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Abstract: Aging is characterized by a progressive decline or loss of physiological functions, leading
to increased susceptibility to disease or death. Several aging hallmarks, including genomic instability,
cellular senescence, and mitochondrial dysfunction, have been suggested, which often lead to the
numerous aging disorders. The periodontium, a complex structure surrounding and supporting the
teeth, is composed of the gingiva, periodontal ligament, cementum, and alveolar bone. Supportive
and protective roles of the periodontium are very critical to sustain life, but the periodontium
undergoes morphological and physiological changes with age. In this review, we summarize the
current knowledge of molecular and cellular physiological changes in the periodontium, by focusing
on soft tissues including gingiva and periodontal ligament.
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1. Introduction

Aging is defined as a progressive decline or loss of intrinsic physiological functions,
leading to a decrease in reproductive and survival rates [1]. Although death is inevitable
to human, individuals have craved a way of delaying the aging process and extending
the lifespan. In this regard, aging research has identified critical risk factors and treatment
strategies for major age-related pathologies including cardiovascular diseases, neurode-
generative disorders, cancers, and other chronic diseases [2]. In addition, recent studies
suggest several promising interventions, such as regulating nutrient sensing, controlling
cellular senescence, and balancing the gut microbiome [3].

Indeed, some pharmacological approaches were proven to slow down age-dependent
functional decline. For example, rapamycin extended the median and maximal lifespan of
mice when fed beginning at 20 months of age [4]. Rapamycin seems to extend healthspan
as well as lifespan through reversing age-related vascular dysfunction and oxidative
stress [5], rejuvenating oral health [6], and ameliorating age-dependent cognitive deficits [7].
Interestingly, recent clinical study showed that topical rapamycin treatment efficiently
suppressed human skin aging [8]. Resveratrol, a polyphenol found in red wine, has been
also proven to prolong lifespan of model organisms including yeast, nematode worms, fruit
flies, and rodents [9–11]. Resveratrol additionally showed the protective effects in several
mouse models of age-dependent neurodegenerative disorders [12,13]. Recently, resveratrol
was reported to enhance cognitive and cerebrovascular functions in postmenopausal
women [14]. Metformin, the first-line medication prescribed for type 2 diabetes, was also
found to significantly prolong lifespan in worms by up to 36% [15,16]. However, whether
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these pharmacological interventions extend the lifespan and/or healthspan in humans
needs to be validated further.

Aging research proposed critical aging hallmarks that describe common denomina-
tors among species, including genomic instability, cellular senescence, and mitochondrial
dysfunction [2]. During aging, genetic damages are accumulated and gene expression
patterns are continuously changed [17]. These alterations are mediated by extracellular
chemical/biological stimuli, as well as by intracellular replicative/oxidative stress. Genetic
disintegrity and abnormal gene expression changes often lead to numerous aging disor-
ders [18]. Aging-inducing factors also trigger cellular senescence which can be dependent
on or independent of telomere shortening. Cellular senescence refers to the irreversible
loss of cell growth capacity, which commonly accompanies peculiar phenotypic alterations.
Of note, frequencies of senescent cells are dramatically increased in several tissues, when
comparing young and old mice. For example, approximately 8% of senescent cells were
observed in young mice liver but the percentage of senescent hepatocytes are increased
to 17% in old mice. Additionally, in the spleen, young mice have only 7% of senescent
lymphocytes but aged mice have 25% of senescent lymphocytes [19]. Accumulation of
senescent cells is also observed in humans in several tissues [20]. When the cellular senes-
cence process is hyperactivated, it leads to downregulation of tissue function and repair,
upregulation of inflammatory responses, reduction of cell renewal, and exhaustion of
stem cells. Aging also affects the efficiency of the respiratory chain in the mitochondria.
Furthermore, mitochondrial dysregulation can expedite aging [21]. Mitochondrial decline
can affect apoptotic signaling and upregulated unwanted inflammatory reactions [22].
In addition, inefficient biogenesis of mitochondria with age causes disruption in energy
metabolism systemically.

