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Abstract: Novel sensor solutions for sleep monitoring at home could alleviate bottlenecks in sleep
medical care as well as enable selective or continuous observation over long periods of time and
contribute to new insights in sleep medicine and beyond. Since especially in the latter case the sensor
data differ strongly in signal, number and extent of sensors from the classical polysomnography
(PSG) sensor technology, an automatic evaluation is essential for the application. However, the
training of an automatic algorithm is complicated by the fact that the development phase of the
new sensor technology, extensive comparative measurements with standardized reference systems,
is often not possible and therefore only small datasets are available. In order to circumvent high
system-specific training data requirements, we employ pre-training on large datasets with finetuning
on small datasets of new sensor technology to enable automatic sleep phase detection for small test
series. By pre-training on publicly available PSG datasets and finetuning on 12 nights recorded with
new sensor technology based on a pre-gelled electrode grid to capture electroencephalography (EEG),
electrooculography (EOG) and electromyography (EMG), an F1 score across all sleep phases of 0.81 is
achieved (wake 0.84, N1 0.62, N2 0.81, N3 0.87, REM 0.88), using only EEG and EOG. The analysis
additionally considers the spatial distribution of the channels and an approach to approximate
classical electrode positions based on specific linear combinations of the new sensor grid channels.

Keywords: sleep staging; electrode grid; EEG; machine learning; transfer learning; home monitoring

1. Introduction

Sleep stage classification is widely used for diagnostics for sleep-related disorders.
Polysomnography (PSG) is used to diagnose such disorders. For PSG, patients spend one
night in a sleep laboratory where electroencephalography (EEG) and other modalities are
recorded. While disorders like sleep apnea can be diagnosed that way, there are multi-
ple sleep disorders or sleep-related sleep disorders like insomnia that demand multiple
recordings over a longer time span [1]. Therefore, it is not practical to make recordings
for these patients, but it is more useful to monitor sleep at home, which requires self-
administered EEG systems. Such systems also enable a long-term monitoring for detection
of sleep-related disorders like Parkinson’s and Alzheimer’s disease [2]. Additionally, the
PSG introduces inconvenience for the patients, as they need to come into a sleep laboratory
and the measurement setup can have a bad influence on the patients’ sleep. Certainly, the
unfamiliar environment further worsens the sleep during the recording, known as the first
night effect [3]. The gold standard for staging the recording is manual scoring by sleep
clinicians according to AASM (American Academy of Sleep Medicine) or Rechtschaffen
and Kales [4,5] guidelines, recorded at a sleep laboratory. However, this scoring process
is time-consuming and prone to inter-rater variability [6]. To overcome these issues and
improve the care of patient suffering sleep disorders, two solution approaches can be
identified: addressing the environment issue, we propose the usage of an EEG setup for
recording, that is self-applicable and allows EEG sleep monitoring at home at a high quality.
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Different mobile solutions have been and are being developed to achieve an easy-to-
use home monitoring system: the wet electrode grids cEEGrid [7,8] and trEEGrid [9], dry
electrode solution like Dreem [10,11] or the pre-gelled HomeSleepTest [12]. The trEEGrid
covers a wider range of electrode positions than the cEEGrid, see Figure 1, and it aims to
be less intrusive and easier to use due to pre-gelled electrodes. The gel is used to obtain
a better signal than with dry electrodes while at the same time being more comfortable
to wear. It is shown based on a conceptual prototype of the trEEGrid that high quality
hypnograms can be derived [9].

Figure 1. Development steps of the self-applicable, pre-gelled trEEGrid. Left: cEEGrid + EOG [13].
Middle: foam trEEGrid with labeled channels [9], used for recordings in this study. Right: trEEGrid
prototype on a flexible circuit board. ©Fraunhofer IDMT/Anika Bödecker. Figure and caption are
adapted from [9].

