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Abstract: For predicting phenotypes and executing precision medicine, combination analysis of single
nucleotide variants (SNVs) genotyping with copy number variations (CNVs) is required. The aim
of this study was to discover SNVs or common copy CNVs and examine the combined frequencies
of SNVs and CNVs in pharmacogenes using the Korean genome and epidemiology study (KoGES),
a consortium project. The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the
Korean National Institute of Health, Korea Centers for Disease Control and Prevention. The allele
frequencies of SNVs, CNVs, and combined SNVs with CNVs were calculated and haplotype analysis
was performed. CYP2D6 rs1065852 (c.100C>T, p.P34S) was the most common variant allele (48.23%).
A total of 8454 haplotype blocks in 18 pharmacogenes were estimated. DMD ranked the highest in
frequency for gene gain (64.52%), while TPMT ranked the highest in frequency for gene loss (51.80%).
Copy number gain of CYP4F2 was observed in 22 subjects; 13 of those subjects were carriers with
CYP4F2*3 gain. In the case of TPMT, approximately one-half of the participants (N = 308) had loss of
the TPMT*1*1 diplotype. The frequencies of SNVs and CNVs in pharmacogenes were determined
using the Korean cohort-based genome-wide association study.

Keywords: polymorphisms; pharmacogenes

1. Introduction

It is well established that human genetic diversity is important for our understanding
population histology [1], variability in disease susceptibility, and treatment response or
adverse reactions to medications [2]. Single nucleotide variants (SNVs) are the most
widely studied form of genetic variations and several SNVs have been linked to disease
susceptibility and drug responses. Therefore, genome-wide association (GWA) studies
have led to the identification of multiple genetic variants correlated with traits, such as
body mass index, skin color [3], fat distribution [4], and glomerular filtration rate [5],
and with diseases, such as autoimmune disease [6] and non-alcoholic fatty liver disease [7].

Additionally, these SNV markers from GWA studies can be used in pharmacoge-
nomic research as a means of directly predicting interindividual responses to medicines [8].
Research has identified successfully the loci of genetic variants associated with responses to
tumor necrosis factor inhibitors [9], antidepressants [10], and antipsychotics [11], and with
adverse reactions induced by medicines, such as thiopurine-induced myelosuppression [12],
statin-induced myopathy [13], and carbamazepine-induced hypersensitivity [14]. These ge-
netic variations alter the structure and function of proteins such as drug-metabolizing
enzymes, drug transporters, receptors, and response targets, collectively referred to as
pharmacogenes [15].

Common copy number variations (CNVs) were estimated to occur in approximately
9.5% of the human reference genome and have non-random distribution [16]. CNVs ac-
count for at least five times more variable base pairs compared to that of SNVs when two
human genomes are compared to each other [17,18]. As with SNVs, CNVs were found to
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influence susceptibility to cancer [19] as well as neurodegenerative disease [20] and psychi-
atric disease [21]. Despite their clinical significance, CNVs remain understudied compared
to SNVs. The reasons may be that the detection of CNVs is more difficult and CNVs only
occur with low-to-intermediate frequency [22]. However, for predicting phenotypes and
executing precision medicine, combination analysis of SNVs genotyping with CNVs is
required. There have been several studies to detect both CNVs and SNVs in CYP2D6 [23,24].
However, CNV information integrated with polymorphisms on pharmacogenes is still not
fully characterized [25]. Traditional methods are time-consuming and labor-intensive and
a large number of participants are required.

The Korean genome and epidemiology study (KoGES) is a consortium project that was
established as a genome epidemiological study for the research community with a health
database and biobank to help investigate Korean population-based and gene–environment
model studies [26–28]. Because this dataset contains a significant collection of SNVs and
CNVs data from normal tissue and blood samples, KoGES is appropriate for combined
pharmacogenomic studies. Thus, this study aimed to discover SNVs and CNVs and to
examine the combined frequencies of SNVs and CNVs in pharmacogenes in the Korean
population using this large public dataset.

