects in a riding simulation experiment. The subjects’ scores on the Fast Motion sickness Scale
(FMS) are determined every minute during the experiment as the dependent variable to manifest the
change in MSL. The Bayesian ridge regression (BRR) algorithm is applied to construct an assessment
model of MSL during riding. The score of the Graybiel scale is adopted to preliminarily verify the
effectiveness of the MSL evaluation model. Finally, a real vehicle test is developed, and two driving
modes are selected in random road conditions to carry out a control test. (3) Results: The predicted
MSL in the comfortable mode is significantly less than the MSL value in the normal mode, which is
in line with expectations. (4) Conclusions: Changes in cerebral blood oxygen signals have a huge
correlation with MSL. The MSL evaluation model proposed in this study has a guiding significance
for the early warning and prevention of motion sickness.

Keywords: motion sickness; functional near-infrared spectroscopy (fNIRS); cerebral oxygenation
signals; Bayesian ridge regression (BRR); Graybiel scale; vehicle test

1. Introduction

As the automobile industry continues to grow, the problem of motion sickness among
passengers has also emerged. As an important evaluation index, ride comfort has attracted
more and more attention from consumers. After motion sickness occurs in the process of
riding, this can easily cause passengers to have a poor mental state, cold sweats, nausea, and
even vomiting symptoms. Although the symptoms of motion sickness are usually short-
lived and dissipate sometime after stopping the ride, they can affect the passenger’s normal
life. In addition, for those in poor health, motion sickness may induce underlying chronic
diseases, resulting in secondary injuries. It is very difficult to solve the problem of motion
sickness from the source because different individuals have different causes of motion
sickness. Noise, light intensity, temperature, ventilation, passengers’ own psychological
state, and drivers’ driving style are all possible reasons for motion sickness [1]. However,
the human symptoms caused by motion sickness are the same. These symptoms mainly
manifest as cold sweats, dizziness, nausea, vomiting, etc. Therefore, the current research
on motion sickness mainly reflects passengers’ motion sickness level (MSL) by monitoring
various physiological indicators. By monitoring physiological changes in real time, the
occurrence of motion sickness symptoms can be predicted and intervention measures can
be introduced to effectively avoid or alleviate the appearance of motion sickness [2]. In
this study, a ride simulation platform is built to restore the actual ride sensation. The

Diagnostics 2023, 13, 1403. https://doi.org/10.3390/diagnostics13081403 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13081403
https://doi.org/10.3390/diagnostics13081403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-2551-4839
https://orcid.org/0000-0002-8246-2326
https://doi.org/10.3390/diagnostics13081403
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13081403?type=check_update&version=2


Diagnostics 2023, 13, 1403 2 of 17

measurement method of cerebral blood oxygen signals from motion sickness is established
using near-infrared equipment to quantitatively evaluate and predict MSL.

2. Background
2.1. Definition and Causes of Motion Sickness

Irwin first proposed the concept of motion sickness in 1881 [3]. With the deepening of
relevant scholars’ research, motion sickness is currently defined as a general term for the
human body’s false perception of motion state and a series of physiological reactions caused
by various factors. This concept is equivalent to the phenomenon of carsickness and sea-
sickness in daily life. The causes of motion sickness come from different factors, and there
are differences among individuals. The existing theories to explain motion sickness include
the central nervous system dysfunction theory, the endocrine dysfunction hypothesis, the
sensory conflict theory, etc. The central nervous system dysfunction theory defines motion
sickness as a stress response of the central nervous system due to neurotransmitters [4,5].
The hypothesis of abnormal endocrine function refers to the belief that when people are
overstimulated, the endocrine hormones in plasma are abnormal, resulting in the reduc-
tion in gastrointestinal motility, and vomiting and nausea [6]. Sensory conflict theory is
currently the most accepted explanation for the source of motion sickness [7]. According to
sensory conflict theory, motion sickness is caused by the mismatch of otolith information
that senses gravity and linear acceleration, semicircular canal information that senses an-
gular acceleration, visual information, and proprioceptive information [8]. For example,
passengers browse static content on their mobile phones in the car, but their bodies perceive
the dynamic movement of the car as it drives. That is why most people think it is easy to
become dizzy when using a phone in a car.