As in many other fields of health care, the application of artificial intelligence has
become feasable for automatic sleep staging. Various methods using deep neural networks
have achieved annotation quality in the automatic sleep staging task that is comparable to
the quality achieved by humans [14]. Most popular are sequence-to-sequence architectures
made of epoch and sequence encoder structure [15–17], often consisting of recurrent neural
networks (RNNs) such as long-short-term memory (LSTM) [18] and gated recurrent units
(GRUs) [19]. Also fully convolutional networks [20], U-nets [21,22] and transformer archi-
tectures [23] have been proposed for automatic sleep staging. These methods use large
databases, usually recorded with a classical PSG setup, of which most models utilize only
a small number of channels. The use of these large databases is not suitable or possible
in the case of specialized EEG setups, as the electrode setup differs both in the number of
available channels and electrode positioning. This creates a domain mismatch. Application
of transfer learning is a method for addressing the issue of domain mismatch in various
fields, including health care, when artificial intelligence is employed [24]. This is also the
case for automatic sleep staging, where different approaches to transfer learning were
investigated [25]. To accommodate for channel mismatch between datasets for neural
networks that predict sleep staging on a single channel, transfer learning was used suc-
cessfully [26–28]. To deal with this and other domain mismatch issues, such as differences
in the demographics between the training and inference data, transfer learning can be
applied to automatic sleep staging [29,30]. In [30], a sequence-to-sequence architecture for
automatic sleep staging is proposed and evaluated for transfer learning across different
databases with varying electrode setups. In [17,31], the authors show the application of
transfer learning for cEEGrid. Besides domain mismatch, the use of transfer learning was
used to investigate the personalization of sleep staging algorithms [32,33].

This study evaluates the usage of the trEEGrid for automatic sleep staging and addi-
tionally investigates the influence of channel combinations to calculate virtual electrode
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positions for this use case. Our main contributions are as follows: First, we apply sleep
staging algorithms to recordings made with the trEEGrid. Second, we investigate the uti-
lization of channel combinations for automatic sleep staging, which has been shown to be
helpful for sleep expert scorers following a linear combination model to approximate classi-
cal electrode positions [9]. Thirdly, we use transfer learning, with recordings made with
the trEEGrid as the target domain. Furthermore, we investigate the influence of channel
combinations on the transfer learning for the trEEGrid. Experimental results demonstrate
the applicability of the proposed method to automatic sleep staging aimed at at-home sleep
monitoring applications in the future. We have limited ourselves here initially to data
from healthy individuals in order to keep the analyses and results straightforward. For
practical application, the transfer to sleep data with different pathologies is important in a
further step.

2. Methods

Sleep staging is the task of assigning one of the five sleep stages “wake” (W), “rapid-
eye-movement” (REM), “non-REM 1” (N1), “non-REM 2” (N2), “non-REM 3” (N3) defined
by the AASM rules to segments of a PSG recording consisting of EEG and additional further
sensors during sleep. The mentioned segments are usually 30 s long due to historical
reasons. Throughout this work, we use only EEG and electrooculgraphy (EOG) signals
of a subject’s recorded night. The signals used in this study consist of multiple channels,
containing voltages between a common reference electrode and the signal electrodes
derived from the scalp.

To investigate the capabilities of the novel trEEGrid which provides EEG and EOG
signals, we perform the task of automatic sleep staging on different sets of recordings. In
the following section, we describe the source dataset used for transfer learning and the
dataset recorded with the trEEGrid, as well the network architecture used to perform the
automatic sleep staging and the metrics to quantify the resulting performance.

2.1. Data

We use multiple datasets in this study to investigate the usage of transfer learning
for data recorded with the trEEGrid. As the source domain, we use the Montreal archive
of sleep studies (MASS), cf. [34]. Recordings made with the trEEGrid represent the tar-
get domain in the experiment. Those datasets and the pre-processing are described in
the following.

2.1.1. Montreal Archive of Sleep Studies

The MASS database of which the first cohort consists of five subsets was recorded in
the center for Advanced Research in Sleep Medicine, Montreal, Canada. In this study, we
utilize the third subset (SS3) to perform our experiments. SS3 consists of 30 s epochs, which
were scored according to the AASM standards. The dataset consists of 62 recordings, each
from 62 different healthy subjects, which accumulate to a total recording time of 21.8 days.
The subject’s mean age is 42.5 years, with a standard deviation of 18.9 years. A total of
55% of the subjects are female and 45% are male. Recordings were made with an full PSG
montage, of which we use several EEG and EOG channels. EEG channels available for all
62 subjects in SS3 are Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, Pz, P3, P4, T3, T4, T5, T6, Oz,
O1 and O2. Left and right horizontal EOG channels are also included. The recordings are
sampled at a sampling rate of 100 Hz.

2.1.2. trEEGrid Database

This database was recorded to evaluate a prototype of a self-applicable grid that is
able to record EEG, EOG and EMG data, cf. [9] and Figure 1. There are 20 datasets recorded
with the trEEGrid prototype in combination with a wireless EEG amplifier (Smarting Sleep,
mBrainTrain, Belgrade, Serbia) from young adults (mean age = 28.9 years) who reported
to have no sleep disorders. In parallel to the recording with the trEEGrid prototype, a
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classical PSG recording was made simultaneously with a commercial mobile PSG system
(SOMNOscreen Plus, SomnoMedics, Randersacker, Germany). The commercial system
included six EEG electrodes, two piezosensoric belts for thorax and abdomen expansion
and a finger clip sensor, which measured oxygen saturation and pulse. The two EMG
electrodes of the PSG system were not used, since they competed with the space of the
trEEGrid EMG channels R6 and R7. PSG electrodes were gold-plated cup electrodes
mounted with adhesive gel.