The periodontium, a complex structure surrounding and supporting the teeth, is
composed of the gingiva, periodontal ligament, cementum, and alveolar bone [23]. The
primary roles of the periodontium are to support attachment for the tooth to the bone of the
jaw and help the tooth to endure the stress of mastication. In addition, the periodontium
guards the underlying structure against pathogenic oral microflora and protects the blood
vessels and nerves from injury. Dynamic remodeling in the periodontium is essential for
orthodontic tooth movement, improved occlusion, and decreased tooth wear [24,25]. As a
functional biological system, the periodontium undergoes morphological and physiological
changes with age. In this review, we summarize the current knowledge of molecular and
cellular physiological changes in the periodontium, by focusing on soft tissues including
gingiva and periodontal ligament.

2. Anatomical and Physiological Homeostasis in the Gingiva

The gingiva is located on the external surface of the periodontium and covers alveolar
bone and tooth root. The gingiva is composed of an outer epithelial layer and an underlying
connective tissue, called lamina propria, and the epithelium is histologically subdivided
into at least three sections (the oral epithelium, the sulcular epithelium, and the junctional
epithelium). While the gingival epithelium consists of several cell types, including ker-
atinocytes, melanocytes, Langerhans cells, and Merkel cells, the lamina propria is mostly
filled with collagen fibers, vessels, nerves, and matrix [26]. Compared to the epithelial
layer, relatively small quantity of cells, such as fibroblasts and innate immune cells, reside
in the connective tissue.

The oral epithelium is a keratinized oral mucosa and it is the thickest (0.2–0.3 mm
in thickness on average) layer among the gingival epithelium. The sulcular epithelium
is a thin, non-keratinized (but often parakeratinized situationally) epithelial lining of the
gingival sulcus. The oral and sulcular epithelium primarily perform protective and de-
fensive roles. However, because the sulcular epithelium may act as a semi-permeable
membrane through which pathogenic bacterial byproduct penetrate, it can be involved
in the detection of bacterial assault and initiation of immune responses. In contrast, the
junctional epithelium, non-keratinized cell layer adhering to the tooth surface, serves mul-
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tiple functions. The junctional epithelium mediates the epithelial attachment to the tooth
surface and basement membrane facing the connective tissue through hemidesmosomes
and the extracellular matrix [27]. The junctional epithelium also serves as the front-line of
defense system against injurious bacterial infection by expressing anti-microbial factors
such as secretory leukocyte protease inhibitor (Slpi) [28] and S100A9 [29]. In addition,
the junctional epithelium cells constitutively express chemokines and cytokines including
keratinocyte-derived chemokine (KC/CXCL1) and macrophage inflammatory protein-2
(MIP-2/CXCL2), as a result, polymorphonuclear leukocytes are heavily infiltrated into the
junctional epithelium, which provides maintenance of physiological homeostasis as well
as anti-pathogenic defense [30]. Given that the junctional epithelium shows high turnover
rate, it can also contribute to tissue regeneration and dental plaque suppression [31].

The gingival connective tissue performs critical functions in the protection of cement
root and alveolar bone [26]. The connective tissue also shows rapid turnover, it has a
marked capacity of healing and regeneration [32]. In gingival connective tissue, fibroblasts
perform central roles in the development, homeostatic maintenance, and repair. Fibroblasts
constitute approximately two-thirds of cell population in the gingival connective tissue,
and synthesize/secrete components of the extracellular matrix such as collagen, elastin,
and glycoproteins. Fibroblasts induce proliferation of connective tissue cells by expressing
platelet-derived growth factor (PDGF) [33], and following injury to tissues, fibroblasts
migrate to damaged sites and mediate tissue repair/regeneration, in cooperation with
inflammatory cells [34].