2.2. Recognition and Classification of Motion Sickness

When passengers suffer from motion sickness, their physiological states and behav-
ioral performance change accordingly. At present, the detection method of motion sickness
is mainly through subjective scale evaluation and physiological signal analysis. The Simula-
tor Sickness Questionnaire (SSQ) can be utilized to evaluate MSL [9]. The Motion Sickness
Susceptibility Questionnaire (MSSQ) is regarded as a feasible method to distinguish the
motion sickness susceptibility of the subjects [10]. According to different MSSQ values, sub-
jects can be divided into multiple groups for controlled experiments [11]. Relevant scholars
designed the Visually Induced Motion Sickness Susceptibility Questionnaire (VIMSSQ),
which is specifically used for the assessment of visually induced motion sickness [12]. The
Fast Motion sickness Scale (FMS) can be completed in real time during the process of the
experiment. FMS can obtain the subjective motion sickness evaluation value of the subjects
in the process of the experiment without affecting the experiment [13,14]. In addition, the
Vertigo Symptom Scale (VSS) and Misery Scale (MISC) have been proven to be effective for
the representation of MSL in studies [15,16].

In the evaluation of physiological signals, the method of judging MSL by EEG signals
is the most accepted. The absolute power of EEG signals from different frequency bands is
closely related to MSL. The absolute power of the delta band increases significantly and
that of the alpha band decreases significantly in patients with motion sickness [17]. In the
study of Chuang et al., it was pointed out that the higher the degree of motion sickness, the
higher the activation degree of alpha and gamma frequency bands, including the motor
area, parietal area, and occipital area [18]. The pupil rhythm detection method based on
an infrared camera can also reflect the occurrence of motion sickness. After the subjects
experience motion sickness, the mean and standard deviation of pupil diameter increases,
and the coherence ratio of pupil rhythm decreases [19]. In addition, physiological signals
such as blood pressure and respiration are closely related to motion sickness [20]. For
motion sickness induced by visual stimuli, Li Y et al. extracted subjects’ EEG, center of
pressure, and head and waist motion trajectories as input features. The K-Nearest Neighbor
classifier, logistic regression, random forest, and multilayer perceptron neural network
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were considered as classifiers. The results showed that this algorithm was effective for both
binary and ternary classification of motion sickness [21]. Recently, M et al. quantified the
interaction between muscle activation, brain activity, and cardiac behavior during motion
sickness in their study [22]. Ko L et al. proposed an extended version of the inheritable
bi-objective combinatorial genetic algorithm. Compared with general prediction models,
this algorithm improves the test accuracy by 10% to 20% for reporting the level of motion
sickness [23]. The research of these scholars shows that the characteristics of physiological
signals combined with machine learning and deep learning can effectively identify the
degree of motion sickness.

2.3. Motion Sickness Recognition Based on Cerebral Blood Oxygen Signals

Since the pathogenesis of motion sickness is often explained by sensory conflict theory,
physiological changes in the brain are important for the analysis of motion sickness. Brain
imaging technology has been widely accepted to record brain activity associated with
motion sickness symptoms [24]. Functional near-infrared spectroscopy (fNIRS), with better
spatial resolution, is a reliable technique to monitor brain activity during motion sickness.
Based on the six-degree-of-freedom driving simulator and the fNIRS device, Zhang et al.
collected the driving operation data and cerebral blood oxygen data of the participants.
The results showed that the occurrence of motion sickness was related to the occipital
lobe, indicating the correlation mechanism between motion sickness and cerebral cortex
activity [25]. Kinoshita et al. created two stereoscopic video clips with different background
elements and measured regional cerebral blood flow while viewing stereoscopic video clips
by the fNIRS technique. The results showed that the differences in background elements
in the peripheral visual field during stereoscopic video clips affected the regional cerebral
blood flow from the occipital lobe to the prefrontal cortex [26]. Takada et al. used fNIRS
techniques to measure cerebral blood flow when subjects viewed stereoscopic video clips
with and without background. During the observation of the two background cases, the
concentration of oxygenated hemoglobin in the occipital lobe increased significantly [27].
Hoppes et al. applied fNIRS technology to explore brain activation during optical flow. The
results showed that greater brain activation was observed in the bilateral frontotemporal
parietal lobes when the optical flow was finally observed. The optical flow activated the
bilateral frontotemporal parietal regions of the cerebral cortex. This activation was greater
when the optical flow and fixed targets were observed [28].

From the research mentioned above, most scholars currently study vision-induced
motion sickness through fNIRS technology. However, in the actual ride process, few
passengers will cause their own motion sickness reaction because of the moving view out
of the window. Therefore, this study restores the actual ride sensation through the ride
simulation platform. The relationship between motion sickness and cerebral blood oxygen
signals is studied by simulating real riding conditions.