Eight recordings had to be excluded due to technical problems either with the trEEGrid
(six), with the Bluetooth connection to the amplifier (one) and with the PSG system caused
by a power failure (one) so that 12 datasets remain for the sleep staging computations.

Both recordings were scored by an experienced sleep expert scorer according to the
AASM rules. To perform the experiments, we use the labels made on the basis of the
classical PSG recording. There is a total of five epochs in the 12 recordings, that could
not have a label assigned, due to artifacts. The electrodes and the channels, respectively,
are numbered from R1 to R7, as depicted in Figure 2. Channels R6 and R7 are aimed at
EMG acquisition and will be ignored in the rest of this paper. Recordings are made with a
sampling rate of 250 Hz. Recorded signals were bandstop filtered from 45 to 55 Hz and 60
to 65 Hz to reduce line noise and impedance current. Impedance current was used through
the measurements to record impedance continuously for evaluation of the electrode grid
prototype. Furthermore, a bandpass filter from 0.5 to 40 Hz was applied to the signals. All
filters used are phase true Butterworth filters of fourth order.

Figure 2. trEEGrid channel positions and their recombinations. Re-referenced channels approx-
imate classical PSG positions, as well as EOG and EMG, marked with an asterisk (*) to indicate
the approximation.

In [9], the benefit of linear combinations of different channels as approximation of
classical electrode positions was investigated. The specific linear combinations are sketched
in Figure 2. The same approach using re-referenciation is used here to approximate the
signal of the standard PSG setup based on the signals recorded with the trEEGrid.

2.2. Preprocessing

To align the recordings with each other, we performed resampling to a sampling rate of
60 Hz. Before the resampling, re-referenciation may be performed. After that, we perform
interquartile range normalization for each channel independently as follows

xnorm
k =

xk
IQR(xk)

(1)
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where x is a vector containing t ∈ 1, . . . , T samples and IQR(·) is an operator that calculates
the interquartile range of the signal x for each channel k along the time t. Sections in
the signal that exceed the interquartile range by twenty times were hard clipped within
this range.

2.3. Model Architecture

In this work, we use the RobustSleepNet architecture proposed in [30], which is
a variant of the sequence-to-sequence structure often used for automatic sleep staging.
Transfer learning has been applied to this architecture, as it tackles the problem of electrode
mismatch between datasets. The use of an attention mechanism to aggregate across the
input channels enables the architecture to work efficiently in transfer learning with a
different number of channels.

The network shown in Figure 3 is structured as follows: an epoch encoder, extracting a
feature vector representing each epoch, a sequence encoder processing temporal dependen-
cies among the sequence of epochs and finally a classification layer. The epoch encoder first
normalizes the input features by mean and variance. Next, the RobustSleepNet employs a
linear layer to reduce the frequency dimension. This linear layer shares the same weights
across all channels. All input channels are then recombined using multi-head attention, so
that the subsequent recurrent network receives a constant number of input channels. This
two-layer bidirectional GRU network, operating along the time dimension, processes the
information distributed within each epoch. Dropout is employed before and after the GRU
network. To aggregate the GRU’s output into a single vector representation for each epoch,
an attention layer that accumulates information along the time dimension is employed.

The sequence encoder receives the feature vectors that were computed by the epoch
encoder for each epoch and aims to model the inter-epoch dependencies. It consists of
a bidirectional GRU network with two layers with skip connections. Skip connections
are implemented by a linear layer, whose transformed representations are added to the
output of the associated GRU layer. Also, after each GRU layer, dropout is employed. The
sequence encoder consisting of GRU layers models the inter-epoch dependencies in the
sleep explicitly.

The classification scores are calculated based on the output of the sequence encoder.
There is a linear layer with an output dimension of five, followed by a softmax activation to
achieve log likelihoods for each class. Each output dimension represents one out of the five
sleep stages.

We use the network with the same parameters as described in [30]. The network
consists of approximately 180 k trainable parameters.

