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Abstract: 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) alone, and in 

combination with N-hydroxysuccinimide (NHS) or sulfoNHS were employed for 

crosslinking anti-human fetuin A (HFA) antibodies on 3-aminopropyltriethoxysilane 

(APTES)-functionalized surface plasmon resonance (SPR) gold chip and 96-well 

microtiter plate. The SPR immunoassay and sandwich enzyme linked immunosorbent 

immunoassay (ELISA) for HFA clearly demonstrated that EDC crosslinks anti-HFA 

antibodies to APTES-functionalized bioanalytical platforms more efficiently than 

EDC/NHS and EDC/sulfoNHS at a normal pH of 7.4. Similar results were obtained by 

sandwich ELISAs for human Lipocalin-2 and human albumin, and direct ELISA for 

horseradish peroxidase. The more efficient crosslinking of antibodies by EDC to the 

APTES-functionalized platforms increased the cost-effectiveness and analytical 

performance of our immunoassays. This study will be of wide interest to researchers 

developing immunoassays on APTES-functionalized platforms that are being widely used 

in biomedical diagnostics, biosensors, lab-on-a-chip and point-of-care-devices. It stresses a 

critical need of an intensive investigation into the mechanisms of EDC-based  

amine-carboxyl coupling under various experimental conditions.  
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1. Introduction 

The immobilization of antibodies on the bioanalytical platforms is the most critical step in 

immunodiagnostics as it directly impacts their analytical performance [1]. A wide range of antibody 

immobilization strategies [2–5] are available such as physical adsorption, orientated binding by 

intermediate proteins, covalent binding, biotin-avidin interactions, affinity tags, and site-specific 

binding. However, the strategies based on the covalent binding of antibodies are the most prominent as 

they lead to rapid, leach-proof and highly stable antibody binding with high immobilization density. 

The most widely used covalent binding strategy is the heterobifunctional crosslinking of the amino or 

carboxyl groups on antibodies to the free carboxyl or amino groups on bioanalytical platforms using 

EDC along with NHS or sulfoNHS. We have employed a wide range of antibody crosslinking 

strategies for immunodiagnostic applications. It was observed that the crosslinking of antibodies by 

their amino groups impacts their antigen detection due to their improper orientation because the amino 

groups are present at different sites on the antibody including the region near the antigen-binding site. 

Therefore, in all our immunodiagnostic applications, we crosslink the antibodies by their carboxyl 

groups, which provides a favorable orientation as the carboxyl groups are located on the fragment 

crystallizable region of the antibodies away from their antigen binding site. In the present study on 

APTES-functionalized bioanalytical platforms, various EDC-based antibody crosslinking chemistries 

are compared, where EDC binds initially to the carboxyl groups on the antibodies followed by the 

subsequent formation of amide bonds with the amino groups present on the surface. NHS or sulfoNHS 

is used to stabilize the intermediate in the crosslinking reaction. 

While the combination of EDC with NHS and sulfoNHS (EDC/NHS and EDC/sulfoNHS 

respectively) based biomolecular immobilization strategies have been widely employed for assay 

development [6–19], EDC by itself has not been used so extensively. To our knowledge, this is the 

first report that shows the effect of various EDC-based antibody crosslinking strategies on the 

analytical performance of immunoassays that were performed on APTES-functionalized bioanalytical 

platforms. Human fetuin A (HFA) immunoassays were performed on anti-HFA antibody-bound 

APTES-functionalized SPR gold (Au) chip and 96-well microtiter plate (MTP). HFA immunoassay 

was taken as all the components were commercially-available in the form of a sandwich ELISA kit 

from R&D Systems, USA. Similar experiments were also performed on two other sandwich ELISAs 

for human Lipocalin-2 and human albumin, and a direct ELISA for horseradish peroxidase (HRP).  

The results obtained from all these immunoassays clearly demonstrated that EDC crosslinks antibodies 

more efficiently on APTES-functionalized bioanalytical platforms than EDC/NHS and EDC/sulfoNHS 

at the normal pH of 7.4. Therefore, there is a critical need to elucidate the exact mechanisms of  

EDC-based crosslinking of antibodies under different conditions, which can substantially improve the 

analytical performance of immunodiagnostics and their cost-effectiveness. 
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2. Experimental Section  

2.1. Materials 

EDC, NHS, sulfoNHS and 2-(N-morpholino)ethane sulfonic acid (MES, pH 4.7), bovine serum 

albumin (BSA), 3,3',5,5'-tetramethylbenzidine (TMB) substrate kit, and bicinchoninic acid (BCA) 

protein assay kit were purchased from Thermo Fisher Scientific, USA. APTES, absolute ethanol, 

potassium hydroxide, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), Tween 20, H2O2 

(30%, v/v), Nunc 96-well flat bottom MTPs, H2SO4 (97.5%, v/v), horseradish peroxidase (HRP) and 

monoclonal anti-HRP antibody produced in mouse were procured form Sigma-Aldrich. The human 

Fetuin A/AHSG kit with all the necessary components was obtained from R&D Systems Inc., USA. 