2. Materials and Methods
2.1. Study Subjects

The study subjects were selected from the Ansan and Ansung study (N = 5836),
the Health Examinee cohort (HEXA, N = 58,701), and the cardiovascular disease associa-
tion study (CAVAS, N = 8105) that constitute the KoGES [29]. Epidemiologic data were
provided by the Korean National Institute of Health, Korea Centers for Disease Control and
Prevention (KCDC). Socio-demographic, medical history, health conditions, and family
history of disease information were collected by trained interviewers using structured ques-
tionnaires. All physical examinations were administered by health professionals trained to
follow standardized protocols. The participants who had cancer were excluded from the
analysis. All subjects were middle-aged adults between 40 and 69 years of age. All study
participants provided written informed consent.

2.2. Pharmacogenes

The pharmacogenomics-related genes were selected by the Very Important Pharma-
cogene summaries in the Pharmacogenomics Knowledge Base (as of March 2020) [30]
and the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline (as of
March 2020) [31]. The genes from the U.S. Food and Drug Administration (FDA) Table
of Pharmacogenomic Biomarkers in Drug Labels (as of March 2020) were included [32].
A total of 191 genes were analyzed and are listed in Supplementary Table S1.

2.3. Data Collection and Preprocessing

The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the KCDC.
These imputated genotypes were produced by the Korea BioBank Array (referred to as
KoreanChip, KCHIP, Seoul, The Republic of Korea) project, optimized for the Korean pop-
ulation [33]. A KCHIP array includes a total of 833,535 SNVs for autosomal chromosomes.
Quality-controlled data were used for imputation analysis with 1000 Genomes Phase 3
data as a reference panel using ShapeIT v2 [34] and IMPUTE v2 [35]. An SNV missing rate
greater than 0.05, SNVs with a minor allele frequency less than 0.01, or a Hardy–Weinberg
equilibrium (HWE) of P less than 10–6 were excluded according to standard quality control
procedures. The SNV position aligned to human reference genomes hg19 using the Bio-
conductor BiomaRt R package [36]. For each gene, 10 kb bases of region were added both
upstream and downstream of the defined gene location. The CNV data of 1000 subjects
were produced from the Ansan and Ansung study [37]. The CNV data were genotyped
with the NimbleGen HD2 3 × 720 K comparative genomic hybridization array (aCGH)
(Roche NimblGen, Madison, WI, USA) [37]. For the combination analysis of genotypes
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and CNVs, the variants from gene–drug pairs from CPIC were searched for their clinical
effects. The functional effects of variants were predicted by SIFT (Sorting Intolerance From
Tolerant) [38] and POLYPHEN-2 (Polymorphism Phenotyping v2) [39].

2.4. CNV Calling

R package that implements the Genome Alteration Detection Analysis algorithm
(GADA) was used for CNV discovery [40]. To overcome the limitation of single algo-
rithm detection, we tested different thresholds, T, from 3 to 8. CNV discovery with
several parameters was tested to find the best parameters using known CNV regions [41].
Consequently, we selected the best parameter with high concordance with known CNV
regions with T = 4.5, alpha = 0.2, and MinSegLen = 6. CNV regions longer than 50 bp in
length were included for further analysis. A log 2 ratio cut-off of ±0.25 was used to define
copy number gain and loss and cut-offs of ±0.8 were used to define amplification and
deletion, respectively [42,43].

2.5. Data Analysis

Categorical variables such as gender and variant occurrences are presented in per-
centages and frequencies. Continuous variables such as age are presented with average
and standard variations. The chi-squared test with one degree of freedom was used to
test the departure from HWE for each variant. Data were analyzed with PLINK 1.9 or
2.0 [44] and R (version 3.6.3). Linkage disequilibrium analysis among pairs of SNVs was
performed to identify the haplotype. Estimation of haplotype blocks and their frequencies
were performed with PLINK and Haploview [45].

