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Abstract: Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has
two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia.
This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood
cell images using convolutional neural networks (CNN), which requires a large training data set.
Therefore, we also investigated the effects of data augmentation for an increasing number of training
samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH
Image Bank. Next, we applied seven different image transformation techniques as data augmentation.
We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also
explored other well-known machine learning algorithms such as naive Bayes, support vector machine,
k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments
and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN
model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multi-class
classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better
performance than other well-known machine learning algorithms.

Keywords: leukemia diagnosis; recognizing leukemia subtypes; multi-class classification; microscopic
blood cells images; data augmentation; deep learning; convolutional neural network

1. Introduction

Leukemia is an aggressive disease related to the white blood cells (WBC) and affects the bone
marrow and blood of the human body. This disease can lead to destroying the immune system
of the human body. There are two main types of leukemia, acute and chronic leukemia, which is
depending on how fast it progresses. In acute leukemia, infected WBC do not perform or act like
the normal WBC; while it can act as normal WBC in chronic leukemia. Therefore, chronic leukemia
can be severe since it cannot be differentiated from normal WBC. Moreover, there are two subtypes
of each leukemia types depending on the size and the shape of the WBC: Lymphoid and myeloid.
In general, there are four subtypes of leukemia as shown in Figure 1, Acute Lymphocytic Leukemia
(ALL), Acute Myeloid Leukemia (AML), Chronic Lymphocytic Leukemia (CLL), and Chronic Myeloid
Leukemia (CML) [1,2]. Identifying the existence of leukemia as well as their specific types is important
for hematologists to avoid medical risks and specify the right therapy. Thus, using intelligent ways for
diagnosis will facilitate and speed up the discovery of leukemia subtypes using the blood cells images
(i.e., blood smears).

Microscopic blood tests are considered as the main procedure for the diagnosis of leukemia [2].
Analysis of blood smears is the most common way of discovering leukemia, but not the only one
technique. Interventional radiology is an alternative technique for the diagnosis of leukemia. However,
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radiological techniques, such as percutaneous aspiration, biopsy, and catheter drainage, suffer from
inheriting limitations of imaging modality sensitivity and resolution of the radio images [3]. Moreover,
other techniques, such as Molecular Cytogenetics, Long Distance Inverse Polymerase Chain Reaction
(LDI-PCR), and Array-based Comparative Genomic Hybridization (aCGH), need extensive work and
time to identify leukemia types [4]. Due to time and cost requirements of these techniques, microscopic
blood tests and bone marrow are the most common methods for identification of leukemia subtypes.

A machine learning (ML) algorithm will help to identify the blood cells with leukemia from
the HEALTHY cells when a large training set is available. ALL-IDB leukemia image repository [5] is
one of the datasets that is used by a number of medical researchers [1,6,7] as a benchmark. Another
leukemia dataset is from the American Society of Hematology (ASH) and it is online at website [8].
Thanh et al. [7] used the ASH database for identifying AML leukemia in their research. Google is
another source of leukemia image without annotations, where images were collected randomly from
websites. Karthikeyan et al. [9] used the microscopic images collected from Google in their research for
identifying leukemia, where authors annotated images by themselves. Successful implementation of
machine learning based leukemia diagnosis can be built upon the use of an annotated image dataset.
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Figure 1. Sample images of four different types of Leukemia: Chronic Lymphocytic Leukemia (CLL) [8],
Chronic Myeloid Leukemia (CML) [8], Acute Lymphocytic Leukemia (ALL) [8], Acute Myeloid
Leukemia (AML) [8], and HEALTHY [5].