2.4. Loss Function

We employ the cross entropy loss function defined by

L(x, y) =
1
N

N

∑
n=1

C

∑
c=1

xn,cyn,c (2)

where xn,c denoted the log-likelihood and yn,c the label for class c, with c ∈ [1, C] and epoch
n. C represents the number of classes, which is five. Epochs that are not labeled as one
of the sleep stages due to artifacts do not have a class label c ∈ [1, C], so these epochs are
excluded from loss computation. Each batch consists of N epochs, the product of batch size
and context size.



Diagnostics 2024, 14, 909 6 of 14

Ch. Reduct.
Attention

BiGRU

Linear
Projection

Temporal
Attention

BiGRU +
Skip Con.

BiGRU +
Skip Con.

Linear
Layer

Softmax

Ch. Reduct.
Attention

BiGRU

Linear
Projection

Temporal
Attention

BiGRU +
Skip Con.

BiGRU +
Skip Con.

Linear
Layer

Softmax

Ch. Reduct.
Attention

BiGRU

Linear
Projection

Temporal
Attention

BiGRU +
Skip Con.

BiGRU +
Skip Con.

Linear
Layer

Softmax

In
p
u
t

E
p
o
ch

E
n
c
o
d
e
r

S
e
q
u
e
n
c
e
E
n
c
o
d
e
r

C
la
ss
ifi
c
a
ti
o
n

Linear
Layer

Linear
Layer

Linear
Layer

Norm. Norm. Norm.

Epoch n-1 Epoch n Epoch n+1

Figure 3. Overview of the employed neural network RobustSleepNet based on [30]. The center
column shows the processing steps of epoch n. Building blocks left and right at epochs n− 1 and n+ 1
share the same weights and are shown to show the inter-epoch dependency processing. As other
sequence-to-sequence networks used for sleep staging, the network consists of an epoch encoder,
sequence encoder and classifier. In the RobustSleepNet, the epoch encoder is capable of working
with an arbitrary number of input channels. Depicted by the layered boxes, the input channels are
processed independently first. An attention block merges the input channels for further processing.
Finally, the softmax output gives the prediction of the sleep stage.

2.5. Inference

During inference time, we sample a whole night, so that we concatenate all epochs into
one sequence. This way, the RNN in the sequence encoder works along the whole sequence.
This differs from the scoring method described in [30], in which a shifting context sequence
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of length 21 was scored, with a stride of one and geometric averaging is employed on the
scores across all classification of an epoch. We changed the inference method, as we found
no improvement caused by this ensemble scoring method, despite the mismatch between
training and inference setup.

2.6. Channel Setups

As described before, the dataset that we use to train and test the model were recorded
on different EEG montages. To adapt the montages to each other, we choose to select
the EEG channels in a way that the recorded signals are more similar. In particular, we
take five different setups into consideration, three setups from the source domain (SS3,
SS3grid, SS3grid-PSG) and two from the target domain (trEEGrid, trEEGridPSG). While the
SS3 setup takes all available classical PSG EEG and EOG channels into account, the other
setups aim to match the signals in the other domain, respectively. All setups are listed in
Table 1. In the SS3grid-PSG setup, classical electrode positions close to the electrode positions
realized with the novel trEEGrid sensor were chosen. The trEEGrid setup uses all available
channels of the trEEGrid sensor grid with the original reference close to the mastoid.
For the trEEGridPSG setup, R1 and R5 are used, being close to the classical position Fpz
and C4. Additionally, re-referencing was applied to approximate classical EEG electrode
position O2, as sketched in Figure 2. In SS3grid, we take a subset of MASS SS3 channels into
consideration that corresponds to the channels approximated by the trEEGridPSG setup. As
the MASS SS3 dataset does not contain an Fpz channel, it is approximated by the average
of the channels Fp1 and Fp2. All setups based on the trEEGrid dataset also include a
diagonal EOG channel. As this is not available in MASS SS3, we use the right horizontal
EOG channel in there instead.

Table 1. Selection of channels used for each channel setup. In the case of the two trEEGrid setups,
re-referenced channels are denoted as the difference of two channels.