3. Results
3.1. Characteristics of the Study Population

For the KCHIP study, among the Ansan and Ansung study (N = 5493),
HEXA (N = 58,701), and CAVAS (N = 8105), after excluding patients with cancer, 5182 of
the Ansan and Ansung study subjects, 55,955 of HEXA, and 7890 of CAVAS remained.
For the CNV data, 945 subjects remained after excluding patients with cancer. Among them,
614 subjects had SNV and CNV data. The characteristics of the subjects from the SNV
and CNV data are presented in Table 1. The average ages of the subjects with SNV and
CNV data were 54.08 and 54.05 years, respectively. The frequencies of female subjects
(63.78%) was higher than that of male subjects (36.22%) in the SNV data, while that of
female subjects (49.95%) was similar to that of male subjects (50.05%) in the CNV data.

Table 1. Demographic characteristics of study subjects.

Characteristics SNV CNV Combination of SNV with CNV

Number of patients, n 69,027 947 614
Age, years 54.08 ± 8.31 54.05 ± 9.08 52.82 ± 8.80
Gender

male 25,004 (36.22) 474 (50.05) 311 (50.65)
female 44,023 (63.78) 473 (49.95) 303 (49.35)

Values are reported as n (%) or mean ± standard deviation; SNV, single nucleotide variation; CNV, copy number variation.

3.2. Genotype Variants

A total of 36,853 SNVs in pharmacogenes were included for the further analysis.
The allele frequencies of SNVs of more than 10% are listed in Supplementary Table S2.
VKORC1 rs9923231 (–1639G>A or G3673A) was found to be the most common alter-
native allele (92.42%). CYP2D6 rs1065852 (c.100C>T, p.P34S) was the next common
allele (48.23%). The allelic frequencies of CYP2C19*2 (rs4244285, c.681G>A, p.P227P)
and CYP2C19*3 (rs4986893, c.636G>A, p.W212X) were 28.29% and 10.04%, respectively.
The allelic frequency of CYP3A5*3 (rs776746, c.6986A>G) was 23.47%. CYP4F2*3 (rs2108622,
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c.1297C>T, p.V433M) and CYP4F2*2 rs3093105 (c.34T>G, p.W12G) were 32.41% and 13.40%,
respectively. Among SNVs in pharmacogenes, those that were assigned as having level
A evidence of gene-drug pairs by CPIC are shown in Figure 1. The median alterna-
tive allele frequency of CYP2D6 variants was ranked the highest (46.17%, ranged from
1.02% to 87.34%), followed by SLCO1B1 variants (39.32%, ranged from 1.07% to 86.62%).
SNVs with frequencies less than 10% that were also assigned as having level A evidence
of gene–drug pairs by CPIC or predicted to be deleterious by SIFT and POLYPHEN-
2 are listed in Supplementary Table S3. CACNA1S rs3850625 (c.4615G>A (p.R1539C),
CFTR rs121909046 (c.650A>G, p.E217G) and rs113857788 (c.4056G>C p.Q1352H), and CYP2B6
rs8192709 (c.64C>T, p.R22C) were predicted to be deleterious by SIFT.
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3.3. Haplotype Analysis

The frequency distributions of the variants or haplotypes were found to be significantly
different among ethnic populations. Therefore, haplotype analysis was performed on about
18 pharmacogenomic genes from 73 gene–drug pairs with level A evidence by CPIC. A total
of 8454 haplotype blocks in 18 genes were estimated, and the number varied from 2 to
3924 blocks per each gene, with an average of 4378. CYP2B6 rs8192709 (c.64C>T, p.R22C)
constructed a haplotype block with rs8192711 (G>A), rs34801721 (A>T), rs2279341 (G>C),
rs12985017 (T>C), and rs12985269 (T>C) (Figure 2). The haplotype block of CYP2B6 in
Caucasians was constructed with rs2279341, rs12985017, and rs12985269. Carriers with the
alternative haplotype T-A-T-C-C-C were found in 3.98% of this study population.J. Pers. Med. 2021, 11, x FOR PEER REVIEW 5 of 12 
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indicated by the standardized r2 (red boxes).