2.4. Motivation and Structure of This Study

The purpose of this study is to investigate the link between motion sickness and
cerebral blood oxygen data by building a ride simulation platform to restore the actual road
conditions. This study has an enlightenment effect on the early warning and prevention
of motion sickness. The remainder of the paper is organized as follows. The third section
describes the design and process of the experiment. The fourth part introduces the prepro-
cessing of the light intensity signals, the algorithm of transforming light intensity signals
into cerebral blood oxygen signals, and the parameters of cerebral blood oxygen signals
used for the recognition of motion sickness. After these cerebral blood oxygen parameters
are tested, combined with the Bayesian ridge regression (BRR) algorithm, a prediction
model for MSL is constructed in the fifth part. The sixth part introduces the process of the
vehicle test, which is used to verify the validity of the motion sickness prediction model.
The seventh part analyzes the advantages and disadvantages of this study and discusses
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the relevant measures of motion sickness alleviation and other research directions worthy of
further study. Section 8 is the conclusion, which summarizes the contributions of this study.

3. Design of the Ride Simulation Experiment of Passengers

The study of motion sickness needs to be carried out in a safe and controllable envi-
ronment, such as experiments on riding simulators [29]. Therefore, this study used a riding
simulator built in the laboratory based on a six-degree-of-freedom platform. Table 1 shows
the key parameters of the six-degree-of-freedom platform. The fNIR 2000C Imager device
was utilized to monitor the brain status of the subjects in real time during the experiment.
fNIRS is a safe and non-invasive method for brain state monitoring. As shown in Figure 1,
the fNIR 2000C Imager device has two emitters and six detectors to monitor changes in
prefrontal oxygenated and deoxygenated hemoglobin in real time.

Table 1. Parameters of the 6-degree-of-freedom platform.

Parameters Value

CylinderOrigLength 580.000000
MaxTravelRange 295.000000

TopHexagonLongerSideLength 420.000000
TopHexagonShortSideLength 120.000000

TopCircumcircleDiamiter 567.000000
BottomHexagonLongerSideLength 450.000000
BottomHexagonShortSideLength 150.000000

BottomCircumcircleDiamiter 634.000000
PlatformMaxYTravelRange 304.189148
PlatformMaxRotateAngle 32.444931

Figure 1. Experimental flow design based on riding simulator.

Eight subjects were recruited in this study. These eight subjects were undergraduate
students from Shanghai University, including four male students and four female students.
Informed consent was obtained from the eight subjects before conducting the experiment.

Before the experiment, the experimenter guided the subjects to ride on the simulation
platform and put on the fNIRS equipment for the subjects, as shown in Figure 2. The
subjects were asked to complete the MSSQ questionnaire before the experiment. According
to the MSSQ scores, the subjects were divided into three groups: insensitive to motion
sickness, general, and sensitive to motion sickness. After starting the experiment, the
experimenter was required to record the FMS scores (0–10 points) of the subjects by verbal
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interrogation every 1 min. A score of 0 indicated no motion sickness at all, while a score of
10 indicated severe motion sickness. In this way, the eight subjects formed a total of 80 sets
of data. In the experiment, the behavior of the subjects was not constrained. The subjects
were free to consult their mobile phones and communicate during the experiment to align
their behavior with that of the actual ride.

Figure 2. Experimental equipment and testing process. (a) ride simulation experiment; (b) simulation
platform; (c) fNIRS device.

At the end of the experiment, subjects were required to complete the Graybiel scale.
The Graybiel scale belongs to a multidimensional symptom scale. Graybiel et al. identified
nausea, pale skin, cold sweat, increased saliva, and drowsiness as the five symptoms of
motion sickness [30]. There are also two types of symptoms: headache and dizziness.
According to the different degrees of each symptom, different points are assigned, and
finally the total score is obtained. According to the total score, the degree of motion sickness
is divided into five grades: mild discomfort, moderate discomfort (B), moderate discomfort
(A), severe discomfort, and motion sickness.

During the test, if the subject requested to terminate the experiment because of discom-
fort, the experimenter immediately suspended the movement of the platform and ended
the experiment.

4. Calculation and Preprocessing of Cerebral Blood Oxygen Signals

The principle of using fNIRS for cerebral blood oxygen monitoring is that biological
tissues have the characteristics of high scattering and low absorption for near-infrared
light. Light of near-infrared bands can penetrate biological tissues to a sufficient depth.
The hemoglobin of the human body carries chromophores, which have a strong absorption
effect on near-infrared light. The change in the concentration of oxygenated hemoglobin
and deoxygenated hemoglobin in human tissue causes a change in the absorption spectrum



Diagnostics 2023, 13, 1403 6 of 17

of light in human tissue. Therefore, the changes in cerebral blood oxygen signals can be
reflected by detecting the near-infrared light intensity signals [31,32].