Aging seems to negatively affect homeostatic regulation in gingiva (Figure 1). Mount-
ing evidence demonstrated that the width of attached gingiva increases with age, mirroring
the riskiness of disease incidence on the periodontium [35,36]. Gingival recession caused
by accumulated mechanical trauma or gingivitis could induce the loss of attachment, in
an age-dependent manner [37]. Cáceres et al. compared several physiological aspects of
young and aged gingiva, with primary cultures of gingival fibroblasts and rat models.
Importantly, gingival fibroblasts from aged individuals displayed reduced capacities of
cell proliferation and migration, altered myofibroblastic differentiation, and diminished
collagen remodeling, indicating that the capability of gingival repair is retarded with age.
Deficiencies in gingival wound-healing were additionally confirmed with a rat model [38].
Interestingly, probably for compensating reduced proliferative capacity, gingival tissues
from aged animals showed higher anti-apoptotic and lower pro-apoptotic gene expression
compared with gingival tissues from young animals [39].
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3. Anatomical and Physiological Homeostasis in the Periodontal Ligament

The periodontal ligament provides the supporting connection of the cementum cover-
ing the tooth root to the inner socket of the alveolar bone through bundles of type I collagen
named Sharpey’s fibers [40]. The periodontal ligament also helps to fuel vascular supply



J. Pers. Med. 2021, 11, 58 4 of 15

and nutrients to the cementum and the alveolar bone. The periodontal ligament consists of
numerous cell types including fibroblasts, progenitor cells, epithelial cells, blood cells [23].
In addition, cementoblasts are lined at the cementum interface, while bone-associated
cells, such as osteoblasts, osteoclasts, and odontoblasts, are located along the alveolar bone.
Intercellularly, poroelastic substances composed of an organic matrix filled with a fluid
component inside the periodontal ligament sense applied physical forces in the bone and
act as an elastic limit to prevent tooth damage [41,42].

In the periodontal ligament, fibroblasts are the predominant cell type, making up
approximately 25–30% of the volume space and 50–60% of the total cellularity [43]. Fi-
broblasts perform central roles in repair and remodeling of the periodontal ligament by
generating the collagen fibers. Given that fibroblasts have the capacity to proliferate rapidly
and migrate dynamically, these cell populations show a critical function during periodontal
wound healing. Interestingly, when fibroblasts are exposed to physical or biochemical
stimuli, they are able to differentiate into osteoblasts and/or cementoblasts by inducing
c-fos mRNA expression and/or activating the ERK/JNK pathway [44,45]. The periodon-
tal ligament fibroblasts can also be involved in osteoclastogenesis [46], suggesting the
prominent role of the periodontal ligament in periodontium homeostasis.

Defense cells, including macrophages, mast cells, and eosinophils, also exist in the
periodontal ligament. The primary role of these cells is the protection of periodontium
by phagocytizing invading pathogens and dead cells. However, they also mediate the
proliferation of fibroblasts and endothelial cells by secreting growth factors and cytokines.
Another important cell type residing in the periodontal ligament is stem cell. The existence
of a putative stem-cell population inside the periodontal ligament was first identified in
2004 [47]. The periodontal ligament stem cells represented mesenchymal stem cell traits
such as clonogenicity, expression of specific markers STRO-1 and CD146/MUC18, and
the capacity of differentiation into cementoblast, osteoblast, adipocyte, odontoblast, and
fibroblast. Recent evidence additionally identified that epithelial stem cells also exist in the
periodontal ligament [48].

A modest to severe functional reduction in the periodontal ligament accompanies
aging. Earlier observation indicated that aging negatively influenced cell and fiber density,
organic matrix production, and cellular mitotic activity in the periodontal ligament [49].
In line with these results, Benatti et al. showed that cell proliferation, mineral nodule
formation, and mRNA expressions of type I and III collagen were downregulated over the
lifespan [50]. The decline of proliferative capacity by aging ultimately leads to impaired
wound healing and reduced tissue regeneration. Furthermore, senescent cell populations
are progressively accumulated and the activity of AP-1 transcription factor is gradually de-
creased with age, due to a loss of c-fos expression [51]. On the other hand, mRNA levels of
matrix metalloproteinase (MMP)-2, MMP-8, and tissue inhibitor matrix metalloproteinase
(TIMP)-1 were upregulated, suggesting that extracellular matrix might be easily degraded
with age.