J. Pers. Med. 2021, 11, 33 5 of 11

3.4. Copy Number Variation Profiling

In the 947 subjects, segments with more than 1 CNV were determined in 937 subjects
using GADA. In total, 448 segments were detected in 937 individuals with an average of
22.58 copy number segments in each individual. CNV regions of more than 50 bp were
included for the further analysis. The mean and median lengths of these CNV regions were
4.29 and 2.21 kb, respectively. Figure 3 shows the distribution of the 333 CNV regions by
frequency rate. Of the 333 CNV regions, 92 had frequency rates of >1%. The frequencies
of CNVs were calculated and genes with a frequency of more than 1% are summarized
in Table 2. DMD ranked the highest in frequency for gene gain (64.52%), while TPMT
ranked the highest in frequency for gene loss (51.80%), and the frequency of TPMT deletion
was 3.58%. There were gene gains in G6PD (17.21%), KIT (21.12%), and OTC (57.76%),
while there was gene loss in ABCB1 (15.31%), BCR (19.01%), DMD (20.27%), EGFR (41.39%),
HLA-B (36.54%), HLA-DRB1 (40.65%), PDGFRA (21.44%), and SULT1A1 (19.75%) with a
frequency of more than 10%. The genes with a CNV frequency of less than 1% are listed
in Supplementary Table S4. Gene losses of ABCG2 and CYP2E1 were found in 0.63% of
subjects, while the gene gain of CYP2B6 was found in 0.21% of subjects.
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Table 2. Copy number variations for pharmacogenes with a frequency of more than 1% in Koreans.

Gene Position Gain Frequency (%) Loss Frequency (%)

ABCB1 7: 87133179−87342639 0.11 15.31
ALK 2: 29415640−30144477 6.12 1.06

ALOX5 10: 45869624−45941567 6.65 1.58
BCR 11: 23522552−23660224 0.11 19.01

BRCA 17: 41196312−41277500 2.22 2.64
COMT 19: 19929263−19957498 7.07 0.32

CYP2A6 19: 41349443−41356352 1.27 1.48
CYP4F2 19: 15988834−16008884 3.80 0.42

DMD X: 31137345−33229673 64.52 20.27
EGFR 7: 55086725−55275031 2.32 41.39
ESR1 6: 152128814−152424408 0 1.48
G6PD X: 153759606−153775233 17.21 0.42
HLA-B 6: 31237743−31324989 0.42 36.54

HLA-DRB1 6: 32489683−32557613 0.32 40.65
KIT 4: 55524095−55606881 21.12 2.22
OTC X: 38211736−38280703 57.76 0.42

PDGFRA 4: 55095264−55164412 0.11 21.44
RYR1 19: 38924340−39078204 5.07 2.11
SMN2 5: 70220768−70248842 2.11 0.11

SULT1A1 16: 28616908−28620649 7.71 19.75
TPMT 6: 18128545−18155374 0 51.80

3.5. Combination of Genotype Variants and CNVs

A total of 22 pharmacogenomic genes from 73 gene–drug pairs with level A evi-
dence by CPIC were selected for the combination analysis of SNVs and CNVs in 614 sub-
jects. CYP4F2*1*3 (24.43%) was most common CYP4F2 diplotype followed by CYP4F2*2*3
(18.57%) (Table 3). Among the CYP4F2 gains observed in 22 subjects, 13 subjects were
carriers with a CYP4F2*3 gain. The frequency of CYP4F2 loss was 0.49%. In the TPMT case,
approximately half of the participants (N = 308) showed a loss of the TPMT*1*1 diplotype.