To preprocess the collected raw near-infrared light intensity data, firstly, some data
segments with obvious local interference are deleted through observation. A 20-order low-
pass FIR filter of 2 Hz is utilized to filter out noisy data. In the process of signal acquisition,
the subject’s head will inevitably move. Therefore, the filtered light intensity data still have
the interference of motion artifacts. Motion artifacts during the measurement can cause
coupling or pressure changes between the light source and the detector. This change in
pressure shows up as a burst of noise in the original light intensity signals. This kind of
noise is different from the light intensity signals associated with regular cortical activities.
This study refers to the Sliding-window Motion Artifact Rejection (SMAR) algorithm of
Hasan Ayaz et al., which removes motion artifacts from the original light intensity data.
SMAR algorithm flow is as follows [33].

The original near-infrared intensity signals are defined as xλ(n) where λ represents
the wavelength and x represents the measurement position. Calculate a local coefficient of
variation (CV) for each n as follows.

CVd(n) =

√
1
N ∑

j=n+N/2
j=n−N/2 (x d(j)− 1

N+1 ∑i=n+N/2
i=n−N/2 xd(i))

2

1
N+1 ∑i=n+N/2

i=n−N/2 xd(i)
(1)

where N + 1 represents the window sample size. According to the calculation of CVd(n),
CVλ1(n) and CVλ2(n) can be obtained. Then calculate cleaned signals x̂d, x̂λ1, and x̂λ2.

x̂d(n) =
{

xd(n), CVd(n) < τ
upper
d

NaN, else
(2)

where NaN means ‘Not a Number’, which represents the excluded value. τupper
d indicates

the upper threshold value for dark current.

Xn
λ =

1
N + 1 ∑i=n+N/2

i=n−N/2 xλ(i) (3)

where Xn
λ indicates the window mean centered around n.

x̂λ(n) =


NaN, Xn

λ > s and τlower
λ > CVλ(n)

NaN, CVλ > τ
upper
λ

xλ(n), else

(4)

where τupper
λ represents the upper threshold. τlower

λ indicates the lower threshold value for
the respective wavelength. s means range of saturation.

Finally, the light intensity signals are converted into cerebral blood oxygen signals
through the modified Beer–Lambert law. The Beer–Lambert law is regarded as a descrip-
tion of the light propagation in biological tissues [34,35]. However, this law ignores the
scattering of light in biological tissues. Because of the strong scattering characteristics of
biological tissues, the scattering attenuation of biological tissues to light is much greater
than the absorption attenuation. During the propagation of photons in biological tissues,
multiple scattering occurs, and the scattering process is random. Therefore, Cope and
Delpy et al. [36] introduced the differential path factor (DPF) to correct the actual optical
path of photons in the modified Beer–Lambert law.

A = log
(

I0

I

)
= DPF(λ)·ελ·r·C + G (5)



Diagnostics 2023, 13, 1403 7 of 17

where A represents absorbance. I0 is the intensity of the incident light after SMAR. I is the
intensity of the outgoing light. ελ represents the absorption coefficient of a substance when
the wavelength is λ. r is the distance between the light source and the photodetector. C
is the concentration of the tested substance. G represents the attenuation caused by the
absorption of other substances.

When two kinds of light-absorbing substances, HbO and HbR, are present in tissues,
the following conclusions can be drawn.

A = log
(

I0

I

)
= (ελHbO·CHbO+ε

λ
HbR·CHbR)·DPF(λ)·r + G (6)

Set a reference state. The changes in HbO and HbR concentrations can then be detected.

∆A = log
(

I
I′

)
=
(
ελHbO·∆CHbO+ε

λ
HbR·∆CHbR

)
·DPF(λ)·r (7)

where ∆A is the change in absorbance. ∆CHbO and ∆CHbR represent the changes in the con-
centration of HbO and HbR, respectively. I and I′ denote the outgoing light intensity in the
reference state and after the reference state, respectively. When two different wavelengths
of light are chosen, the following formula can be obtained.

∆Aλ1= log

(
Iλ1

I′λ1

)
= (ελ1

HbO·∆CHbO+ε
λ1
HbR·∆CHbR)·DPF(λ 1)·r (8)

∆Aλ2= log

(
Iλ2

I′λ2

)
= (ελ2

HbO·∆CHbO+ε
λ2
HbR·∆CHbR)·DPF(λ 2)·r (9)

The values of ∆CHbO and ∆CHbR can be obtained by combining Equations (8) and (9).
Here, for the convenience of calculation, the DPF values at different wavelengths are
approximately equal. The changes in the concentration of HbO and HbR can finally
be obtained.