Aged periodontal ligament cells express higher level of pro-inflammatory genes
including osteoprotegerin, IL-1β, and IL-6 [52]. Considering that osteoclast activity is
regulated by osteoprotegerin and RANKL [53], it is not surprising that bone turnover
is increased with age [54]. Aged periodontal ligament cells also show lower alkaline
phosphatase activity, which means reduced osteogenesis and calcification [55]. Consistently,
osteoblastic gene expression gradually diminishes with age [56].

Lim et al. also showed that the width of the periodontal ligament space is reduced over
the lifespan [54]. This phenomenon can be explained by the accumulation of mineralized
tissue and/or atrophy of collagen fibers with age. Narrower diameter of the periodontal
ligament can increase the risk of tooth or bone fracture because occlusal forces will be
converged on a smaller area.
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4. Molecular Profile Changes with Age in the Periodontium
4.1. Inducible Nitric Oxide Synthase

According to the oxidative stress theory of aging, accumulation of oxidative damage
by reactive oxygen and nitrogen species (RONS) contributes to the process of normal
aging as well as the development of pathological conditions [57]. At a molecular level,
excessive levels of exogenous or endogenous RONS result in oxidation of intracellular
components, such as DNA, RNA, protein, and lipid [58]. Oxidative modification to these
macromolecules causes disturbance of normal cellular physiological activities and im-
pairment of homeostatic maintenance including mitochondrial integrity and proteostasis,
which can ultimately lead to cell dysfunction or even cell death [59].

Nitric oxide (NO), a diatomic free radical and weak oxidant [60], is generated from
L-arginine by three major isoforms of nitric oxide synthase (NOS): endothelial NOS (eNOS),
neuronal NOS (nNOS), and inducible NOS (iNOS) [57]. Physiological levels of NO show
prominent cellular functions via homeostatic redox-sensitive signaling pathways [61].
However, uncontrolled production of NO can participate in a variety of disease processes.
When NO reacts with the superoxide anion radical (O2−), peroxynitrite (ONOO-) is actively
generated and peroxynitrite mediates the nitration of target proteins at tyrosine residue.
Peroxynitrite and protein tyrosine nitration are associated to the normal aging process
and onset of various diseases including atherosclerosis [62], inflammatory injury [63],
and neurodegeneration [64].

While the constitutive NOS isoforms, eNOS and nNOS, generate short-lasting and low
levels of NO, iNOS produces long-lasting and larger quantities of NO [65]. In this reason,
the contribution of iNOS to normal aging and pathological process in the periodontium
has been studied. Regardless of exogenous stimuli, gingival fibroblasts obtained from aged
human secreted more NO than cells derived from younger human. Consistently, the basal
mRNA level of iNOS was upregulated in aged gingival fibroblasts [66].

4.2. Matrix Metalloproteinase (MMP)

Extracellular matrix (ECM) is a non-cellular structure that provides a biochemical and
biomechanical environment within which cells reside. In addition to providing supportive
structure for cells, the ECM defines the boundary between tissues and regulates cellular
physiologies and intra-/inter-cellular communication. Aging affects the composition and
structural flexibility of ECM. Recently, Tanaka et al. analyzed plasma proteins of all age
groups and identified ~650 age-associated proteins in which extracellular matrix-related
proteins were enriched [67]. Another recent study demonstrated that abundance of hyaluro-
nan, an ECM glycosaminoglycan, gradually decreased with age, leading to the alteration
in biomechanical properties of ECM [68]. As a critical factor for skin moisture, hyaluronan
preserves the hydration of skin, thereby suppresses skin aging. Hyaluronan is also involved
in anti-inflammatory responses and anti-photoaging of skin [69]. In addition, hyaluro-
nan has protective functions by inhibiting parasites invasion and tumor metastasis [70].
Furthermore, hyaluronan promotes wound healing, and the prolonged upregulation of
hyaluronan is associated with scar-free repair [71]. Based on these positive roles, hyaluro-
nan is now actively used in the dental field [72]. Therefore, aging accompanying with
progressive decline of hyaluronan severely impairs proliferating and regenerative capaci-
ties of oral fibroblasts, resulting in downregulation of ECM production, disorganization
of ECM architecture, and inefficient wound healing [73,74]. Indeed, accumulating clinical
evidence reveals that wound healing capacity after biopsy or periodontal surgery is higher
in younger individuals [75,76].