Label EEG Channels EOG Channels

SS3 all 20 all 2
SS3grid Fz, F8, T4 Right Horiz

SS3grid-PSG (Fp1 + Fp2)/2, C4, O2 Right Horiz
trEEGrid R1, R2, R4, R5 R1-R3

trEEGridPSG R1, R5, R5-R4 R1-R3

3. Experiments
3.1. Training Procedure

During training, the batch size was 12. Each training example of the batch consists
of 21 consecutive epochs, resulting in 252 epochs in a training batch in total. To deal with
the class imbalance problem, epochs were sampled in a weighted manner, similar to [21].
This means that, for each sequence in a batch, we first draw one epoch from the dataset.
This epoch is drawn randomly, but weighted, to counteract the class imbalance. The drawn
epoch is then given a random position in the sequence, so that the context is filled with the
adjacent epochs. Some of the adjacent epochs will represent a different sleep stage than the
balanced drawn epoch; nevertheless, this sampling method still mitigates the imbalance
problem. One training iteration over the dataset is considered as finished, when there
were as many training examples drawn as there are epochs in that dataset. Due to this
method, iterating over the dataset does not necessarily contain all samples in one iteration.
Nevertheless we did not ensure that an iteration contains every sample at least once and
left the length of one iteration to the number of epochs in the dataset.

Cross validation was used to train on the target datasets, as well for training on the
source dataset. The datasets were split so that each subject’s epochs were present in only
one of the training, validation or test set. For MASS SS3, 10-fold cross validation was used.
As the trEEGrid dataset consists only of 12 recorded nights, we use a leave-one-night-out
scheme, resulting in 12 cross validation folds. The sizes of training, validation and test sets
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for the cross validation as well as the number of folds are depicted in Table 2. Percentages
for the SS3 dataset are target proportions, which are varied across folds to accommodate
that the total number of recordings is not divisible by the number of folds.

Table 2. Parameters used for cross validation setup for both datasets.

MASS SS3 trEEGrid

number of recordings 62 12
number of folds 10 12

training 70% 9 recordings
validation 20% 2 recordings

test 10% 1 recording

We implemented the experiments using PyTorch in version 1.12.1 and pytorch-lightning
in version 1.7.7. As an optimizer, Adam [35] with parameters (learning rate: 10−4, β1: 0.9,
β2: 0.999) and weight decay regularization (weight decay: 10−3) was used. All weights
and biases of the model layers were initialized with values drawn from a random uniform
distribution with upper and lower bounds (−

√
l,
√

l), where l for each layer is defined as
l = 1

number of input features . The models were trained on an NVIDIA Quadro RTX 8000 GPU,
on which a 10-fold cross validation run on the MASS SS3 subset takes approximately 3 h.
We use early stopping as we end training after the validation loss did not decrease for
25 training iterations. Training was stopped after a maximum of 100 training iterations.
The same seed to initialize all random number generators was used for all runs.

3.2. Transfer between Domains

For investigation, trainings on the source domain (MASS dataset) and target domain
(trEEGrid) were performed. We show the learning-from-scratch (LFS) performance for both,
the source and target domain, where the cross validation and the datasets was performed.
The direct transferability between domains is quantified by applying a model trained on
the source domain directly on the target domain, without any adaption to the new domain.
We denote this as direct transfer (DT). Finally, we report the transfer learning performance,
for which a mode, trained on the source domain data is finetuned (FT) on the target domain
data. In this case, the weights for the sequence encoder and the classifier were fixed, so
that only the epoch encoder becomes finetuned for the target domain. For DT and FT, the
model that was trained on the source dataset and showed the lowest validation loss during
cross validation was used.

4. Performance Metrics

To determine the algorithm’s performance, we use the F1 scores as well as Cohen’s
Kappa. The scores are always calculated across all folds of the cross validation. This
is carried out by first calculating the F1 scores and Cohen’s Kappa on the test data for
every fold. Then the mean and the standard deviation is determined across all folds for
each metric.

4.1. F1 Score

Reported F1 scores for each class were calculated from the number of true positive
(TP), false positive (FP) and false negative (FN) for each class, as

F1 = 2
precision · recall

precision + recall
, (3)
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with precision = TP
TP + FP and recall = TP

TP + FN . F1,c denotes the F1 score for class c. The
macro-F1 score which gives a measure across all C sleep stages was obtained by averaging
over the F1 score of each class:

Macro-F1 = MF1 =
C

∑
c=1

F1,c (4)

4.2. Cohen’s Kappa

Cohen’s Kappa is often used to measure the inter-rater agreement in the context of
medical annotations. As we compare the performance of the automatic sleep staging to the
human achievable performance, we also calculated Cohen’s Kappa κ as follows:

κ =
po − pe

1 − pe
. (5)

po stands for the observed probability that two related labels correspond to the same class,
while pe is the expected probability when randomly assigning labels. Cohen’s Kappa was
calculated across all sleep stages, denoted as κ.

5. Results

The automatic sleep staging was applied to the five different channel setups, of which
the setups using the MASS SS3 dataset act as the source domain in the case of transfer
learning. In Table 1, scores for LFS, DT and FT as well as the inter-scorer variability of our
scorer [9] on the trEEGrid dataset and according to [6] are listed.