All buffers, KOH and APTES solutions were prepared in 18 MΩ Milli-Q ultrapure water (UPW), 

while 0.1 M MES, pH 4.7 was employed to reconstitute EDC, NHS and sulfoNHS. It is to be noted 

that EDC, NHS and sulfoNHS were all freshly prepared for this study. The aqueous EDC, EDC/NHS 

and EDC/sulfoNHS mixtures are quite unstable and need to be used immediately or stored at −20 °C.  

Surface Plasmon Resonance was performed on BIAcore 3000 from GE Healthcare, Uppsala, 

Sweden. The surface interaction analysis (SIA) kit (BR-1004-05), containing SPR Au chips, was 

procured from GE Healthcare, U.K. The SPR Au chip was assembled according to the instructions 

supplied by the manufacturer. 10 mM HEPES-buffered saline (HBS) buffer, pH 7.4 was used as the 

running buffer for BIAcore and for making sample dilutions. The dilutions of HFA were made in 

BSA-preblocked glass vials, prepared by incubating with 1% (w/v) BSA for 30 min, to minimize 

analyte loss due to non-specific adsorption on sample tube surfaces and/or compromised 

immunogenicity [19]. The sandwich ELISA kits for human lipocalin-2 and human albumin were 

procured from R&D Systems, USA and Bethyl Labs, USA, respectively. The absorbance readings 

were taken by Tecan Infinite M200 Pro MTP reader. All the immunoassay procedures, employing the 

various EDC-based crosslinking chemistries on APTES-functionalized platforms, were performed at 

the same time under same ambient conditions and using same chemicals/consumables/instruments. 

Therefore, no experimental errors were induced due to experimental procedures and environment. 

Moreover, the analytical procedures employed for the various EDC-based crosslinking chemistries in 

this study have already been optimized [1]. 

2.2. Various EDC-Based Antibody Immobilization Strategies  

Anti-HFA antibody (990 µL of 100 µg/mL in HBS) was incubated at RT for 15 min with 10 µL of 

the crosslinking solutions, i.e., 10 µL of EDC (4 mg/mL); 5 µL of EDC (8 mg/mL) + 5 µL of NHS  

(22 mg/mL); and 5 µL of EDC (8 mg/mL) + 5 µL of sulfoNHS (22 mg/mL), for each of the three 

EDC-based crosslinking chemistries. This led to the activation of carboxyl groups on anti-HFA 

antibodies with EDC. It should be noted that the concentration of EDC employed was exactly the 

same, i.e., 4 mg/mL in 10 µL of crosslinking solutions, in all three chemistries. Thereafter, the  

EDC-/EDC-NHS/EDC-sulfoNHS-activated anti-HFA antibodies were bound to the APTES-functionalized 

MTPs and SPR chips by following our previously developed incubation- and microfluidics-based 

immunoassay procedures for sandwich ELISA [1] and SPR-based immunoassays [13,14], respectively. 
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2.3. SPR-Based HFA Immunoassay 

The SPR-based HFA immunoassay was performed using our previously developed immunoassay 

procedure on APTES-functionalized SPR Au chip [1], which involved sequentially the cleaning of 

SPR Au chip with freshly prepared piranha solution, APTES functionalization, immobilisation of  

anti-HFA antibody using various EDC-based crosslinking strategies, blocking with 1% BSA, and HFA 

detection (0.6–20 ng/mL−1).  

Initially, the SPR Au chip was cleaned by treating with freshly prepared piranha solution (60 µL of 

H2SO4 (97.5%, v/v): 30 µL of H2O2 (30%, v/v)) for 2 min followed by extensive rinsing with UPW. 

(Note: this was done outside the BIAcore instrument under the fume cabinet). The cleaned chip was 

then functionalized with APTES by incubating with 100 µL of 2% (v/v) APTES for 1 h at room 

temperature (RT) under the fume cabinet followed by extensive washing with UPW.  