Identification of leukemia subtypes from the HEALTHY samples is quite a challenging issue.
In the literature, many researchers studied only binary classification between one subtype versus
HEALTHY samples [1,7,9–12]. They obtained quite a high performance even more than 96% accuracy.
Besides, Shafique et al. [6] further classified samples with ALL subtypes, according to the size of the
cell and the nature of its nucleus. However, dealing with the identification of all subtypes of leukemia
is more challenging task than simple binary classification [13]. To the best of our knowledge, there is
no automatic recognition approach dealing with all subtypes of leukemia.
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Several ML algorithms help to classify and recognize leukemia disease from microscopic images.
For example, Paswan et al. [10] who used support vector machine (SVM) and k-nearest neighbor
(k-NN) to classify AML leukemia subtype, obtained 83% accuracy. Patel et al. [1] applied SVM
for classifying ALL leukemia subtype and achieved 93% accuracy. Karthikeyan et al. [9] also used
SVM and c-mean clustering technique to separate WBC from the background and they reached 90%
accuracy. Although using a deep learning (DL) approach seems more effective, its performance highly
depends on the quantity and quality of dataset used [6]. Convolutional Neural Network (CNN) is
one of the neural networks architecture that is generally used to deal with image classification and
registration problems. Shafique et al. [6] applied a convolutional neural network (CNN) for identifying
ALL leukemia subtypes. Their results recorded 99% for binary classification, between ALL versus
HEALTHY samples, and 96% for the further classification of subtypes of ALL only. Thanh et al. [7]
also built a CNN model that consists of five convolutional layers to make a binary classification of ALL
leukemia subtypes and obtained 96.6% accuracy. Unfortunately, the performance classification in this
kind of neural network needs a large training data to learn how to identify important objects from
the whole image. However, developing a large training dataset is very time consuming and is a very
labor-intensive task. To avoid this problem, we suggest expanding the limited number of samples by
image augmentation. Using an inadequate number of image samples in the training dataset may lead
to an overfitting problem [14]. Hence, most of the researchers in the literature depend on applying
some image transformation techniques to increase the number of training set samples synthetically to
avoid an overfitting problem. Patel et al. [1] applied median and Wiener filters to remove noise and
blurriness. In the literature, many of the image transformation techniques have been used such as
image rotation and mirroring, histogram equalization, image translation, gray scale transformation,
blurring images, and image shearing [6,9,10]. Using image augmentation makes it possible to use a DL
approach, which requires a large number in the training dataset.

In this study, we propose a new approach for leukemia diagnosis from microscopic blood images
identifying the four subtypes of leukemia (i.e., ALL, AML, CLL, and CML) by using CNN architecture
of deep learning. To the best of our knowledge, this is the first study dealing with all four leukemia
subtypes. Furthermore, the deep neural network requires large training datasets, which is not a trivial
problem in our case. Thus, we used an image augmentation technique to increase the number of
samples. Additionally, we compared our approach with well-known ML algorithms and evaluated
their performances with 5-fold cross validation.

The rest of the paper is organized as follows: Section 2 represents the dataset we used and our
method in detail. Section 3 presents the experimentation setups. Results and discussions are given in
Section 4. Finally, Section 5 concludes the paper and provides a look at further studies on this topic.

2. Materials and Methods

This section presents the details of dataset collection we used, then data augmentation using
image transformations and finally applying CNN to classify the four leukemia subtypes.

2.1. Dataset

In this study, we collected data from two different sources: ALL-IDB [5] and The American Society
of Hematology (ASH) Image Bank [8]. ALL-IDB dataset provided annotated microscopic blood cell
images designed for evaluation of segmentation and classification purposes. It included only ALL type
of leukemia and HEALTHY samples. ALL-IDB was considered more reliable since, for each image in
the dataset, expert oncologists provided the classification/position of ALL lymphoblasts. The other
subtypes of Leukemia (i.e., AML, CML, and CLL) did not exist in this dataset.

ASH Image Bank is publicly available on the Web and includes a comprehensive collection of
images related to a wide range of hematological topics. In this study, we selected all available blood
cell images annotated with leukemia, including any of the four subtypes. Table 1 depicts the number
of samples for each of the subtypes and datasets.
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Table 1. Dataset coverage for four leukemia subtypes and HEALTHY image samples. The original
rows indicate the initial sample numbers, the augmented rows show the increased number of samples
by using data augmentation.