Because the number of datasets has a large impact on classification performance in
addition to differences in electrode montage, we conducted a preliminary examination of
the effect of the number of nights used in the modeling. For that, we randomly sampled
subjects of the MASS SS3 database to create artificially smaller datasets, starting with
10 subjects, going up to the whole MASS SS3 dataset. For each number of subjects,
20 trainings were performed on newly drawn subsets to asses the variation between
runs. Each training consists of one split with again 70% train data, 20% validation data and
10% test data. We report the median macro-F1 over the 20 repeated runs and its 25 and
75 percentiles. As shown in Figure 4, having a smaller dataset decreases the performance
achieved by the trained network, as well as the variety in performance across multiple
iterations. It can be seen that a dataset consisting of subjects in the low tens leads to a
median macro-F1 score of around 0.75. From a number of around 40 datasets, a macro-F1
well above 0.80 is achieved.

To asses in a second step the differences between the five setups, the LFS performance
was calculated. Next, the performance of transfer learning from the SS3 setups to the
matching trEEGrid setups was calculated. Performance metrics are listed in Table 3.

In the LFS scores, it can be seen that the algorithm benefits from multiple channels
present in the SS3 dataset. Reducing the channels for the SS3grid and SS3grid-PSG setups
deteriorates the performance slightly, compared to the SS3 setup. Automatic sleep staging
performs worse on both trEEGrid setups than on the SS3 setups, which can be expected due
to the smaller dataset. Here, the trEEGrid setup that uses the default trEEGrid channels
shows worse performance in both Cohen’s Kappa and macro-F1 scores than trEEGridPSG

setup, which has less channels in total.
The DT condition reveals the domain mismatch between the source and respective

target datasets. So in direct transfer the average macro-F1 score is in all setups in a range
between 0.63 and 0.65 and worse than the LFS situation. This indicates that none of the
models based on SS3 datasets succeed in the direct transfer to the new domain compared
to the results achieved with the LFS approach even on small datasets. However, when
considering Cohen’s Kappa, models trained on a subset of available channels of MASS SS3
(SS3grid, SS3grid-PSG) tend to perform better than their counterparts trained on SS3.
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Figure 4. Macro-F1 score achieved on different subsets of MASS SS3. The number of records drawn
from MASS SS3 is listed on the x axis. Shown are the median and the quarter percentiles of the
macro-F1 score, over 20 repeated runs on randomly drawn subsets. Calculations were carried out
with the SS3grid-PSG setup.

Table 3. Performance measurements for Learning From Scratch (LFS), Direct Transfer (DT), Finetuning
(FT), for the considered dataset and channels setups. Shown are the κ and macro-F1 scores over all
classes, as well as F1 scores broken down for each class and their standard deviations. The best scores
for each training type (LFS, DT, FT) are marked in bold.

Type Source
Domain

Target
Domain κ MF1 F1,W F1,N1 F1,N2 F1,N3 F1,REM

LFS SS3 SS3 0.82 ± 0.02 0.84 ± 0.02 0.91 ± 0.05 0.65 ± 0.05 0.91 ± 0.01 0.82 ± 0.04 0.90 ± 0.02
LFS SS3grid SS3grid 0.80 ± 0.02 0.82 ± 0.02 0.89 ± 0.04 0.61 ± 0.02 0.90 ± 0.02 0.80 ± 0.06 0.88 ± 0.03
LFS SS3grid-PSG SS3grid-PSG 0.78 ± 0.02 0.81 ± 0.02 0.87 ± 0.03 0.61 ± 0.06 0.89 ± 0.01 0.79 ± 0.04 0.89 ± 0.02
LFS trEEGrid trEEGrid 0.63 ± 0.14 0.66 ± 0.10 0.70 ± 0.12 0.46 ± 0.15 0.73 ± 0.09 0.77 ± 0.20 0.66 ± 0.25
LFS trEEGridPSG trEEGridPSG 0.74 ± 0.05 0.77 ± 0.04 0.77 ± 0.11 0.60 ± 0.10 0.76 ± 0.07 0.87 ± 0.04 0.85 ± 0.08