The EDC-/EDC-NHS/EDC-sulfoNHS-activated anti-HFA antibodies were prepared by the procedure 

mentioned in Section 2.2. The flow rate used for all the process steps in the BIAcore 3000 was  

10 µL/min. The antibody immobilization was done by injecting 50 µL of EDC-/EDC-NHS/ 

EDC-sulfoNHS-activated anti-HFA antibody over all the four flow cells of SPR chip. The anti-HFA 

antibody bound chip was then blocked by injecting 20 µL of 1% (w/v) BSA. Subsequently, 50 µL of 

the dilution buffer i.e., 10 mM HBS, pH 7.4 was passed through all the flow cells and the changes in 

SPR response units (RU) of all the four flow cells were determined. Finally, 50 µL of HFA at six 

different dilutions, i.e., 0.6, 1.2, 2.5, 5, 10 and 20 ng/mL, were passed through the flow cells. The RU 

values of the blanks were then subtracted from the RU values of HFA detected in the corresponding 

flow cells.  

All the experiments were repeated four times in different flow cells. The error bars represent 

standard deviation. The HFA detection curves were plotted by SigmaPlot software (version 11.2) using 

four-parameter logistic function based on the standard curve analysis.  

2.4. HFA Sandwich ELISA 

The HFA sandwich ELISA was similarly performed using our previous procedure [13,14],  

which involved sequentially the APTES-functionalization of MTPs, immobilisation of anti-HFA 

antibody using various EDC-based crosslinking strategies, blocking with 1% BSA, HFA detection  

(4.8 pg/mL−1–20 ng/mL−1), binding of biotinylated anti-HFA detection antibody to bound HFA, 

binding of HRP-conjugated streptavidin to biotinylated anti-HFA detection antibody, TMB substrate 

assay, and measuring the absorbance by Infinite M200 Pro microplate reader (Tecan, Austria) at a 

primary wavelength of 450 nm with a reference wavelength of 540 nm. All the experiments were  

done in triplicate. The error bars represent standard deviation. The absorbance of the control, i.e.,  

0 ng/mL−1, was subtracted from all the assay values. The results were plotted by Sigma Plot software 

(version 11.2) using four-parameter logistic function based on the standard curve analysis. The sandwich 

ELISAs for human Lipocalin-2 and human albumin, and the direct ELISA for HRP were also done by 

the same procedure.  
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3. Results and Discussion 

EDC is a carboxyl and amine-reactive zero-length crosslinker, which reacts initially with the 

carboxyl group and forms an O-acylisourea intermediate [5,20]. This intermediate reacts quickly with 

an amino group to form an amide bond and releases an isourea by-product (Figure 1). The  

O-acylisourea intermediate is unstable in aqueous solutions and gets hydrolyzed if it fails to react with 

an amine. The hydrolysis of the intermediate regenerates the carboxyl group and releases N-substituted 

urea. Therefore, NHS or sulfoNHS is required for stabilization as they react with the unstable reactive 

O-acylisourea ester intermediate to form semi-stable amine-reactive NHS ester that is stable for few 

hours at pH 7.4 [20] (Figure 1). The best crosslinking results are obtained when NHS-activated 

antibodies are used promptly for reacting to amine-functionalized substrates. The product information 

brochure for NHS and sulfoNHS [21] states that the activation of EDC-bound antibody with  

NHS decreases its water-solubility, while its activation with sulfoNHS preserves/increases its  

water-solubility. It further states that although NHS and sulfoNHS are not required for EDC-based 

heterobifunctional crosslinking of carboxyl and amino groups, their use enhances the coupling 

efficiency. The reaction of NHS- or sulfoNHS-activated antibodies with amines is also stated to be the 

most efficient at pH 7–8 [20,21].  

Figure 1. Schematic for the various 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC)-based chemistries that were employed to crosslink antibodies to antibodies on  

3-aminopropyltriethoxysilane (APTES)-functionalized platforms for immunodiagnostic 

applications. 

 

EDC, NHS and sulfoNHS were prepared freshly in MES buffer, pH 4.7, which is a non-amine and 

non-carboxylate buffer, and thus, cannot interfere with the crosslinking of antibodies. However, in the 
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present study, we employed 10 µL of EDC, EDC/NHS or EDC/sulfoNHS (prepared in 0.1 M MES,  

pH 4.7) and mixed it with 990 µL of antibody (prepared in 0.1 M PBS, pH 7.4). So the final pH of the 

crosslinking solution was close to the normal pH of 7.4, which is the most desirable pH for 

immunoassays. The crosslinking solution was incubated for 15 min at RT, which resulted in the 

binding of EDC to the carboxyl group of anti-HFA antibody followed by the subsequent binding of 

EDC-activated anti-HFA antibody to NHS or sulfoNHS to form EDC/NHS or EDC/sulfoNHS 

activated anti-HFA antibody. The EDC or EDC/NHS or EDC/sulfoNHS activated anti-HFA antibodies 

were then provided to APTES-functionalized bioanalytical platforms, which led to the crosslinking of 

anti-HFA antibodies to the free amino groups on the surface.  