MMPs are Zn2+- and Ca2+-dependent proteases that have critical roles in diverse
biological and pathological processes. In human, 23 different MMPs have been identified
so far. Given that MMPs facilitate the disassembly of the ECM, they serve important roles
in ECM homeostasis and remodeling. Notably, Kim et al. recently reported that alterations
in MMPs expression would be highly responsible for gingival aging [77]. This study
identified that mRNA levels of MMP-3, MMP-9, MMP-12, and MMP-13 were dramatically
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increased with age in gingival tissue, along with the upregulation of IL-1β expression. More
interestingly, increased levels of MMPs and IL-1β would be linked to induced susceptibility
to pathogenic infection in aged gingiva (Figure 2).
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Figure 2. GO enrichment analysis and KEGG pathway enrichment analysis of differentially expressed
genes by aging in human gingiva. (A–D) mRNA profiles of young and old human gingiva were
extracted and analyzed from the NCBI Gene Expression Omnibus (GEO) profile database (GEO
accession: GSE83382). Determination of upregulated genes during aging was based on fold-change
of the expression level > 2 and a p-value < 0.05. Determination of downregulated genes was based on
fold-change of the expression level < 0.5 and a p-value < 0.05. GO analysis of upregulated genes (A)
and downregulated genes (B) was conducted by utilizing Gene Ontology resources [78–80]. KEGG
pathway analysis of upregulated genes (C) and downregulated genes (D) was conducted by utilizing
g:Profiler [81,82]. In (C,D), the color indicates the degree of statistical significance, and negative log10
of adjusted p values were presented in each box.

Considering that gingival tissues-derived MMP-3 contributes to the progression of
adult periodontitis by activating MMP-8 and MMP-9 derived from crevicular fluid neu-
trophil [83], increased expression of MMPs would be responsible for age-related periodontal
inflammation. Indeed, accumulating evidence has suggested the link between MMPs and
periodontitis. MMP-8 and MMP-9 have been frequently found to be elevated in chronic
or advanced periodontitis, assessing the potential of these MMPs as the most promising
periodontitis biomarkers (Figure 3) [84,85]. Although expressed at a lesser degree, MMP-
13 has also involved in destructive periodontal disease [86,87]. These MMPs induce the
secretion of pro-inflammatory cytokines, including TNFα, IL-1β, IL-6, and IL-12, in the
periodontal tissues during periodontitis progression [88]. It has been repeatedly shown
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that local and systemic inflammatory responses were downregulated in MMP-8-deficient
mice [89–91]. In addition, polymorphisms in MMP-1, MMP-3, MMP-8, and MMP-9 are
associated with chronic periodontitis susceptibility [92,93].
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4.3. Others

Many research groups keep identifying the change in molecular expression during
aging. Grzibovskis et al. showed that expression level of basic fibroblast growth factor
(bFGF) was significantly decreased with age [95]. As a well-known growth factor, bFGF
regulates the proliferation, apoptosis, and regeneration of several cells/tissues, including
gingiva and periodontal ligament [96,97]. More recently, it was reported that bFGF inhibits
periodontal inflammation by suppressing CD40-mediated inflammatory signaling [98].
Based on the regenerative capacity of bFGF, many clinical trials were already performed to
recuperate periodontal tissue which was disrupted by age or pathological conditions. In
the phase II clinical trial, administration of recombinant human (rh)-bFGF clearly increased
alveolar bone height [99]. In the following clinical trials, rh-bFGF significantly enhanced
bone fill, but the increment of clinical attachment level was insufficient [100,101]. When
rh-bFGF was treated with a β-tricalcium phosphate (β-TCP) scaffold carrier, clinical out-
comes were improved, which were determined by the clinical attachment level and linear
bone growth [102].