Dataset Type
Acute Chronic

HEALTHY Total
Myeloid Lymphoid Myeloid Lymphoid

ALL-IDB Original - 179 - - 175 354
ALL-IDB Augmented - 1253 - - 1225 2478

ASH Image Bank Original 179 - 185 185 - 549
ASH Image Bank Augmented 1253 - 1295 1295 - 3843

2.2. Data Augmentation

Data augmentation techniques were widely utilized to increase the dataset size and avoid
memorization, especially in deep learning algorithms. Several image transformation techniques,
such as shifting, rotation, and flipping, were employed to obtain different versions of original images.
When ML models were trained not only with the original image but also with different image versions,
they would have more generalization capabilities. Different studies on image classification with
CNNs, various data augmentation techniques reduced the error rate of the model by providing better
generalization [15–20].

In this study, utilized datasets provided a good collection of microscopic blood cell images,
however, both contained very limited number (i.e., a couple of hundreds) of samples for each leukemia
subtype. The exact number of samples for each subtype of leukemia are shown in Table 1. The number
of samples was 354 and 549 in the original ALL-IDB and ASH Image Bank datasets, respectively.
Data sample sizes were quite few for deep learning methods, hence it could lead to memorization
of the algorithm. Therefore, we increased the number of samples using the following seven image
transformations [21,22]:

1. Rotation (40◦): It was done by giving the rotating effect to the image in a random direction (left or
right). During this process, pixel values of an image are moved left, right, up, down according to
the degree value specified between 0–180 as shown in Figure 2b. In this study, the degree value
was selected at 40◦ to obtain various images.

2. Height Shift (40%): It was obtained by randomly shifting the image pixels to up or down with
40% as shown in Figure 2c. With the help of this transformation, machine learning models avoid
memorizing images that were constantly centered in the dataset.

3. Width Shift (40%): When this operation was performed, the pixel values were moved to the right
or left with 40%. After height or width shift operations, a gap occurred in the opposite direction of
the shifted direction. It is preferred to fill this gap with neighboring pixels as shown in Figure 2d.

4. Zoom (30%): It makes the appearance of objects in the image closer. It was done by adding
new pixel values to the original image. When adding the values, the original pixel values were
examined and the nearest value was determined. As a result, the zoomed image was obtained as
in Figure 2e.

5. Horizontal Flip: In this operation, image pixels were moved horizontally from one half of the
image to the other half, as seen in Figure 2f. It was determined that the pixel values would move
in a random direction.

6. Vertical Flip: The image was divided by a line drawn horizontally from the center of the image.
As seen in Figure 2g, pixels were moved vertically unlike horizontal flip.

7. Shearing (20◦): It was done by shifting the image pixels counter-clockwise according to the
specified angle in degree. In this study, this value set at 20◦ and the example image is shown in
Figure 2h.
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We used Python programming language with two open source image processing libraries,
OpenCV and KERAS to perform image transformations. Figure 2 shows the applied transformations
effect on a sample image. In Figure 2, seven images, which were generated from sample image (a) were
shown for each transformation method. After applying image transformation methods, the number
of samples increased to 8 times for both data sets as shown in the augmented row values of Table 1.
When generating different variations of original images, we applied 7 image transformation methods
randomly. After performing data augmentation, the total number of samples reached 2478 and 3843
for ALL-IDB and ASH Image Bank datasets, respectively.

2.3. Convolutional Neural Network Architecture

The CNN architecture mainly consisted of convolution layers, pooling layers, flattening, and
multilayer perceptron [15,23]. CNNs performed automatic feature extraction from the input images
and then classified them with fully connected neural networks. Feature extraction was performed by
convolution and pooling layers. After applying filters on the image in these layers, the features were
obtained and the classification stage was started. Figure 3 shows the details of the architecture we
designed. The details of each phase are described below:

• Convolutional Layer: It was responsible for applying several feature detectors to explore many filters
on the input image. The CNN we used had a 32 feature map with the size of 3 × 3. Convolution
filters were applied to the image by sliding. The filter values were determined randomly. We used
2 convolution layers to avoid overfitting.

• Max-Pooling Layer: This layer was responsible for decreasing the dimension of the filtered image
thus that it focused on the important feature/area or object in the image. In our network, we used
a max-pooling layer with the size of 2 × 2. We doubled the number of this layer, as well.