The SPR-based HFA immunoassays (Figure 2(a)) performed on APTES-functionalized SPR Au 

chip using the various EDC-based antibody crosslinking strategies further demonstrated that the  

anti-HFA antibody immobilization density using EDC was 17 ± 0.1% higher than that using 

EDC/NHS or EDC/sulfoNHS (Figure 2(b)). The higher antibody immobilization density was 

responsible for the enhanced HFA detection in case of EDC. Similar results were obtained in the HFA 

sandwich ELISA on APTES-functionalized MTPs (Figure 3). The amount of antibody bound to MTP, 

determined by BCA protein assay, also provided similar results of 22 ± 0.8% higher antibody binding 

in case of EDC. Therefore, the anti-HFA immobilization density by EDC was on an average 19.5% 

higher than that of EDC-NHS or EDC-sulfoNHS (taking the mean of SPR-based HFA immunoassay 

and BCA protein assay). Similar experiments were performed for sandwich and direct ELISAs for 

other analytes. The human lipocalin-2 and human albumin were detected by sandwich ELISA, while 

HRP was detected by direct ELISA (Figure 4). The EDC-based antibody crosslinking was observed to 

be the best in all immunoassays on APTES-functionalized platforms in terms of analyte detection, 

thereby demonstrating better analytical performance. But the limit of detection, linearity, dynamic range 

and half-maximal effective concentration of the assay curves were not much affected. Thus, these results 

will enhance the cost-effectiveness of immunoassays without sacrificing the analytical performance.  

Figure 2. (a) Surface plasmon resonance (SPR)-based anti-human fetuin A (HFA) 

immunoassay using various EDC-based strategies for crosslinking anti-HFA antibodies to 

APTES-functionalized SPR gold chips; (b) SPR response units corresponding to the 

binding of capture anti-HFA antibodies by the various strategies. The values are average of 

four repeats in different flow cells. The errors bars represent standard deviation.  
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Figure 3. (a) HFA sandwich sandwich enzyme linked immunosorbent immunoassay 

(ELISA) using various EDC-based strategies for crosslinking anti-HFA antibodies to 

APTES-functionalized 96-well microtiter plates (MTP); (b) bicinchoninic acid (BCA) 

protein assay to determine the amount of anti-HFA antibody bound to MTP by various 

strategies. All experiments were done in triplicate. The errors bars represent  

standard deviation.  
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conditions, which is typically lower than the normal pH of 7–8 that one wish to conjugate. The 

mechanism of EDC-based crosslinking of antibodies was proposed by Nakajima and Ikada [23].  

The NHS esters produced by EDC/NHS and EDC/sulfoNHS were proposed to be more stable than the 

O-acylisourea ester produced by EDC. The EDC/NHS or EDC/sulfoNHS based crosslinking was also 

specified to be optimal at pH 7.2–8.5. The isoelectric points (pI) of most IgGs are in the range of  

7.4–8.6 [24]. Therefore, the employed pH of about 7.4 in the present study for various EDC-based 

strategies is within the desired range of 0.5–1.0 pH unit below the pI of IgGs.  

Figure 4. (a) Human Lipocalin-2 sandwich ELISA; (b) human albumin sandwich ELISA; 

and (c) horseradish peroxidase (HRP) direct ELISA, using various EDC-based strategies 

for crosslinking capture antibodies to APTES-functionalized MTPs. All experiments were 

done in triplicate. The errors bars represent standard deviation.  
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unravel the exact mechanisms that are responsible for the EDC-based crosslinking under different 

experimental conditions. It will be immensely useful to researchers in improving the analytical 

performance of immunodiagnostics and other bioanalytical applications, where the EDC-based 

crosslinking chemistries and APTES-functionalized platforms are being extensively used. However, 

the antibody crosslinking is highly dependent on the particular EDC/protein couple. Therefore, the 

results of this study on selected set of antibodies cannot be generalized and transposed to all 

EDC/protein couples. 

4. Conclusions  

EDC, EDC-NHS and EDC-sulfoNHS were employed to crosslink anti-HFA antibodies on  

APTES-functionalized platforms for immunodiagnostic applications. The SPR immunoassay and 

sandwich ELISA for HFA demonstrated more efficient antibody crosslinking by EDC in comparison 

to EDC-NHS and EDC-sulfoNHS at a normal pH of about 7.4, which increased the analytical 

performance and cost-effectiveness of our immunoassays. Similar results were achieved in sandwich 

ELISAs for human Lipocalin-2 and human albumin, and direct ELISA for HRP. We believe that the 

present study will be indispensable for triggering the quest in researchers for an in-depth investigation 

into the mechanisms of EDC-based amine-carboxyl coupling under different experimental conditions, 

which will provide a guided insight into the EDC-based coupling chemistries for the development of 

improved immunodiagnostics.  
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