∆CHbO =

log
(

Iλ1
I′λ1

)
·ελ2

HbR − log
(

Iλ2
I′λ2

)
·ελ1

HbR

DPF·r·(ελ2
HbR·ε

λ1
HbO − ε

λ1
HbR·ε

λ2
HbO

) (10)

∆CHbR =

log
(

Iλ1
I′λ1

)
·ελ2

HbO − log
(

Iλ2
I′λ2

)
·ελ1

HbO

DPF·r·(ελ1
HbR·ε

λ2
HbO − ε

λ2
HbR·ε

λ1
HbO

) (11)

5. Establishment of Motion Sickness Evaluation Model for Passengers
5.1. Extraction of Multiple Characteristic Parameters from Cerebral Blood Oxygen Signals

In this study, six characteristic parameters were extracted from the cerebral blood
oxygen signals of the subjects to characterize their MSL values. The six characteristic
parameters are ∆CHbO, CHbO, CHbR, CHbT , C∆Oxy and ∆COE.

∆CHbO is obtained directly from Formula (10), which is calculated from the light
intensity signals by the Beer–Lambert law.

CHbO and CHbR are obtained by adding ∆CHbO and ∆CHbR to the reference state
value, respectively.

CHbT and C∆Oxy represent the sum and difference of CHbO and CHbR, respectively.
Here, CHbT represents total hemoglobin, which is calculated as follows.

CHbT = CHbO + CHbR (12)
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where C∆Oxy represents the difference between CHbO and CHbR, which is calculated as follows.

C∆Oxy = CHbO − CHbR (13)

∆COE is a valid index of local brain activity, and the following equation can be used
to calculate ∆COE.

∆COE =
∆CHbR − ∆CHbO√

2
(14)

∆COE is an indicator of changes in vascular oxygenation, which can reflect neural
activity. A rising ∆COE value indicates intravascular hypoxia. A decreasing ∆COE value
indicates a high level of oxygenation in the blood vessels. Based on the motion sickness
experiment on the driving simulator, Zhang et al. considered ∆COE as the research object
to explore the responses of different brain regions of the subjects in the straight driving
condition. This study also proved the effectiveness of ∆COE in evaluating the motion
sickness state of drivers [26].

5.2. Normality Test and Correlation Test of the Parameters

Figure 3 reports the statistics of ∆CHbO and ∆CHbR of a subject in a 10 min riding
simulation experiment. The data statistics graph shows the relationship between the
ordered distribution and the standard normal distribution of all ∆CHbO and ∆CHbR values.
As shown in Figure 3, the values of ∆CHbO and ∆CHbR satisfy the test of the normal Q-Q
plot. Therefore, ∆CHbO and ∆CHbR are proven to be able to represent MSL, and the extreme
values of ∆CHbO and ∆CHbR are random from the normal distribution.

Figure 3. Normality test of signals (one subject).

In this study, the regression analysis method was utilized to predict MSL during the
ride. The multiple characteristic parameters of cerebral blood oxygen signals are extracted,
and these characteristic parameters need to be tested before regression prediction. The
preconditions that need to be met to carry out the regression analysis are as follows. (1) The
independent variable should have a linear correlation with the dependent variable, and the
independent variable should be significant for the dependent variable. (2) It is required for
there to be no multicollinearity among the independent variables. (3) The residual follows
the normal distribution. (4) The residual error satisfies homogeneity of variance.

It can be seen from Figure 3 that the cerebral blood oxygen signals are subject to
the normal distribution (the curves of the parameters are close to the theoretical normal
distribution curves). Therefore, Pearson correlation coefficient was used to represent the
correlation between the independent variables and the dependent variables as well as the
correlation among the independent variables. Figure 4 reports the Pearson correlation
coefficients of the six cerebral blood oxygen parameters and the subjective motion sickness
evaluation scores. The significance test results are also displayed in Figure 4. In the
significance test chart, the p-value not indicated means that the correlation is significant
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(p < 0.05). It can be seen from Figure 4 that the Pearson correlation coefficients of CHbO,
C∆Oxy, and ∆COE with the subjective evaluation score of motion sickness are 0.35, 0.38,
and 0.24, respectively, showing significant correlation (p < 0.05). The Pearson correlation
coefficients of CHbR, CHbT , and ∆CHbO with the subjective evaluation score of motion
sickness are 0.043, 0.21, and −0.19, respectively, and the correlation is not significant
(p > 0.05). Therefore, CHbO, C∆Oxy, and ∆COE are retained as the independent variables in
the regression model construction.

Figure 4. Pearson correlation analysis and significance test for independent and dependent variables.