Table 3. Copy number variation combined with single nucleotide variations in Koreans (N = 614).

Gene Allele Subjects (N) Frequency (%)

CYP4F2*1*1 258 42.02
CYP4F2*1*2 1 0.16
CYP4F2*1*3 150 24.43
CYP4F2*3*3 22 3.58
CYP4F2*2*3 114 18.57

CYP4F2*1*2-*3*3 31 5.05
CYP4F2*2*2-*3*3 13 2.12
CYP4F2*1*1 gain 9 1.47
CYP4F2*1*3 gain 6 0.98
CYP4F2*2*3 gain 6 0.98
CYP4F2*3*3 gain 1 0.16
CYP4F2*1*1 loss 2 0.33
CYP4F2*2*3 loss 1 0.16

TPMT*1*1 287 46.74
TPMT*1*3C 8 1.30

TPMT*1*1 loss 308 50.16
TPMT*1*3C loss 11 1.79

4. Discussion

Pharmacogenomic studies represent a critical component of precision medicine.
Compared to SNVs, CNVs or the combined study of SNVs and CNVs all both relatively
less studied. With regard to SNV or CNV data from genome epidemiological research,
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KoGES in Korea can be used for pharmacogenomic studies. The purpose of this study was
to discover SNVs and CNVs and to examine the combined frequencies of SNVs and CNVs
in pharmacogenes in Korea using KoGES.

For 191 pharmacogenes, a total of 36,853 SNVs from 69,027 subjects, 333 CNVs from
947 subjects, and combined data of SNVs and CNVs from 614 subjects were available in
this study. The SNV rs9923231 (–1639G>A or G3673A) is known to alter a transcription
factor binding site in the VKORC1 promoter region, and this allele frequency in Asians
was found to be approximately 0.92 [46], similar with our result. This variant was associ-
ated with decreased gene expression, resulting in decreased warfarin dose requirements.
CYP2D6 rs1065852 (c.100C>T, p.P34S) was the next most common allele (48.23%), and it
appeared in *4, *10, *14A, and *36 alleles, with lower enzyme activities compared to
the wild type [47]. This enzyme is involved in the metabolism of approximately 25% of
commonly prescribed drugs, including antidepressants, antipsychotics, antiarrhythmics,
β-blockers, and opioids [24]. The allelic frequencies of CYP2C19*2 and CYP2C19*3 were
28.29% and 10.04%, respectively, in our study, similar to earlier findings [48], and indicate
that genomic data from the KoGES study are appropriate for pharmacogenomics studies
in Korea. These losses of functional alleles of CYP2C19 can increase the risks for serious
cardiovascular events among patients treated with clopidogrel [49].

In our study, CACNA1S rs3850625 and CFTR rs121909046 and rs113857788 were
predicted to be deleterious by SIFT. CACNA1S rs3850625 was associated with malignant
hyperthermia accelerated by inhalational anesthetics and muscle relaxants [50]. Those two
variants in the CFTR gene were found to have the strongest association with bronchiectasis
and chronic pancreatitis in the Korean population [51].

According to a haplotype analysis, the haplotype block CYP2B6*2 (rs8192709) was con-
structed and the corresponding frequency was found to be 3.98 in this study. Approximately
3.4% of CYP2B6*2 variants were found in Han and Uygur Chinese [52]. Although the level
of evidence for clinical annotations of CYP2B6*2 was lower than that for the CYP2B6*6 allele
according to CPIC, this minor allele is known to decrease the clearance of methadone [53]
or efavirenz [54].

The activities of several important drug-metabolizing genes, such as CYP2B6, CYP2E1,
CYP2D6, GSTM1, and SULT1A1, are known to be related to variable copy numbers. In our
study, CNVs of CYP2B6, CYP2E1, and SULT1A1 were detected, whereas CNV data from
KoGES did not cover CYP2D6 and GSTM1 genes. Accordingly, alternative methods during
a CNV analysis are needed to detect those genes.