• Flatten Layer: This layer transformed a 2-dimensional max-pooled matrix into one dimensional
array thus that each cell of this array could be used as an input node for the full connected network.

• Fully Connected Network: This part was a naive connected full forward network that consisted
of one input layer (the flattened layer in our case), a hidden layer, and an output layer. In our
model, the hidden layer consisted of 128 nodes with 10% Dropout and Batch-Normalization
for minimizing overfitting. Due to a simple calculation, the ReLU activation function had been
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implemented. In the output layer, we setup two types of optimizers SGD (stochastic gradient
descent) and ADAM optimizers one type at a time. We added 5 output nodes (each node
represents each leukemia type and HEALTHY samples) and all of them were controlled by
a SoftMax activation function.
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Figure 3. The proposed convolutional neural network (CNN) architecture.

Our CNN model was trained with 25 epochs and 32 batch size since this setup was more suitable
with the sample amount of dataset we used. Various numbers of epochs were experimented to obtain
the best performance results. We tried to increase the number of epochs to 100, however, it took more
running time without significant progress in accuracy.

3. Experimentation

We created an experimental environment convenient with the designed CNN architecture. We ran
all the experiments in a computer with Core i7 processor and 8 GB RAM running under Windows 10
operating system, and Anaconda 3 with Spider 3.3 and Python 3.6. After setting up the environment,
we conducted 4 experiments as follows:

• Experiment #1: The primary experiment conducts measuring the first capabilities of the CNN.
It was a binary classification experiment without applying image transformations. ALL-IDB
dataset consisted of the original ALL subtype and HEALTHY samples with 144 training and
35 test samples for each class. We assigned a dropout parameter and tuned it until becoming
suitable with 10% value. In addition, we applied a batch-normalization, which was responsible
for minimizing the amount of fluctuations in performance.

• Experiment #2: In this experiment, we considered making a binary classification with the same
2 classes in Experiment #1, where image transformation techniques were applied to ALL and
HEALTHY samples. Accordingly, we used 980 samples as training data and 245 samples as test
data for both classes. Besides, we applied 5-fold cross validation in this experiment.

• Experiment #3: This experiment involved the 4 leukemia subtypes: ALL, AML, CLL, CML, and the
HEALTHY samples, thus 5 classes were conducted with this experiment. Each leukemia type
consisted of 924 training and 231 testing samples. Data augmentation may cause fluctuations in
performance. Therefore, we applied the same dropout and batch-normalization parameters as in
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Experiment #1. Additionally, we considered different epochs numbers: 25 and 100, to observe the
effects of a longer time of training. This experiment included the following parameters:

(a) The Stochastic Gradient Descent (SGD) optimizer with 25 epochs.
(b) The Stochastic Gradient Descent (SGD) optimizer with 100 epochs.
(c) The ADAM optimizer with 25 epochs.

We used 2 optimizers to observe which one could decrease the fluctuations in the validation.
This may be a result of the irregularity/random selection of the network weights.

• Experiment #4: We repeated Experiment #2 and Experiment #3 by using different ML algorithms.
This aimed to compare the CNN results with other ML algorithms. We applied this experiment using
4 well-known classifiers: Support Vector Machine (SVM), Naïve Bayes (NB), k-NN (with k = 3),
and Decision Tree (DT). We used 5-fold cross validation for all experiments.

Evaluation Process

To evaluate our model, we selected 2 main evaluation metrics that were used to measure the
performance of any neural network [24,25]. First, accuracy was the number of correctly classified
image samples among the total number of samples. For neural networks, there were 2 types of
accuracy: Training accuracy (TRN-ACC) that measures how good your model in the training process,
and validation accuracy (VAL-ACC), which shows how good your model is in classifying unseen
data. Secondly, the loss is the metric that focuses on calculating the error of prediction, which is used
to adjust the weights of neural network nodes. This metric is also calculated in the training process
(TRN-LOSS) and validation process (VAL-LOSS).