However, the correlations among CHbO, C∆Oxy, and ∆COE are significant (Figure 4).
It indicates the existence of multicollinearity among the independent variables. The mul-
ticollinearity among independent variables can easily lead to the distortion of model
estimation or make it difficult to estimate accurately. Thus, it is necessary to avoid multi-
collinearity in the regression process. This paper introduces a Bayesian ridge regression
algorithm to address the multicollinearity issue.

5.3. Bayesian Ridge Regression Algorithm

Ridge regression is a regularization method often used in the regression analysis of
ill-posed problems, which can solve the problem of the high correlation of independent
variables in the regression process. Ridge regression solves the problem of multicollinearity
by shrinking the parameter. It is a complement to least squares regression. It loses the
unbiasedness in exchange for high numerical stability, thus obtaining high computational
accuracy. Bayesian ridge regression (BRR) is a machine learning regression algorithm based
on Bayesian theory. The functional formula of the Bayesian linear regression is as follows.

y(x, ω) =
n

∑
j=0

ωjψj(x) = ωTψ(x) (15)

The purpose of Bayesian regression is to find the distribution of parameter vectors
with the minimum loss function. The loss function is given as follows.

J(ω) =
m

∑
i=1
{y(xi, ω)− ti}2 (16)

where n is the sample space dimension. m is the sample size. ω is the vector of parameters.
ψ(x) is a non-linear function of the input vector x.

ψ0(x) = 1 (17)

ti = y(xi, ω) + ε (18)
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where ti represents the observed value, and ε is noise. ε and ω, respectively, are assumed
to be subject to Gaussian distribution N

(
0, σ2

1
)

and N
(
0, σ2

2
)
. t is subject to Gaussian

distribution with a mean of y(x, ω). The class conditional probability density function for t
is given below.

p(t|ω) =
1

2πσ2
1

exp

(
− 1

2σ2
1

m

∑
i=1
{y(xi, ω)− ti}2

)
(19)

The prior probability of ω is given below.

p(ω) =
1

2πσ2
2

exp

(
− 1

2σ2
2

ωTω

)
(20)

The following conclusion can be obtained according to the Bayesian rule.

p(ω|t) = p(ω)p(t|ω)

p(t)
(21)

ln(p(ω|t)) = − 1
2σ2

1

m

∑
i=1
{y(xi, ω)− ti}2 − 1

2σ2
2

ωTω + c (22)

where p(ω|t) is the posterior probability. p(t) is a constant that is independent of ω. c is a
constant. The prior probabilities correspond to the L2 regular term in the ridge regression.
Hence, this algorithm is called BRR. BRR automatically introduces the regular term in
the estimation process, and the result is the posterior distribution of the parameters. BRR
avoids overfitting in maximum likelihood estimation and is able to obtain more precise
parameter estimates.

5.4. Evaluation Model Establishment of MSL

The three cerebral blood oxygen characteristic parameters that passed the significance
test are normalized. BRR is performed using the three normalized cerebral blood oxygen
characteristic parameters as independent variables and the FMS scores of the subjects as
dependent variables. Finally, the evaluation model of MSL is obtained as follows.

MSL = 1.39156·CHbO + 1.528·C∆Oxy + 0.94238·∆COE− 0.49018 (23)

Figure 5 shows the four-in-one plot of the residual analysis. It can be observed from
the residual–fitted value scatter plot (c) that the scatter distribution in the figure has no
obvious trend of trumpet shape or curve, indicating that the functional model fits the
data well. The probability–residual plot (d) and the residual histogram (b) show that the
residuals follow a normal distribution. The residual–observation plot (a) indicates that the
overall data present stability without anomalies.

According to the MSSQ score, the eight subjects were divided into the non-sensitive
group, the general group, and the sensitive group. The evaluation model was used to
calculate the average motion sickness performance of each subject within 10 min. Through
the Graybiel scale, the assessment scores of the subjects for their own physical symptoms
were obtained, so as to reflect the degree of motion sickness of the subjects. Figure 6 reports
the predicted curves of the average motion sickness degree and the evaluation scores of
the Graybiel scale for the three groups of subjects with different sensitivities to motion
sickness in the whole riding experiment. Figure 6 reports that the MSL predicted by the
motion sickness evaluation model is positively correlated with the score of the Graybiel
scale, and the higher the sensitivity of motion sickness is, the stronger the degree of motion
sickness is. Therefore, the reliability of the motion sickness prediction model based on BRR
is preliminarily verified.
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Figure 5. Four-in-one plot for residual analysis. (a) Residual–observation plot; (b) Residual histogram;
(c) Residual–fitted value scatter plot; (d) Probability–residual plot.