DT SS3 trEEGrid 0.56 ± 0.14 0.63 ± 0.10 0.74 ± 0.14 0.48 ± 0.11 0.71 ± 0.11 0.66 ± 0.21 0.56 ± 0.24
DT SS3 trEEGridPSG 0.57 ± 0.11 0.63 ± 0.08 0.72 ± 0.13 0.47 ± 0.11 0.71 ± 0.11 0.68 ± 0.18 0.60 ± 0.20
DT SS3grid trEEGrid 0.59 ± 0.14 0.63 ± 0.11 0.73 ± 0.15 0.41 ± 0.14 0.72 ± 0.10 0.68 ± 0.21 0.62 ± 0.24
DT SS3grid trEEGridPSG 0.60 ± 0.12 0.64 ± 0.11 0.71 ± 0.13 0.40 ± 0.14 0.72 ± 0.11 0.71 ± 0.19 0.65 ± 0.27
DT SS3grid-PSG trEEGrid 0.62 ± 0.14 0.64 ± 0.10 0.67 ± 0.17 0.34 ± 0.12 0.73 ± 0.11 0.71 ± 0.21 0.76 ± 0.11
DT SS3grid-PSG trEEGridPSG 0.62 ± 0.16 0.65 ± 0.13 0.71 ± 0.14 0.35 ± 0.16 0.71 ± 0.13 0.74 ± 0.18 0.73 ± 0.20

FT SS3 trEEGrid 0.71 ± 0.15 0.74 ± 0.12 0.77 ± 0.08 0.59 ± 0.15 0.80 ± 0.07 0.75 ± 0.19 0.80 ± 0.19
FT SS3 trEEGridPSG 0.70 ± 0.12 0.75 ± 0.08 0.85 ± 0.06 0.58 ± 0.08 0.77 ± 0.10 0.80 ± 0.11 0.76 ± 0.19
FT SS3grid trEEGrid 0.69 ± 0.13 0.75 ± 0.10 0.80 ± 0.09 0.61 ± 0.15 0.77 ± 0.10 0.77 ± 0.17 0.79 ± 0.17
FT SS3grid trEEGridPSG 0.78 ± 0.09 0.81 ± 0.05 0.84 ± 0.11 0.62 ± 0.09 0.81 ± 0.10 0.87 ± 0.06 0.88 ± 0.07
FT SS3grid-PSG trEEGrid 0.70 ± 0.17 0.73 ± 0.12 0.79 ± 0.14 0.51 ± 0.14 0.80 ± 0.10 0.77 ± 0.21 0.79 ± 0.18
FT SS3grid-PSG trEEGridPSG 0.76 ± 0.09 0.79 ± 0.04 0.86 ± 0.06 0.61 ± 0.13 0.79 ± 0.10 0.83 ± 0.07 0.88 ± 0.08

Scorer [6] - SIESTA
[36] 0.76 - - - - - -

Our
Scorer [9] - trEEGridPSG 0.70 0.74 0.78 0.51 0.78 0.85 0.80

In the case of FT condition, in every case the performance improves compared to DT, in
both Cohen’s Kappa and macro-F1 score. More improvement is observed when SS3grid and
SS3grid-PSG were used for pre-training. As in LFS, the trEEGridPSG setup as target domain
tends to outperform the trEEGrid setup. This is even the case if pre-training happened on
SS3grid, where larger channel mismatch is expected. Compared to the results of DT, it can be
observed for FT also in macro-F1 score that the pre-training on SS3 performs worse on both
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target domains, trEEGrid and trEEGridPSG. Thus, a more generalized model in terms of
input channels does not give an advantage here. Finetuning to the trEEGridPSG from both
SS3grid and SS3grid-PSG performs best, with almost equal performance in terms of Cohen’s
Kappa and macro-F1 score. In these cases, the automatic sleep staging performs better on
the data recorded with the trEEGrid than from a human scorer on the same data [9] and in
terms of Cohen’s Kappa it achieves an accuracy as scorer on classical recordings following
the AASM rules.

6. Discussion

This study investigates the use of transfer learning for sleep staging based on a small
dataset of only 12 recordings obtained with a prototype of a self-applied electrode grid,
so-called trEEGrid. We trained RobustSleepNet [30], an established neural network for
this task, on both the MASS SS3 database and the dataset recorded with the trEEGrid
prototype. The influence of the channel setup in both domains on the performance during
the transfer was investigated. Also, the influence of the size of the dataset on the expected
performance and the uncertainty was considered. This demonstrated a deterioration in the
system performance with a reduction in the number of records in the dataset, accompanied
by a higher uncertainty between multiple runs. Sources for this uncertainty are the random
components in the training procedure, such as the random initialization of the trainable
network parameters, the random selection of training records from the MASS SS3 dataset
and the random order in which training samples are compiled in batches during the
training process.