Several genes involved in the apoptotic pathway are differentially expressed with age.
González et al. showed that young gingival tissue expresses pro-apoptotic genes more
abundantly than adult or aged gingiva [39]. Specifically, TNF receptor 1, BH3 interacting do-
main death agonist (BID), the apoptotic peptidase activating factor 1 (APAF-1), and p53 are
upregulated in younger gingiva. In contrast, anti-apoptotic genes, including phosphatidyli-
nositol 3-kinase (PI3K) and IκB kinase (IKK), were expressed higher in adult or aged
gingiva. These changes in molecular profile indicate that apoptotic processes show critical
function in the homeostasis of the periodontium. Earlier evidence already demonstrated
that adequate apoptotic signaling produces anti-inflammatory responses, and apoptosis
impairment contributed to the development of chronic inflammatory diseases [103,104].
Consistently, it was shown that upregulated resistance to apoptosis, mediated by activation
of the PI3K pathway, provided survival benefit to Porphyromonas gingivalis-infected oral
epithelial cells, resulting in periodontitis pathogenesis [105]. The molecular link between
apoptosis and aging needs to be precisely determined in further studies.

https://genemania.org/
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5. Physiological Changes with Age in the Periodontium
5.1. Responsiveness to Pathogens with Age

Aging may directly or indirectly impact the responsiveness of host defenses against
pathogens. Intrinsic aging of the skin and oral mucosa reduces the defense system to
allow pathogens an easier entrance and colonization. As a result, aging promotes bacterial
proliferation in the mouth, leading to the overgrowth of oral anaerobes [106]. In addition,
aging influences the oral flora, showing that aged mice have less bacterial diversity when
compared with young mice [107].

The susceptibility to destructive diseases occurred in the periodontium can be affected
by aging. Healthy gingival fibroblasts normally serve as the first-line guardian against oral
pathogens. However, aged gingival fibroblasts show increased susceptibility to bacterial
infection. When exposed to Porphyromonas gingivalis, the gene expression pattern revealed
large discrepancy between young and aged gingival fibroblasts [108]. Particularly, aged
fibroblasts failed to upregulate IL-6 production against bacterial infection, mirroring the
impairment of immune responses in old fibroblasts. Ahn et al. utilized another periodon-
tal pathogen, Fusobacterium nucleatum, to compare transcriptome of senescent gingival
fibroblasts with that of younger cells [109], and identified that five genes (ID1, KLF10,
GADD45b, TM4SF1, and CSRNP1) were mostly induced in aged gingival fibroblasts, in
response to Fusobacterium nucleatum (Figure 4). Following study would be required to
determine the roles of these genes in age-dependent susceptibility to pathogens. Moreover,
further detection of new oral pathogens and investigation of their roles in the onset and
progression of age-related diseases are also required [110].
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Although whether saliva production and salivary flow rate are affected by age is
still controversial [112,113], it has been repeatedly shown that morphologies of salivary
glands change with age and atrophy of the acinar cells tends to be increased during
aging [114,115]. Given that reduced salivary flow or xerostomia has been reported as side
effects in more than 400 medications, including psychotropic analgesics, diuretic drugs,
calcium antagonists, and anti-histamines, elderly people seem to be more afflicted with
dry mouth symptoms. Considering the preventive roles of saliva, such as suppressing
bacterial propagation and neutralizing acids released from pathogens, tendency of drug
dependence in the elderly would contribute to increased susceptibility to oral pathogens in
aged people [116].

5.2. Drug-Influenced Alterations in the Periodontium

Older people are more likely to be taking multiple medications to restore organ
homeostasis and/or treat pathological conditions. Several medications may function as
positive or negative factors on the periodontium.