Figure 6. Cross-validation of predicted motion sickness value and Graybiel score.

6. Validation of Motion Sickness Evaluation Model from Vehicle Test

This study was supported by SAIC Motor R&D Innovation Headquarters. One driver,
one experimenter, and two passengers were arranged by the Vehicle Integration Department
to participate in the test to verify the effectiveness of the motion sickness evaluation model.
The driver was arranged internally by SAIC Motor and they had a driving permit for the
company’s internal vehicles. Two crew members were selected after being assessed by the
MSSQ questionnaire. Passenger 1 belonged to the insensitive group of motion sickness.
Passenger 2 belonged to the sensitive group of motion sickness.
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Each subject participated in two rounds of the test. The duration of each round was
30 min. The mode of vehicle setup was different in the two rounds of testing. There were
two modes of the experimental vehicle. One was normal mode, the other was comfortable
mode. The comfort mode was optimized in the dynamic response and other links, which
effectively reduced the sensory conflict of the participants.

The same driver was selected for all tests to ensure that the driver’s driving style
for the vehicle was the same in each test. The experimental site was arranged in Anting
Town, Jiading District, Shanghai. The driver chose random routes to drive (Figure 7). The
experiment was scheduled in the afternoon. The cerebral blood oxygen signals of the
two subjects were collected. Figure 7 shows the subjects and the monitoring interface of
the experimenter in the vehicle test. In the experiment, the behavior of the subjects was
not constrained. The subjects were free to browse content from their mobile phones and
communicate during the experiment.

Figure 7. Vehicle test and random route area. (a) subject; (b) experimenter; (c) running route.

Table 2 reports the predicted values of MSL for two subjects in the normal mode and
the comfortable mode. It can be seen from Table 2 that the predicted values of motion
sickness in the comfortable mode were −0.490 and 3.272, respectively. The MSL prediction
values of the two subjects in the normal mode were 2.170 and 3.279, respectively. That is to
say, subjects achieved a low score of MSL in the comfort mode of the vehicle test. This is in
line with expectations, and also validates the effectiveness of the motion sickness prediction
model based on cerebral blood oxygen parameters.

Table 2. The predicted MSL value of the subjects during the vehicle test.

Subject Number Normal Mode Comfortable Mode

1 2.170 −0.490
2 3.279 3.272

7. Discussion

In this study, a driving simulation platform is built based on a six-degree-of-freedom
parallel mechanism to simulate the road riding conditions. fNIRS technology is utilized
to monitor the cerebral blood oxygen signals of the subjects in the riding simulation
experiment. Three characteristic parameters with a high correlation with FMS values are
extracted from cerebral blood oxygen signals. The prediction model of MSL is constructed
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by using the BRR algorithm, which eliminates the multicollinearity among independent
variables. It can be observed from the coefficients of the evaluation model that ∆COE is
valid for characterizing the degree of motion sickness. This conclusion is consistent with
the findings of Zhang et al. and Kayoko Yoshino et al. [26,37]. In this paper, a vehicle road
test is arranged to validate the motion sickness evaluation model. The results show that the
predicted values of MSL in the normal mode are significantly greater than the predicted
values of motion sickness in the comfortable mode. This conclusion verifies the validity of
the motion sickness evaluation model proposed in this study.

To explore the relationship between cerebral blood oxygen signals and gender differ-
ence in motion sickness, analysis of variance (ANOVA) is performed with gender as the
independent variable and CHbO, C∆Oxy, and ∆COE as the dependent variables. Table 3
shows that the difference between CHbO and gender is not significant (p = 0.26 > 0.05).
The difference between ∆COE and gender is also not significant (p = 0.14 > 0.05). How-
ever, the difference between C∆Oxy and gender is significant (p = 1.70 × 10−5 < 0.05).
Therefore, C∆Oxy can be utilized as the main parameter for studying gender differences in
motion sickness.

Table 3. ANOVA on gender and three cerebral oxygen characteristics.

DF SS MS F p

CHbO

Model 1 4.13 4.13 1.28 0.26
Error 78 250.94 3.22
Total 79 255.08

C∆Oxy

Model 1 35.29 35.29 21.02 1.70 × 10−5

Error 78 130.91 1.68
Total 79 166.19

∆COE

Model 1 4.05 × 10−5 4.05 × 10−5 2.19 0.14
Error 78 1.44 × 10−3 1.84 × 10−5

Total 79 1.48 × 10−3

Note: DF—degree of freedom; SS—sum of squares of deviation from mean; MS—mean square.