We divided the dataset into two parts, 70% for training and 30% for testing, before applying any
image transformation techniques. Then we applied the image transformations for both parts to increase
the number of data samples. We ensured that each part of dataset contained the same number of
images with different folds in each cross-validation iteration. Accordingly, we applied our experiments
for each fold individually, then we calculated accuracy and loss metrics for each fold. We reported the
final performance as an average of 5 folds.

4. Results and Discussion

Table 2 shows the general summary of the results we obtained from each experiment. We obtained
the best performance in the binary classification of ALL and HEALTHY classes using augmented
samples. The next best score is the multi-classification of the four leukemia subtypes. However, binary
classification outperforms the multi-classification problem, since the more classes adhered and involved
in a classification process the more complexity will be recognized by the model to differentiate between
the classes. We observed that SGD optimizer works much better than ADAM optimizer in terms
of both accuracy and loss metrics. Besides, we also observed that longer epoch iterations do not
contribute to the performance of the model since Exp#3a produced a better result than Exp#3b.

Table 2. Accuracy and loss results for each experiment.

Exp ID Experiment Description Accuracy Type Loss Type

TRN-ACC VAL-ACC TRN-LOSS VAL-LOSS

Exp#1 Binary classification ALL and HEALTHY 99.55% 81.16% 0.0149 1.3093
Exp#2 Binary classification ALL and HEALTHY 99.90% 88.25% 0.0033 0.5653

Exp#3a Multi-classification with SGD optimizer 99.34% 81.74% 0.0207 1.1419
Exp#3b Multi-classification with SGD optimizer 99.77% 66.41% 0.0077 2.3665
Exp#3c Multi-classification with ADAM optimizer 99.36% 63.40% 0.0203 2.6636
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Tables 3 and 4 present the results of each fold’s performance for binary and multi-classification,
respectively. In binary classification, the best score was achieved in fold 4. In the multi-classification,
the best performance was obtained in fold 3 in terms of validation accuracy and loss. We can conclude
that the selection of samples for test and training set may fluctuate the performance results significantly.
Multiple fold cross validation leads to more reliable results in evaluation, thus that we evaluated our
approach using 5-fold cross-validation.

Table 3. Accuracy and loss scores for the binary-classification experiment (Exp#2) with the detailed
results of each fold of the cross validation.

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

VAL-ACC 65.16% 96.32% 90.66% 98.47% 90.66% 88.254%
TRN-ACC 99.87% 99.89% 99.91% 99.92% 99.91% 99.9%
VAL-LOSS 1.9519 0.0997 0.3711 0.0325 0.3711 0.56526
TRN-LOSS 0.0044 0.0036 0.003 0.0026 0.003 0.00332

Table 4. Accuracy and loss scores for the multi-classification experiment (Exp#3a) with the detailed
results of each fold of the 5-fold cross validation.

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

VAL-ACC 76.17% 94.74% 99.30% 71.37% 67.09% 81.74%
TRN-ACC 99.62% 98.49% 99.19% 99.68% 99.76% 99.35%
VAL-LOSS 1.0058 0.1995 0.0207 2.426 2.057 1.1419
TRN-LOSS 0.0120 0.0468 0.0268 0.009 0.008 0.0207

As known, a deep neural network requires large training datasets, since small training set may
cause overfitting problem. To overcome this issue, we used data augmentation. The more training
samples, the more CNN capability of discovering the patterns which each leukemia type may hold.
Although data augmentation plays an important role to increase the sample amounts and to avoid
overfitting, they might add some extra noise to the original data. This requires fine-tuning of dropout
and batch-normalization parameters; nevertheless, it may not be able to solve problem itself. Besides,
it could happen due to very similar structure of blood cells. Performance of multi-classification dropped
into 81.74%. This result explains the performance drop and how adding noise with data augmentation
degrades the identification of patterns of different leukemia subtypes.

A Comparison with Other Studies and Methods

We performed a general comparison between our model and the other studies in the literature.
Additionally, we compared commonly-used machine learning algorithms SVM, NB, DT, and k-NN
(k = 3) algorithms for the binary and multi-classification as explained in Exp#4. We compared different
studies Shafique et al. [6] and Thanh et al. [7] in terms of average accuracy, using ALL-DB dataset for
the binary classification of leukemia samples.