For smaller datasets, a decreasing performance and a higher uncertainty are generally
to be expected. However, the results show that it also depends on the selected channels
and their combination. In the results, it can be seen that LFS scores are highest for the
SS3 setup, the largest dataset. SS3grid and SS3grid-PSG show worse performance, which can
be explained by the fact that these setups have fewer channels. However, if the variance
is taken into account, the three setups based on MASS S3 are very similar to each other.
Reported performance measures are always influenced by the random nature of the training
procedures of neural networks, so that differences must not be over-interpreted and the
variance must be taken into account.

Both trEEGrid datasets have also a limited number of channels but additionally a
much smaller number of records (12 nights). The dataset trEEGrid achieves the worst result
of the LFS runs. However, by combining the channels with the aim of approximating classic
electrode positions, better results are achieved with trEEGridPSG, even though one channel
less is included in the model. By adding the linear combination R5-R4, which approximates
the classical channel O2 in the trEEGridPSG setup, new independent information is available
to the model, compared to the information of channel R1, R2, R4 and R5 where (R1 and
R2) and (R4 and R5) have a similar orientation and thus similar information. A more
specific investigation of this form of signal approximation has been carried out in relation
to sleep spindles [9]. The larger variance values for the performance data must be taken
into account here as well.

For DT, the results show worse performance, which is expected due to domain mis-
match. However, the matching channel setups SS3grid to trEEGrid and SS3grid-PSG to
trEEGridPSG do not help in direct transfer. This hints at a still remaining channel mismatch,
which can arise due to differences in the exact positions between the trEEGrid electrodes
and the EEG cap used in the recording of the MASS SS3 database. Although the channels
for SS3grid and SS3grid-PSG were selected to correspond with the channels represented in
trEEGrid and trEEGridPSG setups, respectively, these channels remain distinct in their
placement and, consequently, in their recorded signal.

The FT for the trEEGrid datasets as the target domain shows no improvement over the
LFS if the base dataset SS3 is used as source domain. The performance for the target domain
trEEGrid also remains limited, even if the sub-datasets SS3grid or SS3grid-PSG are used as
source domain. A performance gain is achieved if trEEGridPSG is selected as the target
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domain. Here, for both source domains SS3grid and SS3grid-PSG finetuning to trEEGridPSG

results in highest scores in terms of both Cohen’s Kappa and F1 metrics. Finetuning on the
trEEGrid dataset improves the performance relative to LFS and DT, but cannot achieve the
same performance as trEEGridPSG. Again, this is a hint concerning the benefit of using the
linear combination R5-R4.

It is important to note that while the approach is promising, its current application in
healthcare settings may be limited because the datasets used consisted exclusively of healthy
participants. Sleep architecture can vary widely due to a number of factors, including age
and various sleep disorders. Therefore, using only data from healthy individuals may
not provide a sufficient basis for clinical applications. For example, it has been shown
that a model trained on recordings from healthy participants suffers when applied to
patients with obstructive sleep apnea because this disease pattern results in higher sleep
fragmentation [11]. It would be beneficial to include assessments using sleep data from
patients with different pathologies. Depending on the prevalence of the specific pathology,
only a small number of recordings may be available; the transfer learning approach could
also be advantageous here.

7. Conclusions

Using a sequence-to-sequence network, we showed the performance of a sleep staging
algorithm finetuned on a small dataset of recordings made with the trEEGrid, a prototype
of a self-applicable electrode grid capable of recording EEG, EOG and EMG at home.
The used network architecture, previously used for transfer learning on multiple larger
datasets is applied here on a smaller dataset. We can see that finetuning helps to improve
the performance on this very small dataset, consisting of 12 records. Furthermore, it is
demonstrated that the approximation of the source dataset towards the target dataset
helps to improve the performance for finetuning. This is relevant not only in the use of
automated sleep staging for new sensor technology for which there is a limited amount of
observational data possible, but also for special disease conditions for which few datasets
are available. The datasets used in this study are from healthy adults. Further analysis
needs to be conducted on the application to data with different sleep pathologies. Transfer
learning could also be a way of improving model performance here. Finally, transfer
learning based on small datasets of the target domain is of interest for classification models
that are trained individually for specific subjects to enable long-term observation. Our
results also indicate that while a more generalized pre-training can aid in the direct transfer
of a trained model to a new domain, it does not improve the preconditions when finetuning
is necessary. We demonstrated that using re-referenced channels to estimate signals that are
not directly measurable with the trEEGrid improves automatic sleep staging, particularly
when trEEGrid recording is utilized to approximate classical PSG setups. As a result,
automatic sleep staging outperforms human sleep scorers when scoring the same data and
performs on par with human scorers on classical PSG recordings.
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