The DMD gene found to be the most frequent in terms of the copy number gain in
our study is the largest gene in the human genome, encompassing 2.2 Mb and encoding
for a muscular protein, dystrophin, which is related to the X-linked recessive disorders
Duchenne muscular dystrophy and Becker muscular dystrophy [55]. Deletions or complex
rearrangements usually occur between exons 43 and 55 or exons 2 and 23 [55]. Most carriers
with mutations or deletions of the DMD gene are asymptomatic [56]. One hundred and
seventeen different deletions and 48 duplications in the DMD gene were found in 507
Korean patients with Duchenne muscular dystrophy or Becker muscular dystrophy [57].

TPMT ranked highest here in terms of the frequency of gene loss at 3.58% in our
results. This is most likely due to a variable number of tandem repeats (VNTR) within
a G/C-rich region in the promotor of TPMT [58]. The frequency of the VNTR allele,
consisting of two repeat sequence motifs A, one motif B, and one motif C, was reported to
be 48.2% in an Asian British cohort [59]. The patterns and total number of VNTR alleles
were associated with the level of TPMT activity [59]. The TPMT gene encoding thiopurine
S-methyltransferase is a crucial enzyme during the metabolism of thiopurine drugs such as
azathioprine and 6-mercoptopurine [60].

In the next step, the CNV data were combined with SNVs for pharmacogenes. The loss
frequency of TPMT*3C (rs1142345, c.A719G, p.Y240C) was 1.79%. The TPMT*3C variant,
with moderate activity, was found to be the most frequent alternative allele in Koreans,
and TPMT deficiency can increase certain fatal adverse reaction risks, such as bone marrow
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toxicity and myelosuppression induced by 6-mercaptopurine [61]. Thiopurine-associated
leukopenia (more than 30%) was found to be considerably higher than expected according
to the frequency of the TPMT variant (~1%) in Koreans with Crohn’s disease [62]. This re-
sult may be related to the copy number variation in the TPMT gene. Despite the fact that
less than 5% of the samples showed gene gains or losses in these genes, the correspond-
ing clinical impacts should be considered when medicines associated with these genes
are administered.

A limitation of this study was that the CNV frequencies of some genes differed from
those in previous studies [63]. This difference may have been caused by the different assay
methods. There are many different methods for determining the CNVs of genes, and each
method has advantages and pitfalls. The array CGH methods and SNP arrays and CNV
arrays are excellent for initial scans along the lines of the SNP GWA study, and other
PCR-based methods such as multiplex ligation-dependent probe amplification (MLPA)
are used for conformation to genotype copy numbers [64]. The KCHIP array did not
contain SNVs for sex chromosomes, meaning that pharmacogenes such as DMD and G6PD
could not be included in the analysis of the combinations of genotype variants and CNVs.
Another limitation in our study was that hybrid pseudogene, conversion, or tandem alleles
cannot be determined due to the assay method used in this study. Additionally, as subjects
with common complex diseases such as diabetic mellitus, hypertension, and cardiovascular
disease were not excluded, this could affect the results of this study. Further studies with
regard to functional variation evaluations and associated determinations are needed to
manage patients more efficiently.

The 1000 Genomes Project and the Encyclopedia of DNA Elements Project pro-
duced comprehensive maps outlining the regions of the human genome containing SNVs,
multi-nucleotide variants, and CNVs [65]. However, combination analyses of SNVs with
CNVs in pharmacogenetic studies are limited. Here, we conducted a combined analysis of
SNVs with CNVs in pharmacogenes in Koreans.

In conclusion, the frequencies of SNVs and CNVs in pharmacogenes were determined
by means of a Korean cohort-based GWA study. Though further assessments of correlations
with phenotype changes are necessary, the results here may be useful for the identification
of genetic causes of cases involving severe drug-induced toxicity or reduced therapeutic
benefits from a drug.
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