Table 5 shows a comparison of the binary classification between ALL and HEALTHY samples
for two literature studies versus our proposals, in terms of average accuracy. Our model in CNN has
the third best score, which is 88.25% in accuracy. Studies by Shafique et al. [6] and Thanh et al. [7]
outperformed our CNN model in the binary classification problem. However, it should be taken into
consideration that they did not use any cross validation in evaluation, it is unknown how test and
training sets were selected. When we considered the best individual folds as the final score, the CNN
model may be considered to achieve 99.3% accuracy, in fold 3. This result is better than reference [7]
who obtained 96.6% accuracy for the binary classification of leukemia.
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Table 5. A comparison of the binary classification for two literature studies versus our proposal, in
terms of average accuracy.

Model Dataset Used Accuracy

Shafique et al. [6] ALL-DB 99.50%
Thanh et al. [7] ALL-DB 96.60%

O
ur

Pr
op

os
al CNN ALL-DB 88.25%

NB ALL-DB 69.69%
DT ALL-DB 62.94%

3-NN ALL-DB 58.57%
SVM ALL-DB 50.09%

The results of several models are given in Table 6 for the multi-classification problem. Our model
obtained the second-best score with 81.74% average accuracy after the study of Shafique et al. [6] who
made a multi-classification of only ALL subtypes, not all subtypes of leukemia. To the best of our
knowledge, our study is the first one which explores multi-classification of the four leukemia subtypes.
According to Table 4, we get 98.47% accuracy with fold 4, which ranks our model in the top of the
multi-classification results.

Table 6. A comparison of the multi-classification for literature studies versus our proposal in terms of
average accuracy.

Model Dataset Used Accuracy

Shafique et al. [6] ALL-DB 96.06%

O
ur

pr
op

os
al

CNN - 25 epochs ALL-DB, ASH Image Bank 81.74%
CNN - 100 epochs ALL-DB, ASH Image Bank 66.41%

NB ALL-DB, ASH Image Bank 52.68%
DT ALL-DB, ASH Image Bank 45.92%

3-NN ALL-DB, ASH Image Bank 43.51%
SVM ALL-DB, ASH Image Bank 20.84%

Furthermore, our model using SGD optimizer generally outperforms all classical ML classifiers
especially NB, which provided the highest score in comparison with DT, SVM, and k-NN. Moreover,
SGD outperforms the ADAM optimizer in our CNN model for the multi-classification. We also
noticed that working with 25 epochs performs better than longer epoch periods. Figure 4 shows
a general comparison of all the multi-classification models discussed in this section. Our model with
CNN produced 81.74% for multi-classification on average with 5-fold cross validation. The error bar
in Figure 4 indicates the minimum and the maximum values of observations in terms of accuracy.
Our model produces competing results when the best fold has been taken into consideration.Diagnostics 2019, 9, x FOR PEER REVIEW 10 of 11 
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5. Conclusions

Leukemia is an aggressive cancer that affects the white blood cells and bone marrow and weakens
the immune system of the human body. One of the most commonly used diagnosis is based on
microscopic blood cells (blood smears) analysis. In this study, we present a new approach for leukemia
diagnosis from microscopic blood images by using a CNN architecture, which is capable of identifying the
four subtypes of leukemia. Our model proved its competency to deal with the limited number of image
samples by applying data augmentation techniques helping to solve the overfitting problem. As a result,
we also showed that our CNN outperforms the other machine learning algorithms by achieving
88% accuracy for the binary classification of one leukemia type (ALL and the HEALTHY samples),
and an 81% accuracy for classifying all leukemia subtypes. Besides, we did apply cross-validation in
all experiments. It is indeed so expensive in execution time for medical image classification, but it is
important to see if the model in hand is stable amongst the entire classification process.

In future work, we plan to expand our experiments by using a hybrid deep learning approach using
convolutional neural network accompanied by recurrent neural networks to enhance the performance.
Furthermore, we plan to enlarge our dataset by adding new samples as well as using new data
augmentation techniques.
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Administration A.A.
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