The importance of C∆Oxy can also be detected from the evaluation model. In the
evaluation model, the coefficient of C∆Oxy is 1.528, which is higher than that of ∆COE.
This means that C∆Oxy has a stronger ability to characterize the degree of motion sickness
than ∆COE. C∆Oxy represents the difference between CHbO and CHbR. However, the
difference between CHbO and CHbR is related to the difference between ∆CHbO and ∆CHbR,
and ∆Cre f where ∆Cre f represents the difference between CHbO and CHbR in the reference
state, as follows.

C∆Oxy = CHbO − CHbR = ∆CHbO − ∆CHbR + ∆Cre f (24)

where ∆Cre f has individual differences. However, ∆COE is also related to the difference
between ∆CHbO and ∆CHbR. Thus, the above Equation (24) can be rewritten as follows.

C∆Oxy = −
√

2∆COE + ∆Cre f (25)

It can be concluded that the characteristic parameter C∆Oxy of fusion ∆Cre f has better
motion sickness prediction ability than ∆COE. This is of guiding significance for the
construction of motion sickness models in the future.

Severe motion sickness may alter standing balance, reduce lower back function, and
lead to changes in the expression of genes that play a role in osteogenesis, myogenesis,
brain lymphatic development, inflammation, neuropathic pain, etc. [38]. The evaluation
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model of MSL proposed in this study can help prevent the harm caused by motion sickness.
However, motion sickness cannot be completely avoided while riding. Many scholars have
achieved the alleviation of motion sickness through the intervention of the environment
or physiological intervention in the car. Hwang S et al. created an interface that adjusted
its orientation in real time to match the orientation of the vehicle to help reduce motion
sickness among passengers while looking at the screen of a digital device [39]. Kim H
et al. determined the effect of four fragrance factors on the prevention of motion sickness
through EEG and MISC data [40].

People generally assume that passengers are more susceptible to motion sickness than
drivers. However, there have not been many research studies that compare the neural
activity of passengers and drivers together with motion sickness. Li et al. concluded
from their study that the enhanced alpha instant signal activation of passengers was
due to a higher degree of motion sickness. Therefore, compared with drivers, passengers
experience more conflicts of multimodal sensory systems, which require neurophysiological
regulation [41]. However, that does not mean drivers do not experience motion sickness. If
the driver has motion sickness, it can easily lead to traffic accidents, which are irreversible.
Therefore, the study of drivers’ motion sickness is also a direction worthy of further study.

There are many aspects to be improved in any future study. First, riding simulation
should not only simulate the physical feeling of riding brought about by the actual road
conditions but also simulate the actual riding state from the visual and auditory aspects.
Visually induced motion sickness and audially induced motion sickness are also factors that
cannot be ignored in actual riding. Therefore, in the follow-up work, it is necessary to build
a complete driving simulation environment. Second, in the process of subject recruitment,
subjects in more age groups are required. In this study, the subjects were all students. The
performance of these subjects can only represent the performance of motion sickness in
a part of the age group. Therefore, in the follow-up work, it is necessary to recruit more
subjects of different age groups to ensure the universality of the obtained evaluation model
of MSL.

8. Conclusions

The purpose of this study is to investigate the correlation model between the degree
of motion sickness and cerebral blood oxygen signals during riding. Therefore, based on
the 6-DOF parallel mechanism, a driving simulation platform is built to simulate the actual
riding conditions on the road. The continuous acquisition of cerebral blood oxygen signals
can reflect the physiological state of subjects in real time. In this study, fNIRS technology is
applied to monitor the cerebral blood oxygen signals of the subjects in the riding simulation
experiment. The cerebral blood oxygen signals are then filtered and motion artifacts are
suppressed. Three parameters with a high correlation with FMS values are extracted from
the cerebral blood oxygen signals. In this study, the BRR algorithm is used to construct an
evaluation model for the degree of motion sickness, which eliminates the multicollinearity
among the independent variables and improves the reliability of the prediction model.
The Graybiel scale score is utilized to preliminarily verify the prediction effect of the
model. Random road conditions and two driving modes are selected to carry out the
verification vehicle test. These two driving modes are ordinary mode and comfortable
mode, respectively, which can cause different degrees of motion sickness effects in the
subjects. The experimental results show that the predicted values of motion sickness in
the normal mode are 2.169 and 3.279, respectively, which are significantly larger than the
predicted values of motion sickness in the comfortable mode of −0.490 and 3.272. This
conclusion is in line with expectations. Therefore, the motion sickness prediction model
proposed in this study is effectively verified. This provides a reference for the evaluation
and prediction of motion sickness.
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