Overall prevalence of hypertension increases with age consistently in all world re-
gions [117]. Calcium channel blockers (CCBs) are drugs frequently used to reduce blood
pressure. By binding to L-type calcium channels expressed on vascular smooth muscles and
cardiac myocytes, CCBs lead to relaxation of vascular smooth muscles and vasodilation,
which in turn lowers arterial blood pressure [118]. Interestingly, the majority of CCBs,
including nifedipine, diltiazem, verapamil, and felodipine, have been reported to induce
gingival enlargement or overgrowth, and gingival hyperplasia could be localized or shown
in the entire mouth [119–122]. Although CCBs do not seem to directly affect the underlying
alveolar bone, drug-induced gingival overgrowth may create pockets for the accumulation
of pathogenic bacterial biofilm, thus inducing periodontitis and tooth loss.

In contrast, some medications used to treat other systemic diseases could provide
benefits for abnormalities in the periodontium. Rheumatoid arthritis (RA) is a chronic auto-
inflammatory disease, resulting in synovial hyperplasia and extensive joint destruction.
Although RA can arise in any age, the cumulative risk of RA increases rapidly around
age 60 years, where the incidence rate of RA reaches a zenith, and flattens beyond age
80 years [123]. Rituximab is a chimeric mouse/human monoclonal antibody against the
protein CD20 that is primarily expressed on the surface of B cells. Although the role of
B cells in the pathogenesis of RA is not precisely established, studies have shown that
the administration of rituximab, alone or in combination with either cyclophosphamide
or methotrexate, depleted circulating B cells and improved disease symptoms of RA for
up to 1 year [124,125]. Coat et al. demonstrated that rituximab treatment significantly
ameliorated periodontal indices, such as modified gingival index, papillary bleeding index,
pocket depth and attachment loss, and delayed inflammation and bone damage [126].
Although this study did not compare the efficacy of rituximab between the young and
aged group, considering that mean age of subjects in the study was over 60 years, it would
be possible that rituximab may have a positive role in age-mediated pathophysiology in
the periodontium.

Another example of a drug that shows potential benefits for the periodontium is met-
formin. Although metformin has been used as the first line pharmacotherapy against type
2 diabetes since the 1950s, metformin also showed other virtues such as AMPK-dependent
anti-tumor activity [127] and anti-atherogenic functions [128]. Interestingly, metformin
improved clinical outcomes in chronic periodontitis patients [129]. Metformin suppressed
Porphyromonas gingivalis LPS-induced production of pro-inflammatory cytokines, includ-
ing IL-1β, IL-6, and TNF-α, in human gingival fibroblasts and periodontal ligament cells
through targeting NLRP3 inflammasome [130,131]. More recently, Kuang et al. demon-
strated that metformin can prevent oxidative stress-induced cellular senescence by stim-
ulating autophagy [132]. In addition, metformin positively regulates bone repair and
metabolism by reversing abnormal expression of RANKL, osteopontin, TRAP expres-
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sion [133]. Furthermore, metformin shows osteogenic activity through facilitating the
proliferation and differentiation of periodontal ligament stem cells [134,135].

6. Conclusions

The periodontium serves multiple functions in maintaining the structure of the orofa-
cial complex, providing mastication control, and protecting the oral cavity against pathogens.
Because the destruction of the periodontium is currently considered as irreversible and
permanent, structural and functional maintenance of the periodontium is critical. However,
these physiological roles are progressively reduced or lost with age, which leads to the
increased vulnerability to numerous diseases. Aging-related intrinsic factors, including
replicative stress, oxidative damages, genetic alteration, mitochondrial decline, and cellular
senescence, and extrinsic factors, including changes in oral flora and medication-driven
pathologies, synergistically weaken the performance of the periodontium. Therefore, un-
derstanding the effect of aging on homeostasis in the periodontium would be important to
keep the oral environment and further life quality in a good condition.
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